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1 Introduction

The really novel feature of general relativity (henceforth abbreviated GR),
as compared to other field theories in physics, is that spacetime is not a
fixed background arena that merely stages physical processes. Rather, space-
time is itself a dynamical entity, meaning that its properties depend in parts
on its specific matter content. Hence, contrary to the Newtonian picture,
in which spacetime acts (via its inertial structure) but is not acted upon
by matter, the interaction between matter and spacetime now goes both
ways.

Saying that the spacetime is ‘dynamic’ does not mean that it ‘changes’
with respect to any given external time. Time is clearly within, not exter-
nal to spacetime. Accordingly, solutions to Einstein’s equations, which are
whole spacetimes, do not as such describe anything evolving. In order to
take such an evolutionary form, which is, for example, necessary to formu-
late an initial value problem, we have to re-introduce a notion of ‘time’
with reference to which we may speak of ‘evolution’. This is done by in-
troducing a structure that somehow allows to split spacetime into space and
time.

Let us explain this in more detail: suppose we are given a spacetime, that
is, a four-dimensional differentiable manifold M with Lorentzian metric g. We
assume that M can be foliated by a family {Σt | t ∈ R} of spacelike leaves.
That is, for each number t there is an embedding of a fixed three-dimensional
manifold Σ into M ,

Et : Σ →M , (1)

whose image Et(Σ) ⊂ M is just Σt, which is a spacelike submanifold of M ;
see Fig. 1. It receives a Riemannian metric by restricting the Lorentzian metric
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Fig. 1. Foliation of spacetime M by a one-parameter family of embeddings Et of
the 3-manifold Σ into M . Σt is the image in M of Σ under Et. Here the leaf Σt′ is
drawn to lie to the past and Σt′′ to the future of Σt

g of M to the tangent vectors of Σt. This can be expressed in terms of the
3-manifold Σ. If we endow Σ with the Riemannian metric

ht := E∗t g , (2)

then (Σ, ht) is isometric to the submanifold Σt with the induced metric.
Each three-dimensional leaf Σt now corresponds to an instant of time t,

where t is so far only a topological time: it faithfully labels instants in a
continuous fashion, but no implication is made as to its relation to actual
clock readings. The statement of such relations can eventually only be made
on the basis of dynamical models for clocks coupled to the gravitational field.

By means of the foliation we now recover a notion of time: we view
spacetime, (M, g), as the one-parameter family of spaces, t �→ (Σ, ht). Space-
time then becomes nothing but a ‘trajectory of spaces’. In this way we obtain
a dynamical system whose configuration variable is the Riemannian metric on
a 3-manifold Σ. It is to make this point precise that we carefully distinguish
between the manifold Σ and its images Σt in M . In the dynamical formulation
given now, there simply is no spacetime to start with and hence no possibility
to embed Σ into something. Only after solving the dynamical equations can
we construct spacetime and interpret the time dependence of the metric of Σ
as being brought about by ‘wafting’ Σ through M via a one-parameter family
of embeddings Et. But initially there is only a 3-manifold Σ of some topo-
logical type1 and the equations of motion together with some suitable initial
data. For a fuller discussion we refer to the comprehensive work by Isham and
Kuchař [13, 14].
1 It can be shown that the Einstein equations do not pose any obstruction to the

topology of Σ, that is, solutions exist for any topology. However, one often im-
poses additional requirements on the solution. For example, one may require that
there exists a moment of time symmetry, which will make the corresponding in-
stant Σt a totally geodesic submanifold of M , like e.g. in recollapsing cosmological
models at the moment of maximal expansion. In this case the topology of Σ will
be severely restricted. In fact, most topologies Σ will only support geometries
that always expand or contract somewhere.
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2 The Initial-Value Formulation of GR

Whereas a specified motion of Σ through M , characterized by the family
of embeddings (1), gives rise to a one-parameter family of metrics ht, the
converse is not true. That is to say, it is not true that any one-parameter
family of metrics ht of Σ can be obtained from a given spacetime (M, g) and
a one-parameter family of embeddings Et, such that (2) holds.

Moreover, there is clearly a huge redundancy in creating (M, g) from the
family {(Σ, ht) | t ∈ R}, since there are obviously many different motions of
Σ through the same M , which give rise to apparently different solution curves
ht. This redundancy can be locally parameterized by four functions, on Σ: a
scalar field α and a vector field β. In the embedding picture, they describe
the components of the velocity vector field

∂

∂t
:=

d

dt
Et (3)

normal and tangential to the leaves Σt respectively. We write

∂

∂t
= αn + β , (4)

where n is the normal to Σt. The tangential component, β, just generates
intrinsic diffeomorphisms on each Σt, whereas the normal component, α, really
advances one leaf Σt to the next one; see Fig. 2.

For the initial-value problem it is the derivative along the normal n of the
3-metric h, denoted by K, that gives the essential information. Hence we write

∂ht
∂t

= αKt + Lβht . (5)

In the embedding picture, Kt is the extrinsic curvature of Σt in M .

