Electromagnetism is still fundamental science.
Recent developments in clarifying the theoretical foundations of electromagnetism.

Alberto Favaro

Department of Physics,
Imperial College London, UK.

March 21, 2011
Outline.

Main theme: electromagnetism (EM) is a testing ground.
Main theme: electromagnetism (EM) is a testing ground.

- Building Maxwell’s theory so that it relies on a minimum of experiments. Non-essential assumptions removed.
Main theme: electromagnetism (EM) is a testing ground.

- Building Maxwell’s theory so that it relies on a minimum of experiments. Non-essential assumptions removed.
- Well defined core of experiments used to conclusively refute/test new theoretical ideas, with full generality.
Main theme: electromagnetism (EM) is a testing ground.

- Building Maxwell’s theory so that it relies on a minimum of experiments. Non-essential assumptions removed.
- Well defined core of experiments used to conclusively refute/test new theoretical ideas, with full generality.
Outline.

Main theme: electromagnetism (EM) is a testing ground.

- Building Maxwell’s theory so that it relies on a minimum of experiments. Non-essential assumptions removed.
- Well defined core of experiments used to conclusively refute/test new theoretical ideas, with full generality.

To be discussed in this talk.
Main theme: electromagnetism (EM) is a testing ground.

- Building Maxwell’s theory so that it relies on a minimum of experiments. Non-essential assumptions removed.
- Well defined core of experiments used to conclusively refute/test new theoretical ideas, with full generality.

To be discussed in this talk.

- Today, many theories of spacetime. EM testing ground for multiple theories, as little assumed about spacetime.
Outline.

Main theme: electromagnetism (EM) is a testing ground.

► Building Maxwell’s theory so that it relies on a minimum of experiments. Non-essential assumptions removed.
► Well defined core of experiments used to conclusively refute/test new theoretical ideas, with full generality.

To be discussed in this talk.

► Today, many theories of spacetime. EM testing ground for multiple theories, as little assumed about spacetime.
Main theme: electromagnetism (EM) is a testing ground.

- Building Maxwell’s theory so that it relies on a minimum of experiments. Non-essential assumptions removed.
- Well defined core of experiments used to conclusively refute/test new theoretical ideas, with full generality.

To be discussed in this talk.

- Today, many theories of spacetime. EM testing ground for multiple theories, as little assumed about spacetime.
- Charge conservation experiments \Rightarrow inhomogeneous Maxwell’s equations. Closed magnetic lines experiments \Rightarrow homogeneous Maxwell’s equations.
Outline.

Main theme: electromagnetism (EM) is a testing ground.

- Building Maxwell’s theory so that it relies on a minimum of experiments. Non-essential assumptions removed.
- Well defined core of experiments used to conclusively refute/test new theoretical ideas, with full generality.

To be discussed in this talk.

- Today, many theories of spacetime. EM testing ground for multiple theories, as little assumed about spacetime.
- Charge conservation experiments \Rightarrow inhomogeneous Maxwell’s equations. Closed magnetic lines experiments \Rightarrow homogeneous Maxwell’s equations.
- EM response of spacetime: linearity, zero birefringence, electric-magnetic duality measurements.
Less is more*.

Various structures on spacetime (Figure).

Build EM so that based on experiments, not on above structures.

Make EM independent of spacetime curvature, torsion, etc. Roughly, only need continuous, smooth spacetime.

This approach: Kottler (1922), Cartan ('23), van Dantzig ('34). Related: Einstein, Mie, Sommerfeld.

Figure: Hehl and Obukhov (Birkhäuser, 2003).
Less is more*.
Less is more*.

Various structures on spacetime (Figure).

Figure: Hehl and Obukhov (Birkhäuser, 2003).
Electromagnetism is still fundamental science.

Outline.

Less is more.

Experiments
Maxwell's Eqs.
Vac. response.

Conclusions.
Thank-you.

Less is more*.

Various structures on spacetime (Figure). Build EM so that based on experiments, not on above structures.

Figure: Hehl and Obukhov (Birkhäuser, 2003).
Less is more*.

- Various structures on spacetime (Figure). Build EM so that based on experiments, not on above structures.
- Make EM independent of spacetime curvature, torsion, etc. Roughly, only need continuous, smooth spacetime.

