4th exercise sheet on Relativity and Cosmology I
Winter term 2017/18

Deadline for delivery: Thursday, 16th November 2017 during the exercise class.

Exercise 9: Energy-momentum tensor for electromagnetic field

Recall from the lecture course that the energy-momentum tensor for electromagnetic field reads

\[T_{\mu \nu} := \frac{1}{4 \pi} \left(F_{\mu \lambda} F^{\nu \lambda} - \frac{1}{4} \eta_{\mu \nu} F_{\lambda \rho} F^{\lambda \rho} \right), \]

where \(F_{\mu \nu} \) has been defined in exercise 6.

1. Express \(T^{00}, T^{0i} \) and \(T^{ij} \) in terms of \(\vec{E} \) and \(\vec{B} \). What is the physical meaning of \(T^{00} \) and \(T^{0i} \)?
2. Interpret the four conservation equations for \(T^{\mu \nu} \) as well as the components \(T^{ij} \). Use the results in item 1.

Exercise 10: Accelerated frame of reference

1. Show that the equations

\[
\begin{align*}
 t &= \frac{c}{g} \sinh \left(\frac{g t'}{c} \right) + \frac{x'}{c} \sinh \left(\frac{g t'}{c} \right), \\
 x &= \frac{c^2}{g} \left[\cosh \left(\frac{g t'}{c} \right) - 1 \right] + x' \cosh \left(\frac{g t'}{c} \right), \\
 y &= y', \\
 z &= z',
\end{align*}
\]

describe a transformation from an inertial frame to an accelerated frame of reference (\(g = \text{const.} \)).

2. Calculate the components of the metric with respect to the frame \((t', x', y', z')\).

Exercise 11: Rindler coordinates

Consider the two-dimensional metric

\[ds^2 = -v^2 \, du^2 + dv^2. \]

1. At which point in space do the components of the metric tensor exhibit a singularity?
2. Find a coordinate transformation which shows that this so-called Rindler space is only a part of the two-dimensional Minkowski space, which is usually represented by \(ds^2 = -dt^2 + dx^2 \).
3. Compare the Rindler coordinates with the coordinates from exercise 10.
4. Give an illustrative interpretation of the Rindler coordinates (consider \(u = \text{const. and } v = \text{const.} \)).
5. Determine the proper acceleration along the curve \(v = \text{const.} \).