www.thp.uni-koeln.de/gravitation/courses/rcii16.html

12th exercise sheet on Relativity and Cosmology II

Summer term 2016

Deadline for delivery: Thursday, 14th July 2016 during the exercise class.

Exercise 24 (16 credit points): *Kerr–Newman metric*

The most general solution for a stationary black hole is given by the *Kerr–Newman metric*, which describes a black hole with angular momentum J = Ma and charge q. The line element expressed in Boyer–Lindquist coordinates takes the following form:

$$\mathrm{d}s^2 = -\frac{\Delta}{\rho^2} \left(\mathrm{d}t - a \sin^2(\theta) \, \mathrm{d}\phi \right)^2 + \frac{\sin^2(\theta)}{\rho^2} \left[\left(r^2 + a^2 \right) \mathrm{d}\phi - a \, \mathrm{d}t \right]^2 + \frac{\rho^2}{\Delta} \, \mathrm{d}r^2 + \rho^2 \, \mathrm{d}\theta^2 \,,$$

where

$$\rho^2 = r^2 + a^2 \cos^2(\theta)$$
, $\Delta = r^2 - 2Mr + q^2 + a^2$, $q^2 + a^2 \le M^2$.

- **24.1** Show that this line element arises from the line element of the Kerr metric by means of the substitution $M \to M q^2/(2r)$.
- **24.2** For $\Delta = 0$ the metric exhibits coordinate singularities. Determine their radial coordinates r_{\pm} .

The surface $r_+ = \text{const.}$ (with r_+ being the radial coordinate with a larger value) represents the event horizon. Calculate its surface area for t = const.

24.3 Analogously to the Kerr metric, consider an observer with r = const., $\theta = \pi/2$, whose tangent vector is parallel to the Killing field $\chi^{\mu} = \xi^{\mu} + \Omega \Psi^{\mu}$.

Which values can Ω take for given $r \ge r_+$? Show that at the horizon only one value Ω_H is possible and determine this value.

24.4 Consider the Killing field $\chi^{\mu} = \xi^{\mu} + \Omega \Psi^{\mu}$ evaluated at the event horizon.

Show that this Killing field is light-like on the entire horizon. Furthermore, show that the surface gravity κ defined by means of $\left[\nabla^{\mu}(\chi_{\nu}\chi^{\nu})\right]_{H}=-2\kappa\chi^{\mu}|_{H}$ is a well-defined quantity.

Calculate the Lie derivative of the defining equation for κ with respect to χ^{μ} and thereby show that κ is constant along the integral curves of χ .

Remark: After a rather long calculation one obtains $\kappa = (r_+ - M)/(r_+^2 + a^2)$. (Not to be shown here.)

24.5 Consider the null geodesics defined at the horizon, whose tangent vectors k^{μ} are proportional to χ^{μ} . Find the functional relationship between the affine parameter λ of these null geodesics and the Killing parameter v of the integral curves of χ^{μ} , i.e. $\chi^{\mu} = (\partial/\partial v)^{\mu}$.

Exercise 24 (4 credit points): *Hawking temperature*

In the lecture it was mentioned that a Schwarzschild black hole radiates with the so-called *Hawking temperature*

$$T_{\rm H} = \frac{\hbar c^3}{8\pi k_{\rm B} G M} \,.$$

Assume that only photons are emitted and that they have a perfect Planck spectrum. Find a relation between the initial mass of the black hole and its lifetime and analyze this relation for several interesting masses and time intervals.