8th exercise sheet on Relativity and Cosmology I

Winter term 2017/18

Deadline for delivery: Thursday, 14th December 2017 during the exercise class.

Exercise 22: Integration

Define a surface of revolution \mathcal{A} via

$$z^2 = [f(r)]^2$$
, $r^2 = x^2 + y^2$,

where *f* is a strictly positive smooth function on [0, a) with f(a) = f'(0) = 0 and $f'(a) = -\infty$.

22.1 Determine the metric g_{ij} which is induced by the line element $ds^2 = dr^2 + r^2 d\varphi^2 + dz^2$ on this surface.

22.2 Calculate the corresponding Ricci scalar and show by explicit calculation that the integral

$$\int_{\mathcal{A}} \sqrt{g} \, R \, \mathrm{d}^2 x$$

does not depend on the choice of the function f.

Exercise 23: Killing vector fields

- **23.1** Show that the Killing equation $\nabla_{(\mu} v_{\nu)} = 0$ can also be written as $\mathcal{L}_v g_{\mu\nu} = 0$. What does this mean from a physical point of view?
- **23.2** Prove the following integrability condition for a Killing vector field v^{μ} :

$$v_{\lambda;\kappa\nu} = - v_{\mu} R^{\mu}{}_{\nu\lambda\kappa}.$$

- **23.3** Consider a timelike Killing vector field ξ^{μ} . Show that there is a coordinate system in which the metric does not depend on time, i.e. $\frac{\partial g_{\mu\nu}}{\partial t} = 0$ holds.
- 23.4 Find all Killing vector fields for Minkowski spacetime.
- **23.5** Let $u^{\mu} = dx^{\mu}/d\tau$ be the tangent vector of an affine-parametrised geodesic, and let ξ^{μ} be a Killing vector field. Show that $u_{\mu}\xi^{\mu}$ is constant along the geodesic. Use these conserved quantities to illustrate the physical meaning of the Killing vector fields from part 23.4.
- **23.6** Let $T^{\mu\nu}$ be a symmetric tensor field with vanishing divergence, and let ξ^{μ} be a Killing vector field. Calculate $(\xi^{\mu} T_{\mu}{}^{\nu})_{;\nu}$.

The result is of great importance for the construction of conserved integral quantities.