Figure: Hehl and Obukhov (Birkhäuser, 2003).
Less is more*.

- Various structures on spacetime (Figure). Build EM so that based on experiments, not on above structures.
- Make EM independent of spacetime curvature, torsion, etc. Roughly, only need continuous, smooth spacetime.
- This approach: Kottler (1922), Cartan (’23), van Dantzig (’34). Related: Einstein, Mie, Sommerfeld.

Figure: Hehl and Obukhov (Birkhäuser, 2003).
Less is more*.

Figure: Charlie Chaplin, “The Great Dictator”, 1940.
Less is more*.

EM needs ~ continuity and smoothness only. Not distance, curvature, etc. If spacetime was a globe, we would not care about distances, or the curvature.

Figure: Charlie Chaplin, “The Great Dictator”, 1940.
Less is more*.

- EM needs \sim continuity and smoothness only. Not distance, curvature, etc. If spacetime was a globe, we would not care about distances, or the curvature.
- We would only demand a continuous, smooth surface (smooth transition between the pages of an atlas).

Figure: Charlie Chaplin, “The Great Dictator”, 1940.
Towards the experiment side of things.

A warning (but Nobody Need Worry).

Lack of assumptions: the EM response of vacuum is general (not specified until late); It’s a bit like a general material.
Towards the experiment side of things.

A warning (but Nobody Need Worry).

Lack of assumptions: the EM response of vacuum is general (not specified until late); It’s a bit like a general material.

Maxwell’s equations divided in two sets.
Towards the experiment side of things.

A warning (but Nobody Need Worry).
Lack of assumptions: the EM response of vacuum is general (not specified until late); It’s a bit like a general material.

Maxwell’s equations divided in two sets.

- Inhomogeneous Maxwell equations, contain reference to the electric charge (charge density or current density).
Towards the experiment side of things.

A warning (but Nobody Need Worry).

Lack of assumptions: the EM response of vacuum is general (not specified until late); It’s a bit like a general material.

Maxwell’s equations divided in two sets.

- Inhomogeneous Maxwell equations, contain reference to the electric charge (charge density or current density).
- Homogeneous Maxwell equations, the other equations.
Inhomogeneous Maxwell’s Eqs., Experiment 1.

- Inhomogeneous Maxwell’s Eqs. ⇐ Charge conservation.
Inhomogeneous Maxwell’s Eqs., Experiment 1.

- Inhomogeneous Maxwell’s Eqs. ↔ Charge conservation.
Inhomogeneous Maxwell’s Eqs., Experiment 1.

- Inhomogeneous Maxwell’s Eqs. ⇐ Charge conservation.
- Look for charge non-conservation like $e \rightarrow \nu_e + \gamma$.
Inhomogeneous Maxwell’s Eqs., Experiment 1.

- Inhomogeneous Maxwell’s Eqs. ⇐ Charge conservation.
- Look for charge non-conservation like $e \rightarrow \nu_e + \gamma$.
- Table: Klapdor-Kleingrothaus et al. (PLB, 2006).

