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The Maxwell equations 1862-1868
Five decisive papers of Maxwell (1831-1879) + his Treatise (see C.W.F.
Everitt, Maxwell, 1975)

1. “On Faraday’s Lines of Force” (1855-1856): Analogies between lines of
force and streamlines in an incompressible fluid, electrotonic function
A, with B = curlA (the latter formula was used earlier by Gauss)

2. “On Physical Lines of Force” (1861-1862): Molecular vortices and
electric particles, induced electromotive force E = (−)∂A/∂t

3. “On the Elementary Relations of Electrical Quantities” (1863, missing in
his scientific papers): electromagnetic quantities and their physical
dimensions, forces and fluxes

4. “A Dynamical Theory of the Electromagnetic Field” (1865): Provides a
new theoretical framework for the subject; systematic overview given of
all equations, first clear formulation of his system of eqs.

5. “Note on the Electromagnetic Theory of Light” (1868): integral form
without A, four basic theorems provided: MaxwellEqsP1.pdf, later
Murnaghan 1921, Kottler 1922, Cartan 1924, de Rham 1931...

We will provide some spotlights on the subsequent development of these eqs.

In Maxwell: “ A Treatise on Electricity and Magnetism” (2nd edition, 1881) he
gave his electromagnetic field equations their most compact form.
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Part A: On the history of Maxwell’s equations (this seminar)

1. In components: Maxwell 1862-1865

2. In quaternions (Hamilton 1843): Maxwell 1873

3. In symbolic vector calculus: Heaviside 1885-1888, Gibbs 1901, Föppl

4. In components (compact): Hertz 1890, ansatz for moving bodies

5. In components à la Maxwell-Hertz + Lorentz transf.: Einstein 1905

6. In symbolic 4d calculus: Minkowski 1907-1908

7. In 4d generally covariant tensor calculus: Einstein 1916

8. In premetric/integral formulation: (Maxwell), Murnaghan, Kottler, Cartan
(formulated in differential forms), van Dantzig, Schrödinger, Schouten,
Truesdell-Toupin, Post (2 books), Bopp’s axiomatics

9. In spinor calculus: From 1929, Weyl, Fock, van der Waerden,...

10. In algebraic/discrete formulation, Tonti ∼1972 as an example

[Part B: Maxwell’s equations today (supplementary material)
1. 3d vector and 4d tensor calculus ⇒ Jackson, Landau-Lifshitz

2. 4d Clifford algebra formalism (vacuum) ⇒ Baylis

3. 4d spinor calculus (vacuum) ⇒ Penrose & Rindler

4. Discrete formulation in terms of (co)chains ⇒ Bossavit, Tonti, Zirnbauer

5. 3d and 4d exterior calculus, premetric topological form of Maxwell’s eqs.
⇒ Kovetz, Russer, Lindell, H. & Obukhov]
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A.1 In components: Maxwell 1862-1865

See the original of 1865 where for the first time the “Maxwell equations”
appeared systematically ordered: file Maxwell1865 73.pdf, see lecture of
Christian Schell
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A.2 In quaternions (Hamilton 1843): Maxwell 1873

• Quaternion
The quaternions are a set of symbols of the form

a|{z}
scalar p.

+ bi+ cj + dk| {z }
vector part

, (1)

where a, b, c, d are real numbers. They multiply using the rules

i2 = j2 = k2 = −1 and ij = k . (2)

They form a non-commutative division algebra.
• Hamilton 1843: The quotient of two vectors is generally a quaternion.
The name vector originates from Hamilton (⇒ Struik), also nabla ∇ (Assyrian
harp)
• Quaternions: the most simple associative number system with more than 2
units (complex number has 2 units)
• Supporters of Hamilton against those of Grassmann (theory of extensions,
exterior product, Grassmann algebra with anticommuting numbers)

