29th November 2017

7th exercise sheet on Relativity and Cosmology I

Winter term 2017/18

Deadline for delivery: Thursday, 7th December 2017 during the exercise class.

Exercise 19: *On the covariant derivative*

19.1 In order to define the general covariant derivative $\widetilde{\nabla}_{\mu}$ one only needs *a connection* $\widetilde{\Gamma}^{\nu}_{\ \mu\lambda}$, where at first the connection is not linked to the metric in any way:

$$\widetilde{\nabla}_{\!\mu} A^{\nu}_{\ \kappa} \coloneqq \partial_{\mu} A^{\nu}_{\ \kappa} + \widetilde{\Gamma}^{\nu}_{\ \mu\lambda} A^{\lambda}_{\ \kappa} - \widetilde{\Gamma}^{\lambda}_{\ \mu\kappa} A^{\nu}_{\ \lambda}$$

1. Show that the two conditions

$$Q_{\mu\nu\kappa} := -\widetilde{\nabla}_{\mu} g_{\nu\kappa} = 0, \qquad T^{\mu}_{\ \nu\kappa} := 2 \widetilde{\Gamma}^{\mu}_{\ [\nu\kappa]} = 0$$

are equivalent to the condition that $\tilde{\Gamma}^{\mu}_{\nu\kappa}$ is the Christoffel symbol of the second kind $\Gamma^{\mu}_{\nu\kappa}$.

- 2. The quantities $Q_{\mu\nu\kappa}$ and $T^{\mu}_{\nu\kappa}$ are called *non-metricity* (see Exercise 18) and *torsion*, respectively. Are they tensors?
- **19.2** Let V^{μ} be a vector field and $\mathfrak{V}^{\mu} := \sqrt{|g|} V^{\mu}$ be the corresponding vector density. Show that

$$abla_\mu \, V^\mu = rac{1}{\sqrt{|g|}} \, \partial_\mu igg(\sqrt{|g|} \, V^\mu igg) \quad ext{and} \quad
abla_\mu \, \mathfrak{V}^\mu = \partial_\mu \, \mathfrak{V}^\mu \, .$$

19.3 The covariant wave operator for a scalar field ϕ is given by

$$\Box \phi \coloneqq \nabla^{\mu} \nabla_{\mu} \phi.$$

- 1. Rewrite this by means of 19.2 such that the resulting expression only contains partial derivatives.
- 2. As an example, calculate the wave operator in 3-dimensional spherical coordinates.

Exercise 20: Riemannian normal coordinates

1. Show that near the origin of a Riemannian normal coordinate system ($\xi^{\mu} \ll 1$) the following holds:

$$g_{\mu\nu}(0+\xi) = \eta_{\mu\nu} + \frac{1}{3} R_{\mu\kappa\lambda\nu}(0) \xi^{\kappa} \xi^{\lambda} + \dots$$

2. Give a physical interpretation.

Exercise 21: Algebraic identities of Riemann tensor

1. Show that, in Riemannian spaces, i.e. where the connection $\tilde{\Gamma}^{\mu}_{\nu\kappa}$ is given by the Christoffel symbol of the second kind $\Gamma^{\mu}_{\nu\kappa}$, the Riemann tensor satisfies the following algebraic identities:

$$R_{\mu\nu(\alpha\beta)} = 0$$
, $R_{(\mu\nu)\alpha\beta} = 0$, $R_{\mu[\nu\alpha\beta]} = 0$.

2. Can you give an illustrative interpretation of the first two identities?