11th exercise sheet on Relativity and Cosmology II
Summer term 2018

Deadline for delivery: Thursday, 12th July 2018 during the exercise class.

Exercise 50 (6 credit points): Friedmann I

Consider a Friedmann model with $k \neq 0$ and present density parameters $\Omega_{m, 0}$, $\Omega_{r, 0}$ and $\Omega_{v, 0}$ as well as $\Omega := \Omega_{m, 0} + \Omega_{r, 0} + \Omega_{v, 0}$. Furthermore let

$$\rho_c(a) = \frac{3 a^2}{8 \pi G a^2}$$

be the critical density at a time when the scale parameter had the value a, and let $\Omega_m(a) = \rho_m(a)/\rho_c(a)$ etc. be the corresponding relative densities.

Determine the quantity $\Omega(a) - 1$ as a function of $\Omega_{m, 0}$, $\Omega_{r, 0}$, $\Omega_{v, 0}$ and a. This quantity indicates how much the considered model “deviated” from a flat model at a certain time. What kind of problem with regard to the deviation from flatness at earlier times arises for a Friedmann model whose density parameter Ω differs only slightly from unity today?

Exercise 51 (8 credit points): Friedmann II

Solve the Friedmann equation for a universe that contains radiation as well as non-relativistic matter (dust). For this purpose, rewrite the Friedmann equation as a differential equation with respect to the conformal time η, solve this equation for the three possible values of k and write out the result in the form $(a(\eta), t(\eta))$.

Determine the t-dependence of $a(t)$ for early ($t \to 0$) and late ($t \to \infty$) times for all the possible values of k.

Exercise 52 (6 credit points): Friedmann III

Current observations indicate that we live in a flat ($k = 0$) universe with positive cosmological constant, in which the contribution of radiation to the total energy density can be neglected, i.e. the only contributions come from non-relativistic matter (dust) and the cosmological constant.

Solve the Friedmann equation for this model. (Hint: The substitution $x^2 = (1/\Omega_{m, 0} - 1) a^3$ could be helpful.)

Determine the age of the universe as a function of H_0 and $\Omega_{m, 0}$. How does $a(t)$ behave for large and small values of t?

According to well-established models for stellar evolution, several globular clusters in our galaxy are at least 12 billion years old. Draw a ($h - \Omega_m$)-diagram (h is the parameter in the definition of H_0) and sketch the contour lines for a constant age of the universe. Determine which parameter range is compatible with the above-mentioned observation. In doing so, only consider values $0.4 < h < 1$.