• Clifford: Biquaternions: Quaternions the coefficients of which are a system

of complex numbers a+ be, with e2 = ±1 or 0. Clifford algebra.
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• Maxwell’s equations in quaterionic form (Treatise, 2nd edition, 1881, Vol. II,
p. 239–240; S = scalar and V vector part of quaternion) G = velocity, ψ,Ω =
scalar el./mg. pot., eq. numbers 1st column from 1865, 2nd one from 1881

(B1) (A) B = V∇A (S∇A = 0 ⇒ B = ∇A) eq. of mg. induction

(D) (B) E = VGB − Ȧ −∇ψ eq. of el.motive force

(C) F = V CB − e∇ψ −m∇Ω eq. of el.magn. force

(D) B = H + 4πI eq. of magnetization

(C) (E) 4πC = V∇H eq. of el. currents

(F ) [G] K = CE eq. of conductiv. (Ohm)

(E) [F] D =
1

4π
KE eq. of el. displacement

(A) [H] C = K + Ḋ eq. of true currents

(B2) [L] B = µH eq. of ind. magnetiz.

(G) [J] e = S∇D [Coulomb-Gauss law]

m = S∇I

H = −∇Ω

(H) Number of eqs.(A) to (H) = 20 cont. eq. missing here
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First Three Pairs. ⇐ from Treatise, Vol.II, pp. 241/242
Electrostatic Pair.

1. Quantity of electricity e

2. Line-integral of electromotive force, or electric potential E

Magnetic Pair.
3. Quantity of free magnetism, or strength of a pole m

4. Magnetic potential Ω

Electrokinetic Pair.
5. Electrokinetic momentum of a circuit p

6. Electric current C

Second Three Pairs.
Electrostatic Pair.

7. Electric displacement (measured by surface-density) D

8. Electromotive force at a point E

Magnetic Pair.
9. Magnetic induction B

10. Magnetic force H

Electrokinetic Pair.
11. Intensity of electric current at a point C

12. Vector potential of electric currents A
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A.3 In symbolic vector calculus: Heaviside 1885/88, Föppl 1894, Gibbs 1901

Heaviside’s ‘duplex system’ of 1888 (see the original Heaviside1888.pdf in
Phil. Mag. Ser. 5, 25: 153, pp. 130–156 (1888)) e,h = impressed fields

B = µH, C = kE, D = (c/4π)E

curl (H − h) = 4πΓ

curl (e − E) = 4πG

Γ = C + Ḋ, G = Ḃ/4π

divB = 0

h
Energy: U =

1

2
ED , T =

1

2
HB/4π , Q = EC ,

W = V (E − e)(H − h)/4π ⇐ Poynting

eΓ + hG = Q+ U̇ + Ṫ + divW

i

The electromagnetic field (H & O):

B

D

E

el
ec

tri
c

H

excitation

m
ag

ne
tic

field strength

2−form
s

1−forms
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• Heaviside + Grassmann + Gibbs ⇒ vector analysis: Hamilton’s vectors,
Grassmann’s exterior product, Gibbs’ dyadics; see also J. Crowe, A History of
Vector Analysis, Dover

• 1872 Erlangen Program of Klein ⇒ group theory + geometry: “Let be given
a manifold and a transformation group in it. Develop the theory of invariants
with respect to this group.” [Es ist eine Mannigfaltigkeit und in derselben eine
Transformationsgruppe gegeben. Man entwickle die auf die Gruppe
bezügliche Invariantentheorie.”] 3d Euclidean group T 3 ⊃× SO(3) ⇒ Poincaré
group (4d translations ⊃× Lorentz) T 4 ⊃× SO(1, 3) ⇒ diffeomorphism group

• Around 1900: Ricci + Levi-Civita ⇒ absolute differential calculus, tensor
analysis (tensor Voigt 1900) ⇒ Einstein 1916, see history of Karin Reich

• In textbooks, Abraham-Föppl is a leading example (Einstein learned from
Föppl), see original AbrahamFoeppl1904.pdf, 2nd edition

• Recommended textbooks: Sommerfeld Vol.III (theoretical),
Bergmann-Schaefer, Vol.2 (experimental)

