Negative index of refraction, perfect lenses and transformation optics – some words of caution.

Alberto Favaro* and Luzi Bergamin⋄

*Department of Physics, Imperial College London, UK.

⋄Department of Radio Science and Engineering, Aalto University, Finland.

August 18, 2010
Overview: ’Negative refractive index ≠ Folding of space’.

From: J.B. Pendry et al., PRL, 90:2, 2003

From: U. Leonhardt et al., arXiv:1007.0078v2, 2010
Overview: ’Negative refractive index ≠ Folding of space’.

▶ Review why negative index (left) is often compared to folding of space (right) – wrongly so.

From: U. Leonhardt et al., arXiv:1007.0078v2, 2010
Overview: 'Negative refractive index \neq Folding of space'.

- Review why negative index (left) is often compared to folding of space (right) – wrongly so.
- Use conventional transformation optics consistently \Rightarrow 'negative index \neq folding of space'.

From: J.B. Pendry et al., PRL, 90:2, 2003

From: U. Leonhardt et al., arXiv:1007.0078v2, 2010
Overview: 'Negative refractive index ≠ Folding of space'.

- Review why negative index (left) is often compared to folding of space (right) – wrongly so.
- Use conventional transformation optics consistently ⇒ 'negative index ≠ folding of space'.
- Folding gives no perfect lensing, as it introduces an extra source, rather than amplifying evanescent fields.

From: J.B. Pendry et al., PRL, 90:2, 2003

From: U. Leonhardt et al., arXiv:1007.0078v2, 2010
Overview: ’Negative refractive index \neq Folding of space’.

- Review why negative index (left) is often compared to folding of space (right) – \underline{wrongly} so.
- Use \underline{conventional} transformation optics consistently \Rightarrow ’negative index \neq folding of space’.
- Folding gives no \underline{perfect} lensing, as it introduces an extra source, rather than amplifying evanescent fields.
- Other ways to get a negative index do work, but is it really \underline{worth} it?

From: J.B. Pendry et al.,
PRL, 90:2, 2003
Often negative index is (wrongly) linked to Folding. Why?

1. Start with vacuum.
Often negative index is (wrongly) linked to Folding. Why?

1. Start with vacuum.
2. Perform the folding.
Often negative index is (wrongly) linked to Folding. Why?

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.
Often negative index is (wrongly) linked to Folding. Why?

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.
Often negative index is (wrongly) linked to Folding. Why?

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.
Often negative index is (wrongly) linked to Folding. Why?

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.
4. Remove folding.
Often negative index is (wrongly) linked to Folding. Why?

1. Start with vacuum.
2. Perform the folding.
3. Replicate field.
4. Remove folding.

Impression: a negative index slab in vacuum...
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

Negative index of refraction, perfect lenses and transformation optics – some words of caution.

Introduction.
Wrong concepts.
Right concepts.
Fold ≠ Perf. lens
Alternatives.
Thank-you.
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

◊ **Vacuum**: Grid (x, y).

Introduction.

Wrong concepts.

Right concepts.

Fold \neq Perf. lens

Alternatives.

Thank-you.

Figure: J.B. Pendry et al., Science 312 (5781), 2006.
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y) \).
- **Distance**: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2 \).
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y)\).
- **Distance**: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
- **Permittivity**: \(\epsilon^{ij} = \epsilon_0[\det(\gamma^{ij})]^{-\frac{1}{2}}\gamma^{ij} \sim \epsilon_0\).
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum:** Grid \((x, y)\).
- **Distance:** \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
- **Permittivity:** \(\epsilon^{ij} = \epsilon_0[\det(\gamma^{ij})]^{-\frac{1}{2}}\gamma^{ij} \sim \epsilon_0\).
- **Permeability:** \(\mu^{ij} = (\mu_0/\epsilon_0)\epsilon^{ij}, \text{ always}\).
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y)\).
- **Distance**: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
- **Permittivity**: \(\epsilon^{ij} = \epsilon_0[\det(\gamma^{ij})]^{-\frac{1}{2}}\gamma^{ij} \sim \epsilon_0\).
- **Permeability**: \(\mu^{ij} = (\mu_0/\epsilon_0)\epsilon^{ij}\), always.

Figure: J.B. Pendry et al., Science 312 (5781), 2006.
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y)\).
- **Distance**: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
- **Permittivity**: \(\epsilon^{ij} = \epsilon_0 [\det(\gamma^{ij})]^{-\frac{1}{2}} \gamma^{ij} \sim \epsilon_0\).
- **Permeability**: \(\mu^{ij} = (\mu_0/\epsilon_0)\epsilon^{ij}, \text{ always}\).