Σt

Σt+dt

p

p′

β

αn∂
∂t

Fig. 2. Infinitesimally nearby leaves Σt and Σt+dt. For some point q ∈ Σ, the
image points p = Et(q) and p′ = Et+dt(q) are connected by the vector ∂/∂t|p, whose
components tangential and normal to Σt are β and αn, respectively. n is the normal
to Σt in M , β is called the ‘shift vector-field’ and α the ‘lapse function’ on Σt
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The first-order evolution equations that result from Einstein’s field equa-
tions are then of the general form

∂ht
∂t

= F1(ht,Kt;α, β) , (6)

∂Kt

∂t
= F2(ht,Kt;α, β; matter) , (7)

where F1 in (6) is given by the right-hand side of (5). F2 is a more complicated
function whose precise structure need not interest us now and which also
depends on matter variables; see e.g. [8].

3 Why Constraints

As we have seen, the initial data for the gravitational variables consist of a
differentiable 3-manifold Σ, a Riemannian metric h – the configuration vari-
able, and another symmetric second rank tensor field K on Σ – the velocity
variable. However, the pair (h,K) cannot be chosen arbitrarily. This is be-
cause there is a large redundancy in describing a fixed spacetime M by a
foliation (1). On the infinitesimal level this gauge freedom is just the free-
dom of choosing α and β. The gauge transformations generated by β are just
the spatial diffeomorphisms of Σ. β may be an arbitrary function of t, which
corresponds to the fact that we may arbitrarily permute the points in each
leaf Σt separately (only restricted by some differentiability conditions). The
gauge transformations generated by α correspond to pointwise changes in the
velocities with which the leaves Σt push through M . These too may vary
arbitrarily within the leaves as well as with coordinate time t.

Whenever there is gauge freedom in a dynamical theory, there are so-called
constraints, that is, conditions which restrict the initial data; see e.g. [10].
For each gauge freedom parameterized by an arbitrary function, there is one
functional combination of the initial data which has to vanish. In our case there
are four gauge functions, α, and the three components of β. Accordingly there
are four constraints, which group into one scalar or Hamiltonian constraint,
H [h,K] = 0, and three combined in the vector or diffeomorphism constraint,
D[h,K] = 0. Their explicit expressions are2

H [h,K] = (2κ)−1 Gab cdKabKcd − (2κ)−1
√
h
(
(3)R− 2Λ

)
+
√
hρ , (8)

Da[h,K] = − κ−1 Gab cd∇bKcd +
√
hja . (9)

Here ρ and ja are the energy and momentum densities of the matter, ∇
and (3)R are the Levi-Civita connection and its associated scalar curvature of
2 Here and below we shall write

√
h :=

√
det{hab} and use the abbreviation κ =

8πG/c4. Hence κ has the physical dimension of s2 · m−1 · kg−1. We shall set c = 1
throughout.
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(Σ, h). Finally Gab cd is the so-called ‘DeWitt metric’, which at each point of
Σ defines an h-dependent Lorentzian metric on the 1 + 5-dimensional space
of symmetric second-rank tensors at that point.3 Its explicit form is given by

Gab cd =
√
h

2

(
hachbd + hadhbc − 2habhcd

)
. (10)

Note that the linear space of symmetric second-rank tensors is viewed here
as the tangent space (‘velocity space’) of the space Riem(Σ) of Riemannian
metrics on Σ. From (10) one sees that it is the trace part of the ‘velocities’,
corresponding to changes of the scale (conformal part) of the Riemannian
metric, which span the negative-norm velocity directions.

4 Comparison with Conventional
Form of Einstein’s Equations

The presence of constraints and their relation to the evolution equations is
the key structure in canonical GR. It is therefore instructive to point out how
this structure arises from the conventional, four-dimensional form of Einstein’s
equations. Before doing this, it is useful to first remind ourselves on the anal-
ogous situation in electrodynamics.

So let us first consider electrodynamics in Minkowski space. As usual, we
write the field tensor F as exterior differential of a vector potential A, that
is, F = dA. In components this reads Fμν = ∂μAν − ∂νAμ. Here Ei = F0i are
the components of the electric, Bi = −Fjk of the magnetic field, where ijk is
a cyclic permutation of 123. The homogeneous Maxwell equations now simply
read dF = 0, whereas the inhomogeneous Maxwell equations are given by (in
components)

Mμ := ∂νF
μν + 4π

c jμ = 0 , (11)

where here jμ is the electric four-current. Due to its antisymmetry, the field
tensor obeys the identity

∂μ∂νF
μν ≡ 0 . (12)

Taking the divergence of (11) and using (12) leads to

∂μM
μ ≡ 4π

c ∂μj
μ = 0 , (13)

showing the well-known fact that Maxwell’s equations imply charge conserva-
tion as integrability condition.

Let us now interpret the role of charge conservation in the initial-value
problem. Decomposing (12) into space and time derivatives yields

∂0∂νF
0ν ≡ −∂a∂νF

aν . (14)
3 The Lorentzian signature of the DeWitt metric has nothing to do with the

Lorentzian signature of the spacetime metric: it persists in Euclidean gravity.
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Even though the right-hand side contains third derivatives in the field Aμ, time
derivatives appear at most in second order (since ∂a is spatial). Hence, since it
is an identity, ∂νF 0ν contains time derivatives only up to first order. But the
initial data for the second-order equation (11) consist of the field Aμ and its
first-time derivative. Hence the time component M0 of Maxwell’s equations
gives a relation amongst initial data; in other words, it is a constraint. Clearly
this is just the Gauß constraint ∇ · E − 4πρ = 0 (here ρ is the electric
charge density). Only the three spatial components of (11) contain second
time derivatives and hence propagate the fields. They provide the evolutionary
part of Maxwell’s equations.