<table>
<thead>
<tr>
<th>Type of the detector</th>
<th>Mass (kg)</th>
<th>Resolution (keV)</th>
<th>Backgr. (keV kg yr)$^{-1}$</th>
<th>Raw data</th>
<th>Limits τ (yr) (c.l.) mode: $e^- \rightarrow \nu_e + \gamma$</th>
<th>Ref., Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nal</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>$> 1.0 \times 10^{19}$ (68%)</td>
<td>[4], 1959</td>
</tr>
<tr>
<td>Nal</td>
<td>1.4</td>
<td>44 (–)</td>
<td>~ 21020</td>
<td>No</td>
<td>$> 4.0 \times 10^{22}$ (68%)</td>
<td>[5], 1965</td>
</tr>
<tr>
<td>Nal</td>
<td>6</td>
<td>43 (–)</td>
<td>~ 3 $\times 10^5$</td>
<td>Yes</td>
<td>$> 3.5 \times 10^{23}$ (68%)</td>
<td>[6], 1979</td>
</tr>
<tr>
<td>Ge (Li)</td>
<td>0.69</td>
<td>~ 1.5</td>
<td>1500</td>
<td>Yes</td>
<td>$> 3 \times 10^{23}$ (68%)</td>
<td>[17], 1983</td>
</tr>
<tr>
<td>HPGe</td>
<td>0.71</td>
<td>1.9 (5.13)</td>
<td>240</td>
<td>Yes</td>
<td>$> 1.5 \times 10^{25}$ (68%)</td>
<td>[7], 1986</td>
</tr>
<tr>
<td>HPGe</td>
<td>3.1</td>
<td>2.5 (7.6)</td>
<td>25.8</td>
<td>Yes</td>
<td>$> 2.4 \times 10^{25}$ (68%)</td>
<td>[8], 1993</td>
</tr>
<tr>
<td>HPGe</td>
<td>2.2</td>
<td>1.8 (5.3)</td>
<td>10–80</td>
<td>Yes</td>
<td>$> 3.7 \times 10^{25}$ (68%)</td>
<td>[9], 1995</td>
</tr>
<tr>
<td>LxGe (DAMA)</td>
<td>6.5</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>$> 1.0 \times 10^{25}$ (90%)</td>
<td>[23], 1996</td>
</tr>
<tr>
<td>LxGe (DAMA)</td>
<td>6.5</td>
<td>78 (80)</td>
<td>0.04</td>
<td>Yes</td>
<td>$> 3.4 \times 10^{26}$ (68%)</td>
<td>[24], 2000</td>
</tr>
<tr>
<td>CTF (C${16}$H${18}$)</td>
<td>4170</td>
<td>72 (–)</td>
<td>0.06</td>
<td>No</td>
<td>$> 4.6 \times 10^{26}$ (90%)</td>
<td>[10], 2002</td>
</tr>
<tr>
<td>HPGelI</td>
<td>10.96</td>
<td>2.3 (7.7)</td>
<td>25</td>
<td>Yes</td>
<td>$> 1.93 \times 10^{26}$ (68%)</td>
<td>This work, 2006</td>
</tr>
</tbody>
</table>
Inhomogeneous Maxwell’s Eqs., Experiment 1.

- Inhomogeneous Maxwell’s Eqs. ⇐ Charge conservation.
- Look for charge non-conservation like $e \to \nu_e + \gamma$.
- **Table**: Klapdor-Kleingrothaus et al. (PLB, 2006).
- Multiple high-purity ^{76}Ge detectors at Gran Sasso, IT.

<table>
<thead>
<tr>
<th>Type of the detector</th>
<th>Mass (kg)</th>
<th>Resolution (keV)</th>
<th>Backgr. (keV kg yr)$^{-1}$</th>
<th>Raw data</th>
<th>Limits τ (yr) (c.l.) mode: $e^- \to \nu_e + \gamma$</th>
<th>Ref., Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>$> 1.0 \times 10^{19}$ (68%)</td>
<td>[4], 1959</td>
</tr>
<tr>
<td>NaI</td>
<td>1.4</td>
<td>44 (–)</td>
<td>~ 21020</td>
<td>No</td>
<td>$> 4.0 \times 10^{22}$ (68%)</td>
<td>[5], 1965</td>
</tr>
<tr>
<td>NaI</td>
<td>6</td>
<td>43 (–)</td>
<td>~ 3×10^5</td>
<td>Yes</td>
<td>$> 3.5 \times 10^{23}$ (68%)</td>
<td>[6], 1979</td>
</tr>
<tr>
<td>Ge (Li)</td>
<td>0.69</td>
<td>~ 1.5</td>
<td>1500</td>
<td>Yes</td>
<td>$> 3 \times 10^{23}$ (68%)</td>
<td>[17], 1983</td>
</tr>
<tr>
<td>HPGe</td>
<td>0.71</td>
<td>1.9 (5.13)</td>
<td>240</td>
<td>Yes</td>
<td>$> 1.5 \times 10^{25}$ (68%)</td>
<td>[7], 1986</td>
</tr>
<tr>
<td>HPGe</td>
<td>3.1</td>
<td>2.5 (7.6)</td>
<td>25.8</td>
<td>Yes</td>
<td>$> 2.4 \times 10^{25}$ (68%)</td>
<td>[8], 1993</td>
</tr>
<tr>
<td>HPGe</td>
<td>2.2</td>
<td>1.8 (5.3)</td>
<td>10–80</td>
<td>Yes</td>
<td>$> 3.7 \times 10^{25}$ (68%)</td>
<td>[9], 1995</td>
</tr>
<tr>
<td>LXe (DAMA)</td>
<td>6.5</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>$> 1.0 \times 10^{25}$ (90%)</td>
<td>[23], 1996</td>
</tr>
<tr>
<td>LXe (DAMA)</td>
<td>6.5</td>
<td>78 (80)</td>
<td>0.04</td>
<td>Yes</td>
<td>$> 3.4 \times 10^{26}$ (68%)</td>
<td>[24], 2000</td>
</tr>
<tr>
<td>CTF (C${16}\text{H}{18}$) (Borexino)</td>
<td>4170</td>
<td>72 (–)</td>
<td>0.06</td>
<td>No</td>
<td>$> 4.6 \times 10^{26}$ (90%)</td>
<td>[10], 2002</td>
</tr>
<tr>
<td>HPGeII</td>
<td>10.96</td>
<td>2.3 (7.7)</td>
<td>25</td>
<td>Yes</td>
<td>$> 1.93 \times 10^{26}$ (68%)</td>
<td>This work, 2006</td>
</tr>
</tbody>
</table>
Inhomogeneous Maxwell’s Eqs., Experiment 1.