- **Transformed vacuum**: Grid \((x', y')\).

Figure: J.B. Pendry et al., Science 312 (5781), 2006.
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y)\).
- **Distance**: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
- **Permittivity**: \(\varepsilon^{ij} = \varepsilon_0 [\det(\gamma^{ij})]^{-\frac{1}{2}} \gamma^{ij} \sim \varepsilon_0\).
- **Permeability**: \(\mu^{ij} = (\mu_0 / \varepsilon_0) \varepsilon^{ij}, \text{ always}\).

- **Transformed vacuum**: Grid \((x', y')\).
- **Distance**: \(\gamma^{i'j'} \Rightarrow \text{Min. path appears curved}\).

Figure: J.B. Pendry et al., Science **312** (5781), 2006.
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y)\).
- **Distance**: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
- **Permittivity**: \(\epsilon^{ij} = \epsilon_0 [\det(\gamma^{ij})]^{-\frac{1}{2}} \gamma^{ij} \sim \epsilon_0\).
- **Permeability**: \(\mu^{ij} = (\mu_0/\epsilon_0) \epsilon^{ij}\), always.

- **Transformed vacuum**: Grid \((x', y')\).
- **Distance**: \(\gamma^{i'j'} \Rightarrow\) Min. path appears curved.
- **Permittivity**: \(\epsilon^{i'j'} = \epsilon_0 [\det(\gamma^{i'j'})]^{-\frac{1}{2}} \gamma^{i'j'}\).

Figure: J.B. Pendry et al., Science 312 (5781), 2006.
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y)\).
- **Distance**: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
- **Permittivity**: \(\varepsilon^{ij} = \epsilon_0[\det(\gamma^{ij})]^{-\frac{1}{2}}\gamma^{ij} \sim \epsilon_0\).
- **Permeability**: \(\mu^{ij} = (\mu_0/\epsilon_0)\varepsilon^{ij}, \text{ always}\).

- **Transformed vacuum**: Grid \((x', y')\).
- **Distance**: \(\gamma^{i'j'} \Rightarrow \text{Min. path appears curved}\).
- **Permittivity**: \(\varepsilon^{i'j'} = \epsilon_0[\det(\gamma^{i'j'})]^{-\frac{1}{2}}\gamma^{i'j'}\).

- **Interpretation as a material**: Grid \((x, y)\).

Figure: J.B. Pendry et al., Science 312 (5781), 2006.
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y)\).
 - Distance: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
 - Permittivity: \(\epsilon^{ij} = \epsilon_0 [\det(\gamma^{ij})]^{-\frac{1}{2}} \gamma^{ij} \sim \epsilon_0\).
 - Permeability: \(\mu^{ij} = (\mu_0/\epsilon_0) \epsilon^{ij}, \text{ always}\).

- **Transformed vacuum**: Grid \((x', y')\).
 - Distance: \(\gamma'^{ij} \Rightarrow \text{Min. path appears curved}\).
 - Permittivity: \(\epsilon'^{ij} = \epsilon_0 [\det(\gamma'^{ij})]^{-\frac{1}{2}} \gamma'^{ij}\).

- **Interpretation as a material**: Grid \((x, y)\).
 - Distance: Ruler \(\gamma^{ij}\), Light \(\tilde{\gamma}^{ij} \sim \gamma'^{ij}'\).

Figure: J.B. Pendry et al., Science 312 (5781), 2006.
Negative index of refraction, perfect lenses and transformation optics – some words of caution.

Introduction.

Wrong concepts.

Right concepts.

Fold ≠ Perf. lens

Alternatives.

Thank-you.

Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y)\).
 - Distance: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
 - Permittivity: \(\epsilon^{ij} = \epsilon_0[\det(\gamma^{ij})]^{-\frac{1}{2}} \gamma^{ij} \sim \epsilon_0\).
 - Permeability: \(\mu^{ij} = (\mu_0/\epsilon_0)\epsilon^{ij}\), always.

- **Transformed vacuum**: Grid \((x', y')\).
 - Distance: \(\gamma'^{ij} \Rightarrow\) Min. path appears curved.
 - Permittivity: \(\epsilon'^{ij} = \epsilon_0[\det(\gamma'^{ij})]^{-\frac{1}{2}} \gamma'^{ij} \sim \epsilon_0\).