Now, assume we are given initial data satisfying the constraint M0 = 0,
which we evolve according to Ma = 0. How can we be sure that the evolved
data again satisfy the constraint? To see when this is the case, we use the
identity (13) and solve it for the time derivative of M0:

∂0M
0 ≡ −∂aM

a + 4π
c ∂μj

μ . (15)

This shows that if initially Ma = 0 (and hence ∂aM
a = 0), then the constraint

M0 = 0 is preserved in time if and only if ∂μj
μ = 0. Charge conservation is

thus recognized as the necessary and sufficient condition for the compatibility
between the constraint part and the evolutionary part of Maxwell’s equations.

Finally we wish to make another remark concerning the interplay between
constraints and evolution equations. It is clear that a solution Fμν to (11)
satisfies the constraint on any simultaneity hypersurface of an inertial ob-
server (i.e. spacelike plane). If the normal to the hypersurface is nμ, this just
states that Mμ = 0 implies Mμnμ = 0. But the converse is obviously also
true: if Mμnμ = 0 for all timelike nμ, then Mμ = 0. In words: given an elec-
tromagnetic field that satisfies the constraint (for given external current jμ)
on any spacelike plane in Minkowski space, then this field must necessarily
satisfy Maxwell’s equations. In this sense, Maxwell’s equations are the unique
propagation law that is compatible with Gauß constraint.

After this digression we return to GR, where we can perform an en-
tirely analogous reasoning. We start with Einstein’s equations, in which the
spacetime metric gμν is the analog of Aμ and the Einstein tensor Gμν :=
Rμν − 1

2g
μνR is the analog of ∂νFμν . They read

Eμν := Gμν − Λ− κT μν = 0 . (16)

Due to four-dimensional diffeomorphism invariance, we have the identity
(twice contracted second Bianchi-Identity):

∇μGμν ≡ 0 , (17)

which is the analog of (12). Taking the covariant divergence of (16) and using
(17) yields

∇μEμν = −κ∇μT μν = 0 , (18)



Canonical Quantum Gravity 137

which is the analog of (13). Hence the vanishing covariant divergence of T μν

is an integrability condition of Einstein’s equations, just as the divergenceless-
ness of the electric four-current was an integrability condition of Maxwell’s
equations.4

In order to talk about ‘evolution’, we consider the foliation (1) of M and
locally use coordinates {x0, xa} such that ∂/∂x0 is the normal n to the leaves
and all ∂/∂xa are tangential. Expanding (17) in terms of partial derivatives
gives

∂0G
0ν = −∂aG

aν − ΓμμλG
λν − Γ νμλG

μλ , (19)
which is the analog of (14). Now, since the Gμν contain at most second and
the Γ λμν at most first derivatives of the metric gμν , this identity immediately
shows that the four components G0ν (ν = 0, 1, 2, 3) contain at most first-time
derivatives ∂/∂x0. But Einstein’s equations are of second order, hence the
four equations E0ν = 0 are relations amongst the initial data, rather than
being evolution equations. In fact, up to a factor of −2 they are just the
constraints (8–9):

H = −2E00 = −2(G00 − Λ − κT 00) , (20)

Da = −2E0a = −2(G0a − Λ − κT 0a) . (21)

Moreover, the remaining purely spatial components of Einstein’s equations
are equivalent to the 12 first-order evolution equations (6–7).

The interplay between constraints and evolution equations can now be fol-
lowed along the very same lines as for the electrodynamic analogy. Expanding
the left equality of (18) in terms of partial derivatives gives

∂0E
0ν = −∂aE

aν − ΓμμλE
λν − Γ νμλE

μλ − κ∇μT μν , (22)

which is the analog of (15). It shows that the constraints are preserved by
the evolution if and only if the energy–momentum tensor of the matter has
vanishing covariant divergence.

Let us now turn to the last analogy: the uniqueness of the evolution that
preserves constraints. Clearly Einstein’s equations Eμν imply Eμνnμ = 0
for any timelike vector field nμ. Hence the constraints are satisfied on any
spacelike slice through spacetime. Again the converse is also true: given a
gravitational field such that Eμνnμ = 0 for any timelike nμ (and given exter-
nal T μν), then this field must necessarily satisfy Einstein’s equations. In this
sense Einstein’s equations follow uniquely from the condition of constraint
preservation.

This property will be crucial for the interpretation of the quantum theory
discussed below. We know from quantum mechanics that the classical tra-
jectories have completely disappeared at the fundamental level. As we have
4 There is, however, a notable difference in the physical interpretation of divergence-

lessness of a tensor field on one hand and a vector field on the other: ∇μT
μν = 0

does not as such imply a conservation law. Only in presence of a spacetime sym-
metry, that is, a Killing vector field Kν , the current Jμ = TμνKν is conserved,
∇μJ

μ = 0, and hence gives rise to a conserved quantity.
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discussed above, the analogue to a trajectory is in GR provided by a space-
time given as a set of three-dimensional geometries. In quantum gravity, the
spacetime will therefore disappear like the classical trajectory in quantum me-
chanics. It is therefore not surprising that the evolution equations (6) and (7)
will be absent in quantum gravity. All the information will be contained in
the quantized form of the constraints (8) and (9).