- Inhomogeneous Maxwell’s Eqs. ≜ Charge conservation.
- Look for charge non-conservation like $e \rightarrow \nu_e + \gamma$.
- **Table:** Klapdor-Kleingrothaus et al. (PLB, 2006).
- Multiple high-purity 76Ge detectors at Gran Sasso, IT.
- Mean electron lifetime is measured ($> 10^{26}$ years).

<table>
<thead>
<tr>
<th>Type of the detector</th>
<th>Mass (kg)</th>
<th>Resolution (keV)</th>
<th>Backgr. (keV kg yr)$^{-1}$</th>
<th>Raw data</th>
<th>Limits τ (yr) (c.l.) mode: $e^- \rightarrow \nu_e + \gamma$</th>
<th>Ref., Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>$> 1.0 \times 10^{19}$ (68%)</td>
<td>[4], 1959</td>
</tr>
<tr>
<td>NaI</td>
<td>1.4</td>
<td>44 (–)</td>
<td>~ 21020</td>
<td>No</td>
<td>$> 4.0 \times 10^{22}$ (68%)</td>
<td>[5], 1965</td>
</tr>
<tr>
<td>NaI</td>
<td>6</td>
<td>43 (–)</td>
<td>~ 3 \times 105</td>
<td>Yes</td>
<td>$> 3.5 \times 10^{23}$ (68%)</td>
<td>[6], 1979</td>
</tr>
<tr>
<td>Ge (Li)</td>
<td>0.69</td>
<td>~ 1.5</td>
<td>1500</td>
<td>Yes</td>
<td>$> 3 \times 10^{23}$ (68%)</td>
<td>[17], 1983</td>
</tr>
<tr>
<td>HPGe</td>
<td>0.71</td>
<td>1.9 (5.13)</td>
<td>240</td>
<td>Yes</td>
<td>$> 1.5 \times 10^{25}$ (68%)</td>
<td>[7], 1986</td>
</tr>
<tr>
<td>HPGe</td>
<td>3.1</td>
<td>2.5 (7.6)</td>
<td>25.8</td>
<td>Yes</td>
<td>$> 2.4 \times 10^{25}$ (68%)</td>
<td>[8], 1993</td>
</tr>
<tr>
<td>HPGe</td>
<td>2.2</td>
<td>1.8 (5.3)</td>
<td>10–80</td>
<td>Yes</td>
<td>$> 3.7 \times 10^{25}$ (68%)</td>
<td>[9], 1995</td>
</tr>
<tr>
<td>LXe (DAMA)</td>
<td>6.5</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>$> 1.0 \times 10^{25}$ (90%)</td>
<td>[23], 1996</td>
</tr>
<tr>
<td>LXe (DAMA)</td>
<td>6.5</td>
<td>78 (80)</td>
<td>0.04</td>
<td>Yes</td>
<td>$> 3.4 \times 10^{26}$ (68%)</td>
<td>[24], 2000</td>
</tr>
<tr>
<td>CTF (C${16}$H${18}$) (Borexino)</td>
<td>4170</td>
<td>72 (–)</td>
<td>0.06</td>
<td>No</td>
<td>$> 4.6 \times 10^{26}$ (90%)</td>
<td>[10], 2002</td>
</tr>
<tr>
<td>HPGeII</td>
<td>10.96</td>
<td>2.3 (7.7)</td>
<td>25</td>
<td>Yes</td>
<td>$> 1.93 \times 10^{26}$ (68%)</td>
<td>This work, 2006</td>
</tr>
</tbody>
</table>

Vac. response.