- **Interpretation as a material**: Grid \((x, y)\).
 - Distance: Ruler \(\gamma^{ij}\), Light \(\bar{\gamma}^{ij} \sim \gamma'^{ij}\).
 - Permittivity: \(\epsilon^{ij} = \epsilon_0 \left[\frac{\det(\bar{\gamma}^{ij})}{\det(\gamma^{ij})}\right]^{-\frac{1}{2}} \bar{\gamma}^{ij}\).

Figure: J.B. Pendry et al., Science 312 (5781), 2006.
Usual Space Tr. Optics: a refresher using Pendry’s cloak.

- **Vacuum**: Grid \((x, y)\).
- **Distance**: \(\gamma^{ij} \Rightarrow (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2\).
- **Permittivity**: \(\epsilon^{ij} = \epsilon_0[\det(\gamma^{ij})]^{\frac{1}{2}} \gamma^{ij} \sim \epsilon_0\).
- **Permeability**: \(\mu^{ij} = (\mu_0/\epsilon_0)\epsilon^{ij}, \text{ always}\).

- **Transformed vacuum**: Grid \((x', y')\).
- **Distance**: \(\gamma^{i'j'} \Rightarrow\) Min. path appears curved.
- **Permittivity**: \(\epsilon^{i'j'} = \epsilon_0[\det(\gamma^{i'j'})]^{\frac{1}{2}} \gamma^{i'j'}\).

- **Interpretation as a material**: Grid \((x, y)\).
- **Distance**: Ruler \(\gamma^{ij}, \text{ Light } \tilde{\gamma}^{ij} \sim \gamma^{i'j'}\).
- **Permittivity**: \(\epsilon^{ij} = \epsilon_0 \left[\frac{\det(\tilde{\gamma}^{ij})}{\det(\gamma^{ij})} \right]^{-\frac{1}{2}} \tilde{\gamma}^{ij}\).

Figure: J.B. Pendry et al., Science 312 (5781), 2006.
So, let’s fold space... but get no negative index!
So, let’s fold space... but get no negative index!

Useful things:

▶ 3 stages: Vacuum, Transformation and Interpretation.
So, let’s fold space... but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\gamma' = \Lambda^T \cdot \gamma \cdot \Lambda$, for a Jacobian matrix Λ.

\[\epsilon = \epsilon_0 \quad \text{and} \quad \mu = \mu_0. \]
So, let’s fold space . . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\gamma' = \Lambda^T \cdot \gamma \cdot \Lambda$, for a Jacobian matrix Λ.
- Folding is $x \rightarrow -x$, and gives $\Lambda = \text{Diag}(-1, 1, 1)$.
So, let’s fold space... but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\gamma' = \Lambda^T \cdot \gamma \cdot \Lambda$, for a Jacobian matrix Λ.
- Folding is $x \rightarrow -x$, and gives $\Lambda = \text{Diag}(-1,1,1)$.

Stage 1: γ^{ij}

Diag(1, 1, 1)
So, let’s fold space... but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\gamma' = \Lambda^T \cdot \gamma \cdot \Lambda$, for a Jacobian matrix Λ.
- Folding is $x \rightarrow -x$, and gives $\Lambda = \text{Diag}(-1, 1, 1)$.

Stage 1: γ^{ij}
Diag(1, 1, 1)

Stage 2: $\gamma'^{i'j'}$
Diag($(-1)^2$, 1, 1)
So, let’s fold space . . . but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\gamma' = \Lambda^T \cdot \gamma \cdot \Lambda$, for a Jacobian matrix Λ.
- Folding is $x \rightarrow -x$, and gives $\Lambda = \text{Diag}(-1,1,1)$.

Stage 1: γ^{ij}
Diag(1, 1, 1)

Stage 2: $\gamma^{i'j'}$
Diag(1, 1, 1)
So, let’s fold space... but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\gamma' = \Lambda^T \cdot \gamma \cdot \Lambda$, for a Jacobian matrix Λ.
- Folding is $x \rightarrow -x$, and gives $\Lambda = \text{Diag}(-1, 1, 1)$.

Stage 1: γ^{ij}
Diag(1, 1, 1)

Stage 2: $\gamma^{ij'}$
Diag(1, 1, 1)

Stage 3: $\bar{\gamma}^{ij}$
Diag(1, 1, 1)
So, let’s fold space... but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\gamma' = \Lambda^T \cdot \gamma \cdot \Lambda$, for a Jacobian matrix Λ.
- Folding is $x \rightarrow -x$, and gives $\Lambda = \text{Diag}(-1, 1, 1)$.