5 Canonical Gravity

We have seen above that Einstein’s equations can be written as a dynamical
system (6–7) with constraints (8–9). Here we wish to give its canonical for-
mulation. Basically this means to introduce momenta for the velocities and
write the first-order equations of motions as Hamilton equations. For this we
have to identify the Poisson structure and the Hamiltonian. The result is this:
as before, the configuration variable is the Riemannian metric hab on Σ. Its
canonical momentum is now given by

πab = (2κ)−1 Gab cdKcd = (2κ)−1
√
h(Kab − habKc

c ) , (23)

so that the Poisson brackets are

{hab(x), πcd(y)} = 1
2 (δcaδ

d
b + δdaδ

c
b)δ

(3)(x, y) , (24)

where δ(3)(x, y) is the Dirac distribution on Σ.
Elimination of Kab in favour of πab in the constraints leads to their canon-

ical form:

H [h, π] = 2κGab cdπ
abπcd − (2κ)−1

√
h((3)R− 2Λ) +

√
hρ , (25)

Da[h, π] = −2∇bπab +
√
hja , (26)

where now5

Gab cd = 1
2
√
h
(hachbd + hadhbc − habhcd) . (27)

Likewise, rewriting (6–7) in terms of the canonical variables shows that they
are just the flow equations for the following Hamiltonian:

H[h, π] =
∫

Σ

d3x
{
α(x)H [h, π](x) + βa(x)Da[h, π](x)

}
+ boundary terms.

(28)
The crucial observation to be made here is that, up to boundary terms, the
total Hamiltonian is a combination of pure constraints. The boundary terms

5 Note the difference in the factor of two in the last term, as compared to (10).
Gab cd is the inverse to Gab cd, that is, Gab nmGnm cd = 1

2
(δa

c δ
b
d + δa

dδ
b
c), and not

obtained by simply lowering the indices using hab.
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generally appear if Σ is non-compact, as it will be the case for the descrip-
tion of isolated systems, like stars or black holes. In this case the boundary
terms are taken over closed surfaces at spatial infinity and represent con-
served Poincaré charges, like energy, linear and angular momentum, and the
quantity associated with asymptotic boost transformations. If, however, Σ is
closed (i.e. compact without boundary) all of the evolution will be generated
by constraints, that is, pure gauge transformations! In that case, evolution,
as described here, is not an observable change. For that to be the case we
would need an extrinsic clock, with respect to which ‘change’ can be defined.
But a closed universe already contains – by definition – everything physical,
so that no external clock exists. Accordingly, there is no external time param-
eter. Rather, all physical time parameters are to be constructed from within
our system, that is, as functional of the canonical variables. A priori there is
no preferred choice of such an intrinsic time parameter. The absence of an
extrinsic time and the non-preference of an intrinsic one is commonly known
as the problem of time in Hamiltonian (quantum-)cosmology.

Finally we turn to the commutation relation between the various con-
straints. For this it is convenient to integrate the local constraints (25–26)
over lapse and shift functions. Hence we set (suppressing the phase-space ar-
gument [h, π])

H(α) =
∫

Σ

d3xH(x)α(x) , (29)

D(β) =
∫

Σ

d3xDa(x)βa(x) . (30)

A straightforward but slightly tedious computation gives

{D(β),D(β′)} = D([β, β′]) , (31)
{D(β),H(α)} = H(β(α)) , (32)
{H(α),H(α′)} = D(α∇α′ − α′∇α) . (33)

There are three remarks we wish to make concerning these relations. First, (31)
shows that the diffeomorphism generators form a Lie subalgebra. Second, (32)
shows that this Lie subalgebra is not a Lie ideal. This means that the flow
of the Hamiltonian constraint does not leave invariant the constraint hyper-
surface of the diffeomorphism constraint. Finally, the term α∇α′ − α′∇α in
(33) contains the canonical variable h, which is used implicitly to raise the
index in the differential in order to get the gradient ∇. This means that
the relations above do not make the set of all H(α) and all D(β) into a Lie
algebra.6

6 Sometimes this is expressed by saying that this is an ‘algebra with structure
functions’.
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6 The General Kinematics of Hypersurface Deformations

In this section we wish to point out that the relations (31–33) follow a general
pattern, namely to represent the ‘algebra’ of hypersurface deformations, or in
other words, infinitesimal changes of embeddings E : Σ → M . To make this
explicit, we introduce local coordinates xa on Σ and yμ on M . An embedding
is then locally given by four functions yμ(x), such that the 3×4 matrix yμ,a has
its maximum rank 3 (we write yμ,a := ∂ay

μ). The components of the normal
to the image E(Σ) ⊂ M are denoted by nμ, which should be considered as
functional of yμ(x). The generators of normal and tangential deformations
of E with respect to the lapse function α and shift vector field β are then
given by

Nα =
∫

Σ

d3x α(x)nμ[y(x)]
δ

δyμ(x)
, (34)

Tβ =
∫

Σ

d3x βa(x) yμ,a(x)
δ

δyμ(x)
, (35)

which may be understood as tangent vectors to the space of embeddings of Σ
into M . A calculation7 then leads to the following commutation relations

[Tβ , Tβ′ ] = −T[β,β′] , (36)
[Tβ , Nα] = −Nβ(α) , (37)
[Nα, Nα′ ] = −Tα∇α′−α′∇α . (38)

Up to the minus signs this is just (31–33). The minus signs are just the usual
ones that one always picks up when going from the action of vector fields to
the Poisson action of the corresponding phase-space functions. (In technical
terms, the mapping from vector fields to phase-space functions is a Lie-anti-
homomorphism.)

