8th exercise sheet on Relativity and Cosmology II

Summer term 2013

Deadline for delivery: Thursday, 13th June 2013 during the exercise class.

Exercise 17 (4 credit points): Accretion disks

Give an estimate for the characteristic energy that is emitted by an accretion disk with radius *R* around a compact spherically symmetric object. For simplicity (even though this is not totally realistic), assume that the luminosity is that of a black body of radius *R* and temperature *T* and that it amounts to a given fraction ε of the Eddington luminosity. (At the end, use $\varepsilon \approx 0.5$.)

Exercise 18 (4 credit points): *Redshift in case of a gravitational collapse*

Consider an observer on the surface of a collapsing spherical star who emits radial light signals in short proper time intervals Δs , i.e. with a constant frequency $\omega_* = 2\pi/\Delta s$. These signals are received by a stationary observer at large distance $r = r_R$, i.e. with a frequency $\omega_R = 2\pi/\Delta t_R$, where Δt_R refers to the Schwarzschild time. Calculate the dependence of the frequency ratio ω_R/ω_* on t_R . Indicate the time scale of the redshift in terms of seconds if you measure *M* in solar masses.

Hint: Use Eddington–Finkelstein coordinates (as discussed in the lecture) and assume that the emitting observer is already located near the Schwarzschild radius.

Exercise 19 (12 credit points): *Newtonian cosmology*

- **19.1** In the Newtonian theory of gravity, how large is the total gravitational force of an infinitely extended mass distribution of mass density $\rho(\vec{x})$ on a mass *m* that is located at the origin? What kind of problem occurs with an infinitely large and homogeneous mass distribution?
- **19.2** Consider a "universe" with a homogeneous mass density $\rho(t)$. Write out the Newtonian equation of motion for an arbitrary galaxy of mass *m* whose radius vector with respect to the Earth be denoted by $\vec{x}(t)$. According to the Hubble law, we have

$$\vec{x}(t) = a(t) \vec{x}_0$$
 with $\frac{\dot{a}}{a} =: H(t)$.

 $(\vec{x}_0 \text{ denotes the location for an arbitrarily given time.})$

Formulate the equation of motion for a(t). Use the continuity equation to eliminate $\rho(t)$. Is a static universe (a = const.) possible? Show that integration leads to the "energy theorem"

$$\dot{a}^2 - \frac{C}{a} + k = 0$$

where C > 0 and k are constants. How can one interpret k? Sketch a(t) roughly for the three cases k < 0, k = 0 and k > 0.

19.3 Add ad hoc a repulsive force $m \vec{x} \Lambda/3$ with "cosmological constant" $\Lambda > 0$ to the Newtonian gravitational force. Formulate the modified equation of motion for a(t) as well as the modified "energy theorem". Is it now possible to have a static universe?