Stage 1: γ^{ij}
Stage 2: $\gamma'^{i'j'}$
Stage 3: $\bar{\gamma}^{ij}$

Diag(1, 1, 1)
Diag(1, 1, 1)
Diag(1, 1, 1)

- Using the master formula: $\epsilon^{ij} = \epsilon_0 \left[\frac{\det(\bar{\gamma}^{ij})}{\det(\gamma^{ij})} \right]^{-\frac{1}{2}} \bar{\gamma}^{ij}$

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.
So, let’s fold space... but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\gamma' = \Lambda^T \cdot \gamma \cdot \Lambda$, for a Jacobian matrix Λ.
- Folding is $x \rightarrow -x$, and gives $\Lambda = \text{Diag}(-1, 1, 1)$.

Stage 1: γ^{ij}

Diag(1, 1, 1)

Stage 2: $\gamma'^{i'j'}$

Diag(1, 1, 1)

Stage 3: $\bar{\gamma}^{ij}$

Diag(1, 1, 1)

- Using the master formula: $\epsilon^{ij} = \epsilon_0 \left[\frac{\det(\bar{\gamma}^{ij})}{\det(\gamma^{ij})} \right]^{-\frac{1}{2}} \bar{\gamma}^{ij}$

- Immediately: $\epsilon = \epsilon_0$ and $\mu = \mu_0$.
So, let’s fold space... but get no negative index!

Useful things:

- 3 stages: Vacuum, Transformation and Interpretation.
- Coord. change: $\gamma' = \Lambda^T \cdot \gamma \cdot \Lambda$, for a Jacobian matrix Λ.
- Folding is $x \rightarrow -x$, and gives $\Lambda = \text{Diag}(-1, 1, 1)$.

Stage 1: γ^{ij}
Stage 2: $\gamma'^{i'j'}$
Stage 3: $\bar{\gamma}^{ij}$

Diag(1, 1, 1) Diag(1, 1, 1) Diag(1, 1, 1)

- Using the master formula: $\epsilon^{ij} = \epsilon_0 \left[\frac{\det(\bar{\gamma}^{ij})}{\det(\gamma^{ij})} \right]^{-\frac{1}{2}} \bar{\gamma}^{ij}$
- Immediately: $\epsilon = \epsilon_0$ and $\mu = \mu_0$.
- A folding transformation on vacuum does nothing!
Aside: Don’t believe my formulae? Look at this!

\[
\text{Under parity (} \vec{r} \rightarrow -\vec{r} \text{), given } \epsilon = \text{Diag}(\epsilon, \epsilon, \epsilon):
\]

- **Myself (element-wise):**
 \[
 \epsilon(-\vec{r}) \sim \epsilon(\vec{r})
 \]

- **Opponent (element-wise):**
 \[
 \epsilon(-\vec{r}) \sim -\epsilon(\vec{r})
 \]

Crucially, for a centro-symmetric medium:

- **Myself:**
 \[
 \epsilon(\vec{r}) \neq 0
 \]

- **Opponent:**
 \[
 \epsilon(\vec{r}) = 0
 \]

\[\text{Wrong}\]

\[\text{⋄ Simple, but true: E.J. Post, North Holland, 1962.}\]

\[\text{⋄ Cf. Cartan’s "twist": F.W. Hehl, Birkhäuser, 2003.}\]
Aside: Don’t believe my formulae? Look at this!

Under parity \((\vec{r} \rightarrow -\vec{r})\), given \(\varepsilon = \text{Diag}(\varepsilon, \varepsilon, \varepsilon)\):

\[
\begin{align*}
\text{Myself (element-wise):} & \quad \varepsilon(\vec{r}) \sim \varepsilon(-\vec{r}) \\
\text{Opponent (element-wise):} & \quad \varepsilon(-\vec{r}) \sim -\varepsilon(\vec{r})
\end{align*}
\]

Crucially, for a centro-symmetric medium:

\[
\begin{align*}
\text{Myself:} & \quad \varepsilon(\vec{r}) \neq 0 \\
\text{Opponent:} & \quad \varepsilon(\vec{r}) = 0
\end{align*}
\]

\(\therefore\) Simple, but true: E.J. Post, North Holland, 1962.

Aside: Don’t believe my formulae? Look at this!