Less is more.

Conclusions.

Thank-you.
Inhomogeneous Maxwell’s Eqs., Experiment 1.

- Inhomogeneous Maxwell’s Eqs. ⇔ Charge conservation.
- Look for charge non-conservation like $e \rightarrow \nu_e + \gamma$.
- Table: Klapdor-Kleingrothaus et al. (PLB, 2006).
- Multiple high-purity 76Ge detectors at Gran Sasso, IT.
- Mean electron lifetime is measured ($> 10^{26}$ years).
- Compare with age of universe $\sim 10^{10}$ years. Conserved?

<table>
<thead>
<tr>
<th>Type of the detector</th>
<th>Mass (kg)</th>
<th>Resolution (keV)</th>
<th>Backgr. (keV kg yr$^{-1}$)</th>
<th>Raw data</th>
<th>Limits τ (yr) (90%)</th>
<th>Ref., Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaI</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>$> 1.0 \times 10^{19}$ (68%)</td>
<td>[4], 1959</td>
</tr>
<tr>
<td>NaI</td>
<td>1.4</td>
<td>44 (–)</td>
<td>~ 21020</td>
<td>No</td>
<td>$> 4.0 \times 10^{22}$ (68%)</td>
<td>[5], 1965</td>
</tr>
<tr>
<td>NaI</td>
<td>6</td>
<td>43 (–)</td>
<td>~ 3 x 105</td>
<td>Yes</td>
<td>$> 3.5 \times 10^{23}$ (68%)</td>
<td>[6], 1979</td>
</tr>
<tr>
<td>Ge (Li)</td>
<td>0.69</td>
<td>~ 1.5</td>
<td>1500</td>
<td>Yes</td>
<td>$> 3 \times 10^{23}$ (68%)</td>
<td>[17], 1983</td>
</tr>
<tr>
<td>HPGe</td>
<td>0.71</td>
<td>1.9 (5.13)</td>
<td>240</td>
<td>Yes</td>
<td>$> 1.5 \times 10^{25}$ (68%)</td>
<td>[7], 1986</td>
</tr>
<tr>
<td>HPGe</td>
<td>3.1</td>
<td>2.5 (7.6)</td>
<td>25.8</td>
<td>Yes</td>
<td>$> 2.4 \times 10^{25}$ (68%)</td>
<td>[8], 1993</td>
</tr>
<tr>
<td>HPGe</td>
<td>2.2</td>
<td>1.8 (5.3)</td>
<td>10–80</td>
<td>Yes</td>
<td>$> 3.7 \times 10^{25}$ (68%)</td>
<td>[9], 1995</td>
</tr>
<tr>
<td>LXe (DAMA)</td>
<td>6.5</td>
<td>–</td>
<td>–</td>
<td>Yes</td>
<td>$> 1.0 \times 10^{25}$ (90%)</td>
<td>[23], 1996</td>
</tr>
<tr>
<td>LXe (DAMA)</td>
<td>6.5</td>
<td>78 (80)</td>
<td>0.04</td>
<td>Yes</td>
<td>$> 3.4 \times 10^{26}$ (68%)</td>
<td>[24], 2000</td>
</tr>
<tr>
<td>CTF (C_{16}H_{18}) (Borexino)</td>
<td>4170</td>
<td>72 (–)</td>
<td>0.06</td>
<td>No</td>
<td>$> 4.6 \times 10^{26}$ (90%)</td>
<td>[10], 2002</td>
</tr>
<tr>
<td>HPGeII</td>
<td>10.96</td>
<td>2.3 (7.7)</td>
<td>25</td>
<td>Yes</td>
<td>$> 1.93 \times 10^{26}$ (68%)</td>
<td>This work, 2006</td>
</tr>
</tbody>
</table>
Inhomogeneous Maxwell’s Eqs., Experiment 2.