• Bamberg + Sternberg: “...the most suitable framework for geometrical
analysis is the exterior differential calculus of Grassmann and Cartan.”
(topological in constrast to metrical concepts are stressed)
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A.4 In components (compact): Hertz 1890, ansatz for moving bodies
Hertz’s system in vacuum, see the original Ann. Phys. 1890, [A−1] = velocity;
file Hertz1890a.pdf

A
dL

dt
=
dZ

dy
− dY

dz
A
dX

dt
=
dM

dz
− dN

dy

A
dM

dt
=
dX

dz
− dZ

dx
A
dY

dt
=
dN

dx
− dL

dz

A
dN

dt
=
dY

dx
− dX

dy
A
dZ

dt
=
dL

dy
− dM

dx

dL

dx
+
dM

dy
+
dN

dx
= 0 ,

dX

dx
+
dY

dy
+
dZ

dz
= 0

[H = (L,M,N), E = (X,Y,Z). For the first time we see all 4 Maxwell
vacuum equations together, cf. Darrigol, p.254 et seq.:

A
dH

dt
= −curlE , A

dE

dt
= curlH

divH = 0 , divE = 0

Note: By differentiating with respect to the time t, we find the wave equation

A
d2

H

dt2
= −curl

dE

dt
= − 1

A
curl curl H =

1

A
(∆H − grad divH| {z }

=0

) .
˜
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Hertz (continued). Anisotropic conductor:

A

„
µ11

dL

dt
+ µ12

dM

dt
+ µ13

dN

dt

«
=
dZ

dy
− dY

dz
,

A

„
µ12

dL

dt
+ µ22

dM

dt
+ µ32

dN

dt

«
=
dX

dz
− dZ

dx
,

A

„
µ13

dL

dt
+ µ23

dM

dt
+ µ33

dN

dt

«
=
dY

dx
− dX

dy
,

A

„
ε11

dX

dt
+ ε12

dY

dt
+ ε13

dZ

dt

«
=
dM

dz
− dN

dy

− 4πA
˘
λ11(X −X ′) + λ12(Y − Y ′) + λ13(Z − Z′)

¯
,

A

„
ε12

dX

dt
+ ε22

dY

dt
+ ε23

dZ

dt

«
=
dN

dx
− dL

dz

− 4πA
˘
λ21(X −X ′) + λ22(Y − Y ′) + λ23(Z − Z′)

¯
,

A

„
ε13

dX

dt
+ ε23

dY

dt
+ ε33

dZ

dt

«
=
dL

dy
− dM

dx

− 4πA
˘
λ31(X −X ′) + λ32(Y − Y ′) + λ33(Z − Z′)

¯
.

tensorial permittivity, permeability, conduct. (λ), several typos of Hertz corr.
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Hertz (continued): Ansatz for moving bodies by substituting the convective
derivative (of Helmholtz). Let a (electric of magnetic) flux F be given; then,
with the velocity v of the medium (at the time of Hertz d meant ∂),

dF

dt
=⇒ DF

Dt
=
dF

dt
− [∇× (v × F) − v(∇ · F)] .

Substitute this in the l.h.s. of the 2 Maxwell equations containing a time
derivative. Turned out to be unsuccessful, but it brought the electrodynamics
of moving bodies under way ⇒ Einstein 1905.

A.5 In components à la Maxwell-Hertz + Lorentz transf.: original
Einstein1905.pdf
In the kinematical part of his “On the Electrodynamics of Moving Bodies” he
proves for a standard Lorentz transformation (boost in x-direction)

τ = β(t− vx/c2) ,

ξ = β(x− vt) ,

η = y ,

ζ = z ,

where β = 1/
p

1 − v2/c2.
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Einstein 1905 (continued): He just took the Maxwell-Hertz equations for
vacuum (with switched sign), electric field (X,Y,Z), magnetic field (L,M,N),