Under parity \((\vec{r} \rightarrow -\vec{r})\), given \(\underline{\varepsilon} = \text{Diag}(\varepsilon,\varepsilon,\varepsilon)\):

Myself (element-wise):

\[\varepsilon(-\vec{r}) \sim \varepsilon(\vec{r}) \]

\[\varepsilon(-\vec{r}) \sim \varepsilon(\vec{r}) \]
Aside: Don’t believe my formulae? Look at this!

Under parity \((\vec{r} \rightarrow -\vec{r})\), given \(\underline{\epsilon} = \text{Diag}(\epsilon, \epsilon, \epsilon)\):

Myself (element-wise): \[\underline{\epsilon}(-\vec{r}) \sim \underline{\epsilon}(\vec{r})\]

Opponent (element-wise): \[\underline{\epsilon}(-\vec{r}) \sim -\underline{\epsilon}(\vec{r})\]
Aside: Don’t believe my formulae? Look at this!

Under parity \((\vec{r} \rightarrow -\vec{r})\), given \(\underline{\epsilon} = \text{Diag}(\epsilon, \epsilon, \epsilon)\):

Myself (element-wise): \[
\underline{\epsilon}(-\vec{r}) \sim \underline{\epsilon}(\vec{r})
\]

Opponent (element-wise): \[
\underline{\epsilon}(-\vec{r}) \sim -\underline{\epsilon}(-\vec{r})
\]

Crucially, for a centro-symmetric medium: \[
\underline{\epsilon}(-\vec{r}) \sim \underline{\epsilon}(\vec{r})
\]
Aside: Don’t believe my formulae? Look at this!

Under parity \((\vec{r} \rightarrow -\vec{r})\), given \(\underline{\varepsilon} = \text{Diag}(\varepsilon, \varepsilon, \varepsilon)\):

Myself (element-wise): \[\varepsilon(-\vec{r}) \sim \varepsilon(\vec{r})\]

Opponent (element-wise): \[\varepsilon(-\vec{r}) \sim -\varepsilon(\vec{r})\]

Crucially, for a centro-symmetric medium: \(\varepsilon(-\vec{r}) \sim \varepsilon(\vec{r})\):

Myself:

\[\varepsilon(\vec{r}) \neq 0\]
Aside: Don’t believe my formulae? Look at this!

Under parity \((\vec{r} \rightarrow -\vec{r})\), given \(\underline{\varepsilon} = \text{Diag}(\varepsilon, \varepsilon, \varepsilon)\):

Myself (element-wise): \[
\underline{\varepsilon}(-\vec{r}) \sim \underline{\varepsilon}(\vec{r})
\]

Opponent (element-wise): \[
\underline{\varepsilon}(-\vec{r}) \sim -\underline{\varepsilon}(\vec{r})
\]

Crucially, for a centro-symmetric medium: \(\underline{\varepsilon}(-\vec{r}) \sim \underline{\varepsilon}(\vec{r})\):

Myself:
\[
\underline{\varepsilon}(\vec{r}) \neq 0
\]

Opponent:
\[
\underline{\varepsilon}(\vec{r}) = 0
\]
Aside: Don’t believe my formulae? Look at this!

Under parity \((\vec{r} \rightarrow -\vec{r})\), given \(\underline{\epsilon} = \text{Diag}(\epsilon, \epsilon, \epsilon)\):

Myself (element-wise):

\[\epsilon(-\vec{r}) \sim \epsilon(\vec{r}) \]

Opponent (element-wise):

\[\epsilon(-\vec{r}) \sim -\epsilon(\vec{r}) \]

Crucially, for a centro-symmetric medium: \(\epsilon(-\vec{r}) \sim \epsilon(\vec{r})\):

Myself:

\[\underline{\epsilon}(\vec{r}) \neq 0 \]

Opponent:

\[\underline{\epsilon}(\vec{r}) = 0 \ (\text{Wrong}) \]
Aside: Don’t believe my formulae? Look at this!

Under parity ($\vec{r} \rightarrow -\vec{r}$), given $\underline{\epsilon} = \text{Diag}(\epsilon, \epsilon, \epsilon)$:

Myself (element-wise):

$$\underline{\epsilon}(-\vec{r}) \sim \underline{\epsilon}(\vec{r})$$

Opponent (element-wise):

$$\underline{\epsilon}(-\vec{r}) \sim -\underline{\epsilon}(\vec{r})$$

Crucially, for a centro-symmetric medium: $\underline{\epsilon}(-\vec{r}) \sim \underline{\epsilon}(\vec{r})$:

Myself:

$$\underline{\epsilon}(\vec{r}) \neq 0$$

Opponent:

$$\underline{\epsilon}(\vec{r}) = 0 \quad (\text{Wrong})$$

Aside: Don’t believe my formulae? Look at this!