- Inhomogeneous Maxwell’s Eqs. ↔ Charge conservation.
Inhomogeneous Maxwell’s Eqs., Experiment 2.

- Inhomogeneous Maxwell’s Eqs. ⇐ Charge conservation.
- Charge conserved in $n \rightarrow p + e + \bar{\nu}_e$? Charges of p and e equal? Measure neutrality of gases (e.g. nitrogen).

Dylla and King (PRA, 1972). Record sound in electrically-driven gas-filled chamber. Get force at electrical drive, thus $|\left(q_e - q_p\right)| \leq 2 \times 10^{-19}$.
Inhomogeneous Maxwell’s Eqs., Experiment 2.

- Inhomogeneous Maxwell’s Eqs. ↔ Charge conservation.
- Charge conserved in $n \rightarrow p + e + \bar{\nu}_e$? Charges of p and e equal? Measure neutrality of gases (e.g. nitrogen).
- Dylla and King (PRA, 1972). Record sound in electrically-driven gas-filled chamber. Get force at electrical drive, thus $|(q_e - q_p)/q_e| \leq 2 \times 10^{-19}$.
Inhomogeneous Maxwell’s Eqs., Experiment 3.

- Time variations of fine structure α, if measured, could imply variable e-charge: Bekenstein (PRD 2002).
Inhomogeneous Maxwell’s Eqs., Experiment 3.

- Time variations of fine structure α, if measured, could imply variable e-charge: Bekenstein (PRD 2002).
- However, variable α need not imply variable e-charge. See Hehl, Itin, Obukhov, arXiv:0610221.
Inhomogeneous Maxwell’s Eqs., Experiment 3.

- Time variations of fine structure α, if measured, could imply variable e-charge: Bekenstein (PRD 2002).
- However, variable α need not imply variable e-charge. See Hehl, Itin, Obukhov, arXiv:0610221.
- Measurements by Marion et al. (PRL, 2003) show that potentially $|\dot{q}_e/q_e| \leq 3.6 \times 10^{-16}$ (years)$^{-1}$.
Homogeneous Maxwell’s Eqs., Experiment 1.

- Homogeneous Maxw’s Eqs \iff No magnetic monopoles.
 Check that magnetic B-field lines are always closed.
Homogeneous Maxwell’s Eqs., Experiment 1.

- Homogeneous Maxw’s Eqs \iff No magnetic monopoles. Check that magnetic B-field lines are always closed.
Homogeneous Maxwell’s Eqs., Experiment 1.

- Homogeneous Maxw’s Eqs \iff No magnetic monopoles. Check that magnetic B-field lines are always closed.
- Figure: Aharonov/Bohm (PRL, 1959). Interference measures B-field in area enclosed by e-trajectories.
Homogeneous Maxwell’s Eqs., Experiment 1.

- Homogeneous Maxw’s Eqs \iff No magnetic monopoles. Check that magnetic B-field lines are always closed.
- Figure: Aharonov/Bohm (PRL, 1959). Interference measures B-field in area enclosed by e-trajectories.
- “Step” in zero B-signal can be used to detect magnetic monopoles. (Proposed, Lämmerzahl et al., PRD 2005).
Homogeneous Maxwell’s Eqs., Experiment 2.

- Homogeneous Maxw’s Eqs \iff No magnetic monopoles.
Homogeneous Maxwell’s Eqs., Experiment 2.

- Homogeneous Maxw’s Eqs \iff No magnetic monopoles.
- Measure B-field “step” due to monopoles, use SQUIDs.

Fig.: Barron/Maguire-Boyle, “Nanothechnology for the Oil and Gas Industry” (Online Collection, 2011).
Homogeneous Maxwell’s Eqs., Experiment 2.

- Homogeneous Maxw’s Eqs \Leftrightarrow No magnetic monopoles.
- Measure B-field “step” due to monopoles, use SQUIDs.
- Screening current against external B-field yields accurate measurement of B-field. Search for “steps”.

Fig.: Barron/Maguire-Boyle, “Nanothechnology for the Oil and Gas Industry” (Online Collection, 2011).
Homogeneous Maxwell’s Eqs., Experiment 2.