1

V

∂X

∂t
=
∂N

∂y
− ∂M

∂z

1

V

∂L

∂t
=
∂Y

∂z
− ∂Z

∂y

1

V

∂Y

∂t
=
∂L

∂z
− ∂N

∂x

1

V

∂M

∂t
=
∂Z

∂x
− ∂X

∂z
1

V

∂Z

∂t
=
∂M

∂x
− ∂L

∂y

1

V

∂N

∂t
=
∂X

∂y
− ∂Y

∂x

Then he referred the electromagnetic process to the coordinate system
above and uses the corresponding transformation formulas:

1

V

∂X

∂τ
=
∂β

`
N − v

V
Y

´

∂η
− ∂β

`
M + v

V
Z

´

∂ζ
etc.

Because of the relativity principle, we have

1

V

∂X ′

∂τ
=
∂N ′

∂η
− ∂M ′

∂ζ

1

V

∂L′

∂τ
=
∂Y ′

∂ζ
− ∂Z′

∂η

1

V

∂Y ′

∂τ
=
∂L′

∂ζ
− ∂N ′

∂ξ

1

V

∂M ′

∂τ
=
∂Z′

∂ξ
− ∂X ′

∂ζ

1

V

∂Z′

∂τ
=
∂M ′

∂ξ
− ∂L′

∂η

1

V

∂N ′

∂τ
=
∂X ′

∂η
− ∂Y ′

∂ξ
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Consequently,

X ′ = X , L′ = L ,

Y ′ = β
“
Y − v

V
N

”
, M ′ = β

“
M +

v

V
Z

”
,

Z′ = β
“
Z +

v

V
M

”
, N ′ = β

“
N − v

V
Y

”
,

are the transformation formulas for the components of the electromagnetic
field.

Similar derivations were given (partly earlier) by Poincaré and by Lorentz.

See also the books of von Laue (1911), Silberstein (quaternions! 1914), Pauli

(1921), Einstein (1922),..., Møller (1952),...
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A.6 In symbolic 4d calculus: Minkowski’s way to: lor f = −s, lor F
∗ = 0

Minkowski introduced fields f and F in Cartesian coordinates x, y, z and with
imaginary time coo. it (c = 1); moreover, x1 := x, x2 := y, x3 := z, x4 := it.
Euclidean metric ds2 = dx2

1 + dx2
2 + dx2

3 + dx2
4 = ghkdxhdxk, with

ghk = diag(1, 1, 1, 1); there is no need to distinguish contravariant (upper)
from covariant (lower) indices. The Maxwell equations in component form:

∂f12
∂x2

+
∂f13
∂x3

+
∂f14
∂x4

= s1 ,

∂f21
∂x1

+
∂f23
∂x3

+
∂f24
∂x4

= s2 ,

∂f31
∂x1

+
∂f32
∂x2

+
∂f34
∂x4

= s3 ,

∂f41
∂x1

+
∂f42
∂x2

+
∂f43
∂x3

= s4 ,

∂F34

∂x2
+
∂F42

∂x3
+
∂F23

∂x4
= 0 ,

∂F43

∂x1
+

∂F14

∂x3
+
∂F31

∂x4
= 0 ,

∂F24

∂x1
+
∂F41

∂x2
+
∂F12

∂x4
= 0 ,

∂F32

∂x1
+
∂F13

∂x2
+
∂F21

∂x3
= 0 .
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Minkowski (cont.): Modern notation and summ. conv. h, k, ... = 1, 2, 3, 4,

∂fhk

∂xk

= sh and
∂Fhk

∂xl

+
∂Fkl

∂xh

+
∂Flh

∂xk

= 0 (or ∂[lFhk] = 0) .

Excitation f and the field strength F (in Maxwell’s nomenclature1)

(fhk) = −(fkh) =

0
BB@

0 Hz −Hy −iDx

−Hz 0 Hx −iDy

Hy −Hx 0 −iDz

iDx iDy iDz 0

1
CCA

(Fhk) = −(Fkh) =

0
BB@

0 Bz −By −iEx

−Bz 0 Bx −iEy

By −Bx 0 −iEz

iEx iEy iEz 0

1
CCA ,

The 4d electric current denoted by sh.