This shows that (31–33) just mean that we have a Hamiltonian realization
of hypersurface deformations. In particular, (31–33) is neither characteristic
of the action nor the field content: Any four dimensional diffeomorphism in-
variant theory will gives rise to this very same ‘algebra’. It can be shown that
under certain general locality assumptions the expressions (25) and (26) give
the unique 2-parameter (here κ and Λ) family of realizations for N and T
satisfying (36–38) on the phase space parameterized by (hab, πab); see [11]
and also [18].

7 Equation (36) is immediate. To verify (37–38) one needs to compute
δnμ[y(x)]/δyν(x′). This can be done in a straightforward way by varying

g(y(x))μνn
μ[y(x)]nν [y(x)] = −1 and gμν(y(x))yμ

,a(x)nν [y(x)] = 0

with respect to y(x).
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7 Topological Issues

As we have just discussed, Einstein’s equations take the form of a constrained
Hamiltonian system if put into canonical form. The unconstrained configura-
tion space is the space of all Riemannian metrics on some chosen 3-manifold
Σ. This space is denoted by Riem(Σ). Any two Riemannian metrics that dif-
fer by an action of the diffeomorphism constraint are gauge equivalent and
hence to be considered as physically indistinguishable. Let us briefly mention
that the question of whether and when the diffeomorphism constraint actually
generates all diffeomorphisms of Σ is rather subtle. Certainly, what is gener-
ated lies only in the identity component of the latter, but even on that it may
not be onto. This occurs, for example, in the case where Σ contains asymptot-
ically flat ends with non-vanishing Poincaré charges associated. Asymptotic
Poincaré transformations are then not interpreted as gauge transformations
(otherwise the Poincaré charges were necessarily zero), but as proper physical
symmetries (i.e. changes of state that are observable in principle).

Leaving aside the possible difference between what is generated by the
constraints and the full group Diff(Σ) of diffeomorphisms of Σ, we may con-
sider the quotient space Riem(Σ)/Diff(Σ) of Riemannian geometries. This
space is called superspace in the relativity community (this has nothing to
do with supersymmetry), which we denote by S(Σ). Now from a topological
viewpoint Riem(Σ) is rather trivial. It is a cone8 in the (infinite dimensional)
vector space of all symmetric second-rank tensor fields. But upon factoring
out Diff(Σ) the quotient space S(Σ) inherits some of the topological infor-
mation concerning Σ, basically because Diff(Σ) contains that information [6].
This is schematically drawn in Fig. 3.

In a certain generalized sense, GR is a dynamical system on the phase
space (i.e. cotangent bundle) built over superspace. The topology of super-
space is characteristic for the topology of Σ, though in a rather involved way.
Note that, by construction, the Hamiltonian evolution is that of a varying
embedding of Σ into spacetime. Hence the images Σt are all of the same
topological type. This is why canonical gravity in the formulation given here
cannot describe transitions of topology.

Note, however, that this is not at all an implication by Einstein’s equations.
Rather, it is a consequence of our restriction to spacetimes that admit a global
spacelike foliation. There are many solutions to Einstein’s equations that do
not admit such foliations globally. This means that these spacetimes cannot
be constructed by integrating the equations of motions (6–7) successively from
some initial data. Should we rule out all other solutions? The general feeling
seems to be that, at least in quantum gravity, topology changing classical
solutions should not be ruled out as possible contributors in the sum over
histories (path integral). Figure 4 shows two such histories. Whereas in the left

8 Any real positive multiple λh of h ∈ Riem(Σ) is again an element of Riem(Σ).
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Riem(Σ)

S(Σ)

Fig. 3. The topologically trivial space Riem(Σ), here drawn as the box above, is
fibered by the action of the diffeomorphism group. The fibers are the straight lines in
the box, where the sets consisting of three dashed and three solid lines, respectively,
form one fiber each. In the quotient space S(Σ) each fiber is represented by one point
only. By taking the quotient, S(Σ) receives the non-trivial topology from Diff(Σ).
To indicate this, S(Σ) is represented as a double torus

picture the universe simply ‘grows a nose’, it bifurcates in the right example
to become disconnected.

One may ask whether there are topological restrictions to such transi-
tions. First of all, it is true (though not at all obvious) that for any given two
3-manifolds Σi, Σf (neither needs to be connected) there is a 4-manifold M
whose boundary is just Σi ∪ Σf . In fact, there are infinitely many such M .
Amongst them, one can always find some which can be endowed with a glob-
ally regular Lorentz metric g, such that Σi and Σf are spacelike. However, if
topology changes, (M, g) necessarily contains closed timelike curves [2]. This
fact has sometimes been taken as rationale for ruling out topology change in
(classical) GR. But it should be stressed that closed timelike curves do not
necessarily ruin conventional concepts of predictability. In any case, let us
accept this slight pathology and ask what other structures we wish to define
on M . For example, in order to define fermionic matter fields on M we cer-
tainly wish to endow M with a SL(2,C) spin structure. This is where now the
first real obstructions for topological transitions appear [3].9 It is then pos-
sible to translate them into selection rules for transitions between all known
3-manifolds [4].