Under parity \((\vec{r} \rightarrow -\vec{r})\), given \(\underline{\epsilon} = \text{Diag}(\epsilon, \epsilon, \epsilon)\):

Myself (element-wise): \[\epsilon(-\vec{r}) \sim \epsilon(\vec{r}) \]

Opponent (element-wise): \[\epsilon(-\vec{r}) \sim -\epsilon(\vec{r}) \]

Crucially, for a centro-symmetric medium: \(\epsilon(-\vec{r}) \sim \epsilon(\vec{r})\):

Myself:
\[\epsilon(\vec{r}) \neq 0 \]

Opponent:
\[\epsilon(\vec{r}) = 0 \text{ (Wrong)} \]

’Folding’ argument gives no perfect lens (preamble).

Fold X-axis into a slab (allegedly, a perfect lens).
'Folding’ argument gives no perfect lens (preamble).

Fold X-axis into a slab (allegedly, a perfect lens).

The field at a point...
'Folding' argument gives no perfect lens (preamble).

- Fold X-axis into a slab (allegedly, a perfect lens).
- The field at a point... is replicated at all intersections.
'Folding' argument gives no perfect lens (preamble).

- Fold X-axis into a slab (allegedly, a perfect lens).
- The field at a point... is replicated at all intersections.
- Spike of a point source is tripled. Perfect lens?
'Folding' argument gives no perfect lens (preamble).

- Fold X-axis into a slab (allegedly, a perfect lens).
- The field at a point... is replicated at all intersections.
- Spike of a point source is tripled. Perfect lens?
- Contrary common belief: the answer is NO...
'Folding’ argument gives no perfect lens!

Compare: 'Fold' lens (left) with 'Pendry' lens (right).
'Folding’ argument gives no perfect lens!

◊ Compare: 'Fold' lens (left) with 'Pendry' lens (right).
 • 'Fold' lens ⇒ Source+Sink+Source
 • 'Pendry' lens ⇒ Amplify evanescent field.
'Folding’ argument gives no perfect lens!

Compare: 'Fold' lens (left) with 'Pendry' lens (right).

- 'Fold' lens \Rightarrow Source+Sink+Source
- 'Pendry' lens \Rightarrow Amplify evanescent field.
'Folding’ argument gives no perfect lens!

◊ Compare: 'Fold’ lens (left) with 'Pendry’ lens (right).
 • 'Fold’ lens ⇒ Source+Sink+Source
 • 'Pendry’ lens ⇒ Amplify evanescent field.

◊ Similar result can be obtained with traditional tools:
'Folding’ argument gives no perfect lens!

- Compare: 'Fold' lens (left) with 'Pendry’ lens (right).
 - 'Fold’ lens ⇒ Source+Sink+Source
 - 'Pendry’ lens ⇒ Amplify evanescent field.

- Similar result can be obtained with traditional tools:

- The middle “active sink”?
'Folding’ argument gives no perfect lens!

◊ Compare: ’Fold’ lens (left) with ’Pendry’ lens (right).
 • ’Fold’ lens \(\Rightarrow\) \textbf{Source+Sink+Source}
 • ’Pendry’ lens \(\Rightarrow\) Amplify evanescent field.

◊ Similar result can be obtained with traditional tools:

◊ The middle “active sink”? A carefully phased source...
The fish-eye lens needs an active sink... Physical? Useful?

The fish-eye lens needs an active sink... Physical? Useful?

- Based on active sink: Blaikie, NJP, 12, 2010.

Introduction.
Wrong concepts.
Right concepts.
Fold ≠ Perf. lens
Alternatives.
Thank-you.
The fish-eye lens needs an active sink… Physical? Useful?

- Based on active sink: Blaikie, NJP, 12, 2010.
- Meep FDTD simulation: no sink, no perfection.

The simulation shown here comes from a collaboration with P. Kinsler.
The fish-eye lens needs an active sink... Physical? Useful?

- Based on active sink: Blaikie, NJP, 12, 2010.
- Meep FDTD simulation: no sink, no perfection.
- Aside: Leonhardt, causality needs sink (NJP, 12, 2010).