- Homogeneous Maxw’s Eqs \iff No magnetic monopoles.
- Measure B-field “step” due to monopoles, use SQUIDs.
- Screening current against external B-field yields accurate measurement of B-field. Search for “steps”.

Fig.: Barron/Maguire-Boyle, “Nanothechnology for the Oil and Gas Industry” (Online Collection, 2011).
Homogeneous Maxwell’s Eqs., Experiment 2.

- Homogeneous Maxw’s Eqs \iff No magnetic monopoles.
- Measure B-field “step” due to monopoles, use SQUIDs.
- Screening current against external B-field yields accurate measurement of B-field. Search for “steps”.
- Scale: Higgs boson $114\text{ GeV}/c^2 < m_H < 200\text{ GeV}/c^2$.

Fig.: Barron/Maguire-Boyle, “Nanothechnology for the Oil and Gas Industry” (Online Collection, 2011).
Summary: 150 years after Maxwell’s equations.

Fig.: Engraving of James Clerk Maxwell by G. J. Stodart from a photograph by Fergus of Greenack.
Summary: 150 years after Maxwell’s equations.

Inhomogeneous Maxwell’s equation, tested via:

Fig.: Engraving of James Clerk Maxwell by G. J. Stodart from a photograph by Fergus of Greenack.
Summary: 150 years after Maxwell’s equations.

Inhomogeneous Maxwell’s equation, tested via:

- Charge conservation forbidding decay $e \rightarrow \nu_e + \gamma$.

Fig.: Engraving of James Clerk Maxwell by G. J. Stodart from a photograph by Fergus of Greenack.
Summary: 150 years after Maxwell’s equations.

Inhomogeneous Maxwell’s equation, tested via:

- Charge conservation forbidding decay $e \rightarrow \nu_e + \gamma$.
- Equality $q_e = q_p \Rightarrow$ charge conserved in neutron decay.

Fig.: Engraving of James Clerk Maxwell by G. J. Stodart from a photograph by Fergus of Greenack.
Summary: 150 years after Maxwell’s equations.

Inhomogeneous Maxwell’s equation, tested via:

- Charge conservation forbidding decay $e \rightarrow \nu_e + \gamma$.
- Equality $q_e = q_p \Rightarrow$ charge conserved in neutron decay.

Homogeneous Maxwell equations, tested via:

Fig.: Engraving of James Clerk Maxwell by G. J. Stodart from a photograph by Fergus of Greenack.
Summary: 150 years after Maxwell’s equations.

Inhomogeneous Maxwell’s equation, tested via:

- Charge conservation forbidding decay $e \rightarrow \nu_e + \gamma$.
- Equality $q_e = q_p \Rightarrow$ charge conserved in neutron decay.

Homogeneous Maxwell equations, tested via:

- B-field steps detected by Aharonov-Bohm or SQUID.

Fig.: Engraving of James Clerk Maxwell by G. J. Stodart from a photograph by Fergus of Greenack.
Nonlinear vacuum response.

Nothing assumed so far about the response of vacuum. Not specified yet how \mathbf{E} and \mathbf{B} determine \mathbf{D} and \mathbf{H} in vacuum.
Nonlinear vacuum response.

Nothing assumed so far about the response of vacuum. Not specified yet how \(E \) and \(B \) determine \(D \) and \(H \) in vacuum.
Nonlinear vacuum response.

Nothing assumed so far about the response of vacuum. Not specified yet how \mathbf{E} and \mathbf{B} determine \mathbf{D} and \mathbf{H} in vacuum.

Perhaps a non-linear vacuum?
Nonlinear vacuum response.

Nothing assumed so far about the response of vacuum. Not specified yet how E and B determine D and H in vacuum.

Perhaps a non-linear vacuum?

- QED: photons scatter photons. Self-effect, nonlinear.
Nonlinear vacuum response.

Nothing assumed so far about the response of vacuum. Not specified yet how \mathbf{E} and \mathbf{B} determine \mathbf{D} and \mathbf{H} in vacuum.

Perhaps a non-linear vacuum?

- QED: photons scatter photons. Self-effect, nonlinear.
- Self-effect seen in high energy γ (NOT macroscopic).
Nonlinear vacuum response.