9 Their result is the following: let Σ = Σi ∪ Σf be the spacelike boundary of the
Lorentz manifold M , then dim

(
H0(Σ,Z2)

)
+ dim

(
H1(Σ,Z2)

)
has to be even for

M to admit an SL(2,C) spin structure.
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Σf
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Σi

Σ1
fΣ2

f

M

Fig. 4. Spacetimes in which spatial sections change topology. In the (left) picture
the initial universe Σi has three, the final Σf four topological features (‘holes’ ) – it
‘grows a nose’ while staying connected. In the (right) picture the initial universe Σi

splits into two copies Σ1,2
f , so that Σf = Σ1

f ∪ Σ2
f . In both cases, the interpolating

spacetime M can be chosen to carry a Lorentzian metric with respect to which initial
and final hypersurfaces are spacelike, possibly at the price of making M topologically
complicated, like indicated in the right picture

So far the considerations were purely kinematical. What additional ob-
structions arise if the spacetime (M, g) is required to satisfy the field equa-
tions? Here the situation becomes worse. It is, for example, known that any
topology-changing spacetime that satisfies Einstein’s equations with matter
that satisfies the weak-energy condition Tμν l

μlν ≥ 0 for all lightlike lμ must
necessarily be singular.10 Hence it seems that we need to consider degenerate
metrics already on the classical level if topology change is to occur. Can we
relax the notion of ‘solution to Einstein’s equations’ so as to contain these
degenerate cases as well? The answer is ‘yes’ if instead of taking the metric as
basic variable we rewrite the equations in terms of vierbeine and connections
(first-oder formalism). It turns out that the kind of singularities one has to
cope with are very mild indeed: the vierbeine become degenerate on sets of
measure zero but, somewhat surprisingly, the curvature stays bounded every-
where. In fact, there is a very general method to generate an abundance of
such solutions [12].

It is a much-debated question whether topology-changing amplitudes are
suppressed or, to the contrary, needed in quantum gravity. On one hand, it has

10 In fact, this result can be considerably strengthened: instead of invoking Einstein’s
equations we only need to require Rμν l

μlν ≥ 0 for all lightlike lμ.
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been shown in the context of specific lower-dimensional models that matter
fields on topology-changing backgrounds may give rise to singularities corre-
sponding to infinite densities of particle production [1]. On the other hand,
leaving out topology-changing amplitudes in the sum-over-histories approach
is heuristically argued to be in conflict with expected properties of localized
pseudo-particle-like excitations in gravity (so-called ‘geons’), like, for example,
the usual spin-statistic relation [19]. Here there still seems to be much room
for speculations.

8 Geometric Issues

Just in the same way as any Lagrangian theory endows the configuration space
with the kinetic-energy metric, Riem(Σ) inherits a metric structure from the
‘kinetic-energy’ part of (8). Tangent vectors at h ∈ Riem(Σ) are symmetric
second-rank tensor fields on Σ and their inner product is given by the so-called
Wheeler–DeWitt metric:

Gh(V, V ′) =
∫

Σ

d3xGab cdVabV
′
cd . (39)

Due to the pointwise Lorentzian signature (1+5) of Gab cd it is of a hyper-
Lorentzian structure with infinitely many negative, null, and positive direc-
tions each. However, not all directions in the tangent space Th(Riem(Σ))
correspond to physical changes. Those generated by diffeomorphism, which
are of the form Vab = ∇aβb + ∇bβa for some vector field β on Σ, are pure
gauge. We call them vertical. The diffeomorphism constraint (26) for ja = 0 –
a case to which we now restrict for simplicity – now simply says that V must
be G–orthogonal to such vertical directions. We call such orthogonal direc-
tions horizontal. Moreover, it is easily seen that the inner product (39) is
invariant under Diff(Σ). All this suggests how to endow superspace, S(Σ),
with a natural metric: take two tangent vectors at a point [h] in S(Σ), lift
them to horizontal vectors at h in Riem(Σ), and there take the inner product
according to (39).

However, this procedure only works if the horizontal subspace of
Th(Riem(Σ)) is truly complementary to the vertical space of gauge direc-
tions. But this is not guaranteed due to G not being positive definite: when-
ever there are vertical directions of zero G-norm, there will be non-trivial
intersections of horizontal and vertical spaces. Sufficient conditions on h for
this not to happen can be derived: for example, a strictly negative Ricci ten-
sor [7]. The emerging picture is that there are open sets in S(Σ) in which
well-defined hyper-Lorentzian geometries exist, which are separated by closed
transition regions in which the signature of these metrics change. The tran-
sition regions precisely consist of those geometries [h] which possess vertical
directions of zero G-norm; see Fig. 5.
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Fig. 5. The space Riem(Σ), fibred by the orbits of Diff(Σ) (curved vertical lines).
Tangent directions to these orbits are called ‘vertical’, the G-orthogonal directions
‘horizontal’. Horizontal and vertical directions intersect whenever the ‘hyper-light-
cone’ touches the vertical directions, as in point h′. At h, h′, and h′′ the vertical di-
rection is depicted as time-, light-, and spacelike respectively. Hence [h′] corresponds
to a transition point where the signature of the metric in superspace changes