1Minkowski took D=e, H=m; E=E, B=M, that is, for the excitation
f ∼ (e,m) and for the field strength F ∼ (E,M).
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Minkowski (cont.): He introduced the dual of Fhk, namely F ∗

hk := 1
2
ǫ̂hklmFlm,

with the Levi-Civita symbol ǫ̂hklm = ±1, 0 and ǫ̂1234 = +1. Thus,

F ∗ = (F ∗

hk) =

0
BB@

0 −iEz iEy Bx

iEz 0 −iEx By

−iEy iEx 0 Bz

−Bx −By −Bz 0

1
CCA .

Then both Maxwell equations read

∂fhk

∂xk

= sh ,
∂F ∗

hk

∂xk

= 0 .

Subsequently Minkowski developed a 4-dimensional type of Cartesian tensor
calculus with a 4d differential operator called ‘lor’ (abbreviation of Lorentz).
He introduces ordinary (co)vectors (space-time vectors of the 1st kind), like
xh and lorh := ∂

∂xh

, and antisymmetric 2nd rank tensors (space-time vectors
of the 2nd kind), like fhk and Fhk. Then, symbolically he wrote

lorf = −s , lorF ∗ = 0 .

Using his Cartesian tensor calculus, Minkowski has shown that these eqs.
are covariant under Poincaré transformations. In vacuum, f ∼ F . Compare
with exterior calculus version with dH = J, dF = 0 and, in vacuum, H ∼ ⋆F .
• Minkowski also discovered 1907 the energy-momentum tensor for the
electromagnetic field: densities of energy/momentum and their fluxes.
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A.7 In 4d generally covariant tensor calculus: Einstein 1916/1922

The next step occurred immediately after Einstein’s fundamental 1915 paper
on general relativity. Now Einstein was in command of tensor calculus in
arbitrary coordinate systems. By picking suitable variables, he found
(ds2 = gµνdx

µdxν with signature (1,−1,−1,−1), here µ, ν, ... = 0, 1, 2, 3)

∂Fρσ

∂xτ
+
∂Fστ

∂xρ
+
∂Fτρ

∂xσ
= 0 , F

µν =
√−ggµαgνβFαβ ,

∂F
µν

∂xν
= J µ .

The field strength Fρσ is a tensor, the excitation F
µν a tensor density.

Einstein’s identifications, which were only worked out by him for vacuum, read

F =

0
BB@

0 Ex Ey Ez

−Ex 0 Hz −Hy

−Ey −Hz 0 Hx

−Ez Hy −Hx 0

1
CCA , F =

0
BB@

0 −Ex −Ey −Ez

Ex 0 Hz −Hy

Ey −Hz 0 Hx

Ez Hy −Hx 0

1
CCA .

• These Maxwellian eqs. are generally covariant and metric independent.
The gravitational potential only enters the “spacetime relation”—it is the
‘constitutive law’ of the vacuum.
Here no comma goes to semicolon rule “ , → ; ” (MTW) is necessary for eldyn.

For a mathematically precise presentation see Schouten “Tensor Analysis for
Physicists” (Oxford 1951, Dover 1989).
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A.8 In premetric/integral formulation, in tensor and exterior diff. calculus

Already initiated by Maxwell in his paper 5 (similar in Sommerfeld). Élie
Cartan (1924) as an example. In special relativity:

Ω = Bx[dy dz] +By[dz dx] +Bz[dx dy]

+ Ex[dx dt] + Ey[dy dt] + Ez[dz dt]

Ω = Dx[dy dz] +Dy [dz dx] +Dz[dx dy]

+Hx[dx dt] +Hy[dy dt] +Hz[dz dt]

S = ρ[dx dy dz] − Ix[dy dz dt] − Iy[dz dt dx] − Iz[dx dy dt]

Ω′ = 0 , Ω
′

= −4πS ⇒ S′ = 0

Generalization:
ZZ

Ω = 0 ,

ZZ
Ω = 4π

ZZZ
S ,

where the integral on the right-hand-side extends over any 3-dimensional
volume of spacetime and those on the left-hand-sides over the 2-dimensional
boundary of this volume.