The simulation shown here comes from a collaboration with P. Kinsler.
The fish-eye lens needs an active sink... Physical? Useful?

- **Perfect tr. optics image:** Leonhardt, NJP, 11, 2009.
- **Based on active sink:** Blaikie, NJP, 12, 2010.
- **Meep FDTD simulation:** no sink, no perfection.
- **Aside:** Leonhardt, causality needs sink (NJP, 12, 2010).
- **Aside:** FDTD above is explicitly causal, with no sink.

The simulation shown here comes from a collaboration with P. Kinsler.
The fish-eye lens needs an active sink... Physical? Useful?

- Based on active sink: Blaikie, NJP, 12, 2010.
- Meep FDTD simulation: no sink, no perfection.
- Aside: Leonhardt, causality needs sink (NJP, 12, 2010).
- Aside: FDTD above is explicitly causal, with no sink.
- Hotly debated: active sinks are useful? physical?

The simulation shown here comes from a collaboration with P. Kinsler.
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

\[\chi_{\mu\nu\alpha\beta} = -\left(\mu_0 / \varepsilon_0 \right) - \frac{1}{2} \left(g_{\mu\alpha} g_{\nu\beta} - g_{\mu\beta} g_{\nu\alpha} \right) \]

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \(\Rightarrow\) Negative index!
- Fundamental minus: not due to a coordinate change. \(\Rightarrow\) Not all optics is transformations! (cf. later...)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with \(v\) Phase < \(c\).
- Inertial observer \(v\) Phase < \(v\) < \(c\): backwards waves.
- Indeed: Lorentz transf. gives effective \(\epsilon < 0, \mu < 0\).
- This could redeem transformation methods...
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:

$$
\chi^\mu_{\nu\alpha\beta} = \left(\mu_0/\varepsilon_0\right)^{-\frac{1}{2}} \left(g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha} \right)
$$
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 \[\chi^0_{\mu\nu\alpha\beta} = \left(\mu_0/\varepsilon_0\right)^{-\frac{1}{2}} (g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha}) \]
- Just see: part is affected by coord-change, part is not.
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

➤ Start: vacuum using space+time metric $g^{\alpha\beta}$:

$$\chi^{\mu\nu\alpha\beta}_0 = \left(\mu_0/\varepsilon_0\right)^{-\frac{1}{2}} \left(g^{\mu\alpha}g^{\nu\beta} - g^{\mu\beta}g^{\nu\alpha}\right)$$

➤ Just see: part is affected by coord-change, part is not.
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 $$\chi_{0}^{\mu\nu\alpha\beta} = \left(\frac{\mu_{0}}{\varepsilon_{0}}\right)^{-\frac{1}{2}} (g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha})$$
- Just see: part is affected by coord-change, part is not.
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 $$\chi_{0}^{\mu\nu\alpha\beta} = -\left(\mu_{0}/\varepsilon_{0}\right)^{-\frac{1}{2}} \left(g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha} \right)$$

- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 $$\chi_{\mu\nu}^{\alpha\beta} = -\left(\frac{\mu_0}{\varepsilon_0}\right)^{-\frac{1}{2}} \left(g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha} \right)$$
- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change.
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 $$\chi_{0}^{\mu\nu\alpha\beta} = -(\mu_0/\varepsilon_0)^{-\frac{1}{2}} \left(g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha} \right)$$
- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change.
 \Rightarrow Not all optics is transformations! (cf. later...)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with v Phase $< c$.
- Inertial observer v Phase $< v < c$: backwards waves.
- Indeed: Lorentz transf. gives effective $\epsilon < 0$, $\mu < 0$.
- This could redeem transformation methods...
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 $$\chi^{\mu\nu\alpha\beta}_0 = - \left(\mu_0/\varepsilon_0\right)^{-\frac{1}{2}} \left(g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha} \right)$$
- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later...)

Using Lorentz transforms (transf. based):
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 \[\chi_0^{\mu\nu\alpha\beta} = -\left(\frac{\mu_0}{\varepsilon_0}\right)^{-\frac{1}{2}} \left(g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha} \right) \]
- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later...)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with $v_{phase} < c$.

Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.
Negative index of refraction, perfect lenses and transformation optics – some words of caution.

Introduction.

Wrong concepts.

Right concepts.

Fold \neq Perf. lens

Alternatives.

Thank-you.