9 Quantum Geometrodynamics

Einstein’s theory of GR has now been brought into a form where it can be
subject to the procedure of canonical quantization. As we have argued above,
all the information that is needed is encoded in the constraints (25) and (26).
However, quantizing them is far from trivial [16]. One might first attempt
to solve the constraints on the classical level and then to quantize only the
reduced, physical, degrees of freedom. This has not even been achieved in
quantum electrodynamics (except for the case of freely propagating fields),
and it is illusory to achieve in GR. One therefore usually follows the proce-
dure proposed by Dirac and tries to implement the constraints as conditions
on physically allowed wave functionals. The constraints (25) and (26) then
become the quantum conditions

ĤΨ = 0 , (40)
D̂aΨ = 0 , (41)

where the ‘hat’ is a symbolic indication for the replacements of the classical
expressions by operators. This procedure also applies if other variables instead
of the three-metric and its momentum are used; for example, such quantum
constraints also play the role in loop quantum gravity, cf. the contributions
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of Nicolai and Peeters as well as Thiemann to this book. In the present case
the resulting formalism is called quantum geometrodynamics.

Quantum geometrodynamics is defined by the transformation of hab(x)
into a multiplication operator and πcd into a functional derivative operator,
πcd → −i�δ/δhcd(x). The constraints (25) and (26) then assume the form,
restricting here to the vacuum case for simplicity,

ĤΨ ≡
(

−2κ�
2Gabcd

δ2

δhabδhcd
− (2κ)−1

√
h
(

(3)R− 2Λ
)
)

Ψ = 0 , (42)

D̂aΨ ≡ −2∇b �

i
δΨ

δhab
= 0 . (43)

Equation (42) is called the Wheeler–DeWitt equation in honour of the work
by Bryce DeWitt and John Wheeler; see e.g. [16] for details and references. In
fact, these are again infinitely many equations (one equation per space point).
The constraints (43) are called the quantum diffeomorphism (or momentum)
constraints. Occasionally, both (42) and (43) are referred to as Wheeler–
DeWitt equations. In the presence of non-gravitational fields, these equations
are augmented by the corresponding terms.

The argument of the wave functional Ψ is the three-metric hab(x) (plus
non-gravitational fields). However, because of (43), Ψ is invariant under co-
ordinate transformations on three-dimensional space (it may acquire a phase
with respect to ‘large diffeomorphisms’ that are not connected with the iden-
tity). A most remarkable feature of the quantum constraint equations is their
‘timeless’ nature – the external parameter t has completely disappeared.11

Instead of an external time one may consider an ‘intrinsic time’ that is distin-
guished by the kinetic term of (42). As can be recognized from the signature
of the DeWitt metric (10), the Wheeler–DeWitt equation is locally hyper-
bolic, that is, it assumes the form of a local wave equation. The intrinsic
timelike direction is related to the conformal part of the three-metric. With
respect to the discussion in the last section one may ask whether there are re-
gions in superspace where the Wheeler–DeWitt metric exists and has precisely
one negative direction. In that case the Wheeler–DeWitt equation would be
strictly hyperbolic (rather than ultrahyperbolic) in a neighbourhood of that
point. It has been shown that such regions indeed exist and that they in-
clude neighbourhoods of the standard round three-sphere geometry [7]. This
implies that the full Wheeler–DeWitt equation that describes fluctuations
around the positive curvature Friedmann universe is strictly hyperbolic. In
this case the scale factor of the Friedmann universe could serve as an intrinsic
time. The indefinite nature of the kinetic term reflects the fact that gravity is
attractive [5].

11 In the case of asymptotic spaces such a parameter may be present in connec-
tion with Poincaré transformations at spatial infinity. We do not consider this
case here.



Canonical Quantum Gravity 147

There are many problems associated with the quantum constraints (42)
and (43). An obvious problem is the ‘factor-ordering problem’: the precise
form of the kinetic term is open – there could be additional terms propor-
tional to � containing at most first derivatives in the metric. Since second
functional derivatives at the same space point usually lead to undefined ex-
pressions such as δ(0), a regularization (and perhaps renormalization) scheme
has to be employed. Connected with this is the potential presence of anoma-
lies, cf. the contribution by Nicolai and Peeters. Another central problem is
what choice of Hilbert space one has to make, if any, for an interpretation
of the wave functionals. No final answer to this problem is available in this
approach [16].

What about the semiclassical approximation and the recovery of an
appropriate external time parameter in some limit? For the full quantum
constraints this can at least be achieved in a formal sense (i.e. treating
functional derivatives as if they were ordinary derivatives and neglecting the
problem of anomalies); see [16, 17]. The discussion is also connected to the
question: where does the imaginary unit i in the (functional) Schrödinger equa-
tion come from? The full Wheeler–DeWitt equation is real, and one would thus
also expect real solutions for Ψ . An approximate solution is found through a
Born–Oppenheimer type of scheme, in analogy to molecular physics. The state
then assumes the form

Ψ ≈ exp(iS0[h]/�)ψ[h, φ] , (44)

where h is an abbreviation for the three-metric and φ stands for non-
gravitational fields. In short, one finds that

• S0 obeys the Hamilton–Jacobi equation for the gravitational field and
thereby defines a classical spacetime which is a solution to Einstein’s equa-
tions (this order is formally similar to the recovery of geometrical optics
from wave optics via the eikonal equation).