Isn’t that a beautiful representation?
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In premetric/integral formulation (continued)

Post (Quantum Reprogramming... [1995], p. 105), in our version (Hehl &
Obukhov, Foundations of Classical Eldyn., Boston 2003): Notions of de Rham
1931; for any cycle C3 with ∂C3 = 0 and any cycle C2 with ∂C2 = 0, we have

I

C3

J = 0 , fα = (eα⌋F ) ∧ J ,
I

C2

F = 0 .

This contains Maxwell’s equations in nuce! The first axiom governs matter
and its conserved electric charge, the second axiom links the notion of that
charge and the concept of a mechanical force to an operational definition of
the electromagnetic field strength. The third axiom determines the flux of the
field strength as sourcefree.

Differential version of electrodynamics:

dJ = 0 , fα = (eα⌋F ) ∧ J , dF = 0 ,

J = dH , F = dA .

Because of the existence of conductors and superconductors, we can

measure the excitation H . Thus, even if H emerges as a kind of potential for

the electric current, it is more than that: It is measurable. This is in clear

contrast to the potential A that is not measurable.
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In premetric/integral formulation (continued)

The physical interpretation of the Maxwell equations can be found via the
(1 + 3)-decomposition (signs embody the Lenz rule)

J = − j ∧ dt + ρ ,

H = −H∧ dt+ D ,

F = E ∧ dt+B ,

A = −ϕdt + A ,

Then, by substitutions, the (1 + 3)-decomposition of the Maxwell eqs. read

dH = J

(
dD = ρ (1 constraint eq.) ,

Ḋ = dH− j (3 time evol. eqs.) ,

dF = 0

(
dB = 0 (1 constraint eq.) ,

Ḃ = −dE (3 time evol. eqs.) .

Accordingly, we have 2 × 3 = 6 time evolution equations for the 2 × 6 = 12

variables (D, B, H, E) of the electromagnetic field. Thus the Maxwellian

structure is underdetermined. We need, in addition, an electromagnetic

spacetime relation that expresses the excitation H = (H,D) in terms of the

field strength F = (E,B), i.e., H = H [F ].
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A.9 In spinor calculus: Spinors as semivectors, tensor with rank 1
2
.Weyl

1928–29, Fock 1929, van der Waerden 1929, Schrödinger 1930,
systematically: Infeld & van der Waerden, Sitzungsber. Preuss. Akad. Wiss.
Physik.-Math. Klasse, p. 380 (1933). E.M. Corson, Tensors, Spinors and Rel.
Wave Eqs., 1953. We take as example, Laporte & Uhlenbeck Phys. Rev. 37
(1931) 1380–1397: Group SL(2, C) with transformations

ξ′1 = α11ξ1 + α12ξ2 , ξ′1 = α11ξ1 + α12ξ2 ,

ξ′2 = α21ξ1 + α22ξ2 , ξ′2 = α21ξ1 + α22ξ2 ,

and detα = 1, simple covering group of the proper orthochronous Lorentz
group SO0(1, 3). Fundamental objects are the spinors ak and bṙ; higher order

objects akl, bṙṡ, cṙk, .... Spinor ‘metric’ ǫkl =

„
0 −1
1 0

«
, ǫkl =

„
0 1

−1 0

«
.

Relation between spinors and world vectors:
1

2
(a2̇1 + a1̇2) = A1 = A1 , a2̇1 = A1 + iA2 ,

1

2i
(a2̇1 − a1̇2) = A2 = A2 , a1̇2 = A1 − iA2 ,

1

2
(a1̇1 − a2̇2) = A3 = A3 , a1̇1 = A3 −A4 ,

1

2
(a1̇1 + a2̇2) = A4 = −A4 , −a2̇2 = A3 +A4 .
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In spinors (cont.) Definition of self-dual tensor F ∗

kl := i
2
ǫklαβF

αβ. Introduce
complex electromagnetic field strength (here for vacuum) and find the
Maxwell equation

Gkl := F kl + F ∗kl ,
∂Gkλ

∂xλ
= Sk .