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 $$\chi_0^{\mu\nu\alpha\beta} = - (\mu_0/\varepsilon_0)^{-\frac{1}{2}} (g^{\mu\alpha}g^{\nu\beta} - g^{\mu\beta}g^{\nu\alpha})$$
- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \(\Rightarrow\) Negative index!
- Fundamental minus: not due to a coordinate change. \(\Rightarrow\) Not all optics is transformations! (cf. later...)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with $v_{phase} < c$.
- Inertial observer $v_{phase} < v < c$: backwards waves.
Negative index of refraction, perfect lenses and transformation optics – some words of caution.

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.

Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 $$\chi_0^{\mu\nu\alpha\beta} = -\left(\mu_0/\varepsilon_0\right)^{-\frac{1}{2}} \left(g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha} \right)$$
- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later...)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with $v_{Phase} < c$.
- Inertial observer $v_{Phase} < v < c$: backwards waves.
- Indeed: Lorentz transf. gives effective $\epsilon < 0$, $\mu < 0$.
Folding fails? Other ways to get a negative index

Fundamental (non transf-based):

- Start: vacuum using space+time metric $g^{\alpha\beta}$:
 \[
 \chi^\mu_0\nu_0\alpha_0\beta_0 = - \left(\mu_0 / \varepsilon_0 \right)^{-\frac{1}{2}} \left(g^{\mu\alpha} g^{\nu\beta} - g^{\mu\beta} g^{\nu\alpha} \right)
 \]
- Just see: part is affected by coord-change, part is not.
- Insert a minus sign where unaffected \Rightarrow Negative index!
- Fundamental minus: not due to a coordinate change. \Rightarrow Not all optics is transformations! (cf. later...)

Using Lorentz transforms (transf. based):

- Start: scalar trivial medium with $v_{Phase} < c$.
- Inertial observer $v_{Phase} < v < c$: backwards waves.
- Indeed: Lorentz transf. gives effective $\epsilon < 0$, $\mu < 0$.
- This could redeem transformation methods...
Transformation optics is the mean, not the end.
Transformation optics is the mean, not the end.

- Folding provided good 'mental picture' of negative index media.

Negative index of refraction, perfect lenses and transformation optics – some words of caution.

Introduction.
Wrong concepts.
Right concepts.
Fold \neq Perf. lens
Alternatives.
Thank-you.

Folding provided good 'mental picture' of negative index media.
Transformation optics is the mean, not the end.

- Folding provided good 'mental picture' of negative index media.
- But careful maths says you should not trust this 'picture'.
Transformation optics is the mean, not the end.

- Folding provided good 'mental picture' of negative index media.
- But careful maths says you should not trust this 'picture'.
- Lorentz (and maybe other) transforms can give negative index medium.
Transformation optics is the mean, not the end.

- Folding provided good 'mental picture' of negative index media.
- But careful maths says you should not trust this 'picture'.
- Lorentz (and maybe other) transforms can give negative index medium.
- This saves the transformation 'path' to negative index.
Transformation optics is the mean, not the end.

- Folding provided good 'mental picture' of negative index media.
- But careful maths says you should not trust this 'picture'.
- Lorentz (and maybe other) transforms can give negative index medium.
- This saves the transformation 'path' to negative index.
- But adds nothing to our understanding of the phenomenon!
Transformation optics is the mean, not the end.

- Folding provided good 'mental picture' of negative index media.
- But careful maths says you should not trust this 'picture'.
- Lorentz (and maybe other) transforms can give negative index medium.
- This saves the transformation 'path' to negative index.
- But adds nothing to our understanding of the phenomenon!
- Negative index media are already well understood...
Transformation optics is the mean, not the end.

- Folding provided good 'mental picture' of negative index media.
- But careful maths says you should not trust this 'picture'.
- Lorentz (and maybe other) transforms can give negative index medium.
- This saves the transformation 'path' to negative index.
- But adds nothing to our understanding of the phenomenon!
- Negative index media are already well understood...
- Transformation optics is the mean, not the end!
Conclusions.

- Negative index often thought as a folding of space.
- **But** with this approach:
 - Rigorously, $\epsilon < 0$ and $\mu < 0$ are **not** obtained.
 - Perfect lensing does **not** occur, rather...
 - Carelessness generates extra sources/sinks.
- So... **do not** argue in terms of 'folding'!
- Other transformations work: but no real advantage.
- Further information:
 - Luzi Bergamin and Alberto Favaro, arXiv:1001.4655
 - And, of course, the EMTS proceedings!
Thank-you!