• ψ obeys an approximate (functional) Schrödinger equation,

i� ∇S0∇ψ
︸ ︷︷ ︸

∂ψ
∂t

≈ Hm ψ , (45)

where Hm denotes the Hamiltonian for the non-gravitational fields φ. Note
that the expression on the left-hand side of (45) is a shorthand notation
for an integral over space, in which ∇ stands for functional derivatives
with respect to the three-metric. Semiclassical time t is thus defined in
this limit from the dynamical variables.

• The next order of the Born–Oppenheimer scheme yields quantum gravita-
tional correction terms proportional to the inverse Planck mass squared,
1/m2

P. The presence of such terms may in principle lead to observable ef-
fects, for example, in the anisotropy spectrum of the cosmic microwave
background radiation.
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The Born–Oppenheimer expansion scheme distinguishes a state of the form
(44) from its complex conjugate. In fact, in a generic situation both states
will decohere from each other, that is, they will become dynamically indepen-
dent [15]. This is a type of symmetry breaking, in analogy to the occurrence of
parity violating states in chiral molecules. It is through this mechanism that
the i and the t in the Schrödinger equation emerge.

The recovery of the Schrödinger equation (45) raises an interesting issue.
It is well known that the notion of Hilbert space is connected with the con-
servation of probability (unitarity) and thus with the presence of an external
time (with respect to which the probability is conserved). The question then
arises whether the concept of a Hilbert space is still required in the full theory
where no external time is present. It could be that this concept makes sense
only on the semiclassical level where (45) holds.

10 Applications

The major physical applications of quantum gravity concern cosmology and
black holes. Although the above-presented formalism exists, as yet, only on a
formal level, one can study models that present no mathematical obstacles.
Typically, such models are obtained by imposing symmetries on the solutions
of the equations [16]. Examples are spherical symmetry (useful for black holes)
and homogeneity and isotropy (useful for cosmology).

Quantum cosmology is the application of quantum theory to the universe
as a whole. Let us consider a simple example: a Friedmann universe with
scale factor a ≡ eα containing a massive scalar field φ. In this case, the
diffeomorphism constraints (43) are identically fulfilled, and the Wheeler–
DeWitt equation (42) reads

Ĥψ ≡
(

G�
2 ∂2

∂α2
− �

2 ∂2

∂φ2
+ m2φ2e6α − e4α

G

)

ψ(α, φ) = 0 . (46)

This equation is simple enough to find solutions (at least numerically) and to
study physical aspects such as the dynamics of wave packets and the semi-
classical limit [16].

There is one interesting aspect in quantum cosmology that possesses
far-reaching physical consequences. Because (42) does not contain an exter-
nal time parameter t, the quantum theory exhibits a kind of determinism
drastically different from the classical theory [16, 20]. Consider a model with
a two-dimensional configuration space spanned by the scale factor, a, and
a homogeneous scalar field, φ, see Fig. 6. (Such a model is described, for
example, by (46) with m = 0.) The classical model be such that there are so-
lutions where the universe expands from an initial singularity, reaches a maxi-
mum, and recollapses to a final singularity. Classically, one would impose, in a
Lagrangian formulation, a, ȧ, φ, φ̇ (satisfying the constraint) at some t0 (for
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Fig. 6. The classical and the quantum theory of gravity exhibit drastically different
notions of determinism

example, at the left leg of the trajectory), and then the trajectory would be
determined. This is indicated on the left-hand side of Fig. 6. In the quantum
theory, on the other hand, there is no t. The hyperbolic nature of a minisuper-
space equation such as (46) suggests to impose boundary conditions at a =
constant. In order to represent the classical trajectory by narrow wave pack-
ets, the ‘returning part’ of the packet must be present ‘initially’ (with respect
to a). The determinism of the quantum theory then proceeds from small a to
large a, not along a classical trajectory (which does not exist). This behaviour
has consequences for the validity of the semiclassical approximation and the
arrow of time. In fact, it may in principle be possible to understand the origin
of irreversibility from quantum cosmology, by the very fact that the Wheeler–
DeWitt equation is asymmetric with respect to the intrinsic time given by a.
The framework of canonical quantum cosmology is also suitable to address
the quantum-to-classical transition for cosmological variables such as the vol-
ume of the universe [15, 16]. Using the approach of loop quantum gravity (see
Thiemann’s contribution) one arrives at a Wheeler–DeWitt equation in cos-
mology which is fundamentally a difference equation instead of a differential
equation of the type (46). In the ensuing framework of loop quantum gravity
it seems that the classical singularities of GR can be avoided.

Singularity avoidance for collapse situations can also be found from spher-
ically symmetric models of quantum geometrodynamics. For example, in a
model with a collapsing null dust cloud, an initially collapsing wave packet
evolves into a superposition of collapsing and expanding packet [9]. This leads
to destructive interference at the place where the singularity in the classical
theory occurs. Other issues, such as the attempt to give a microscopic deriva-
tion of the Bekenstein–Hawking entropy (see the contribution by C. Kiefer
to this book), have been mainly addressed in loop quantum gravity. A final,
clear-cut, derivation remains, however, elusive.
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