Gkl is an antisymmetric self-dual 2nd rank tensor with 6 independent
components. We can assign to Gkl a symmetric 2nd rank spinor gl̇ṁ with 3
complex components, that is, with 6 independent components. Then we find
Maxwell’s eqs. in spinor form (field strength g, current s, potential φ):

∂ρ̇
l gρ̇ṁ = 2sṁl , gṙṡ = ∂ṙλφṡ

λ + ∂ṡλφṙ
λ ,

∂ρ̇α∂
ρ̇αφṁl = 2sṁl with Lorenz condition ∂µ̇λ φµ̇λ = 0 .

The covariant version of this ‘Maxwell equation’ is being used for the analysis
of propagating electromagnetic waves in GR. Einstein’s equation can also be
put in spinor form: The curvature tensor becomes a totally symmetric 4th
rank curvature spinor ψmnrs = ψ(mnrs); this uniform formalism facilitates
sometimes the investigations on electromagnetic and gravitational waves.
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A.10 In algebraic/discrete formulation, Tonti’s vers. of 2009, ACE’09 in Rome

Ψ :=

Z

S

D · n dS (electric flux) Φ :=

Z

S

B · n dS (magnetic flux)

E :=

Z

L

E · t dL F :=

Z

L

H · t dL

I :=

Z

S

J · n dS (current) Qc :=

Z

V

ρ dV (charge)

Forget these defs., take the global quantities Ψ,Φ, E, F, I,Qc as
fundamental. Consider instant (of time) I , volume V and its boundary ∂V ;
furthermore, time interval T , surface S and its boundary ∂S. Inner and
outer orientation e:

Ψ
h
I, ∂ eV

i
= Qc

h
I, eV

i
, F

h
T , ∂ eS

i
= +

n
Ψ

h
I
+
, eS

i
− Ψ

h
I
−

, eS
io

+Qf
h
T , eS

i
,

Φ
h

eI, ∂V
i

= 0 , E
h

eT , ∂S
i

= −
n
Φ

h
eI+, S

i
− Φ

h
eI−, S

io
.

F = impulse of magnetomotive force, E = impulse of electromotive force. All
laws refer to the boundaries of the space elements V and S. Compare with

dD = ρ , dH = + Ḋ + j ,

dB = 0 , d E = − Ḃ .

Can be used for computer calculations. Start with global/discrete structures;

don’t discretize the differential Maxwell equations!
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Tonti (2009), see http://www.dica.units.it/perspage/tonti/
The differential formulation requires the field vectors B, E, ρ, J, D, H as
point functions, the algebraic formulation requires the global scalar variables
Φ, E , Qc, Qf , Ψ, F as domain variables. Avoiding the field vectors, we don’t
need to perform integrations, better for computational electromagnetism,

• Which system of Maxwell’s equations should be taught to physics and
engineering students? I opt for A.8 and A.10, in contrast to Jackson,
Landau-Lifshitz,...

I used the original articles mentioned above, for secondary literature, see

◮ E. Whittaker, A History of the Theories of Aether and Electricity, 2
volumes, Humanities Press, NY, 1973 [1951].

◮ C.W.F. Everitt, James Clerk Maxwell, Physicis and Natural Philosopher,
Charles Scibner’s Sons, NY, 1975.

◮ J.L. Heilbron, Electricity in the 17th and 18th Centuries, A Study of
Early Modern Physics, UC Press, Berkeley, 1979.

◮ O. Darrigol, Electrodynamics from Ampère to Einstein, Oxford, 2000.

◮ F. Steinle, Exporative Experiments, Ampère, Faraday und die
Ursprünge der Elektrodynamik, Steiner, Stuttgart, 2005.

Soli Deo Gloria.
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