Nothing assumed so far about the response of vacuum. Not specified yet how E and B determine D and H in vacuum.

Perhaps a non-linear vacuum?

- QED: photons scatter photons. Self-effect, nonlinear.
- Self-effect seen in high energy γ (NOT macroscopic).
Nonlinear vacuum response.

Nothing assumed so far about the response of vacuum. Not specified yet how \mathbf{E} and \mathbf{B} determine \mathbf{D} and \mathbf{H} in vacuum.

Perhaps a non-linear vacuum?

- QED: photons scatter photons. Self-effect, nonlinear.
- Self-effect seen in high energy γ (NOT macroscopic).
- Left: Burke et al. (PRL, 1997), increased positron production due to multiphoton light-by-light scattering.
- Right: Akhmadaliev (PRC, 1998), γ turned into virtual e^-e^+ pair, and scattered off nucleus to get new γ.
Nonlinear Vacuum for Macroscopic Fields.

Macroscopic: nonlinear vacuum effects not detected yet.
Nonlinear Vacuum for Macroscopic Fields.

Nonlinear Vacuum for Macroscopic Fields.

Macroscopic: nonlinear vacuum effects not detected yet.

- QED induced nonlinear effect for macroscopic fields.
Nonlinear Vacuum for Macroscopic Fields.

Macroscopic: nonlinear vacuum effects not detected yet.

- QED induced nonlinear effect for macroscopic fields.
- Prescribes birefringent propagation in external B-field.
Nonlinear Vacuum for Macroscopic Fields.

Macroscopic: nonlinear vacuum effects not detected yet.

- QED induced nonlinear effect for macroscopic fields.
- Prescribes birefringent propagation in external B-field.

Nonlinear Vacuum for Macroscopic Fields.

Macroscopic: nonlinear vacuum effects not detected yet.

 ▶ QED induced nonlinear effect for macroscopic fields.
 ▶ Prescribes birefringent propagation in external B-field.

 ▶ Classical correction, avoid divergence in Coulomb field.
Nonlinear Vacuum for Macroscopic Fields.

Macroscopic: nonlinear vacuum effects not detected yet.

 ▶ QED induced nonlinear effect for macroscopic fields.
 ▶ Prescribes birefringent propagation in external B-field.

 ▶ Classical correction, avoid divergence in Coulomb field.
 ▶ Also an effective model in quantum string theory.
Nonlinear Vacuum for Macroscopic Fields.

Macroscopic: nonlinear vacuum effects not detected yet.

- QED induced nonlinear effect for macroscopic fields.
- Prescribes birefringent propagation in external B-field.

- Classical correction, avoid divergence in Coulomb field.
- Also an effective model in quantum string theory.
- Not birefringent, predicts speed of light $\leq c$.
Nonlinear Vacuum for Macroscopic Fields.

Macroscopic: nonlinear vacuum effects not detected yet.

 - QED induced nonlinear effect for macroscopic fields.
 - Prescribes birefringent propagation in external B-field.

 - Classical correction, avoid divergence in Coulomb field.
 - Also an effective model in quantum string theory.
 - Not birefringent, predicts speed of light $\leq c$.

In recent years, growing number of experiments...
Electromagnetism is still fundamental science.

- Measures birefringence $\psi = \pi(n_\parallel - n_\perp)L/\lambda$.

Experiments

Maxwell's Eqs.

Vac. response.

Conclusions.

Thank-you.

- Measures birefringence $\psi = \pi (n_\parallel - n_\perp) L/\lambda$.
- Heisenberg-Euler: sensitivity not enough by factor 4800.

$\psi = \pi (n_\parallel - n_\perp) L/\lambda$
Detection by Michelson interferometry (TO DO).

- Large coil installed on one arm, modifies speed of light.
- Test will work for Heisenberg-Euler and Born-Infeld.
- Döbrich/Gies (EPL, 2009): “For our quantitative estimates, we have concentrated on the advanced LIGO, as its sensitivity goal matches with currently available field strengths”. (Figure: taken from LIGO website.)
Other requirements for vacuum response*.

Electromagnetism is still fundamental science.

Outline.
Less is more.
Experiments
Maxwell's Eqs.
Vac. response.
Conclusions.
Thank-you.

Other requirements for vacuum response*.

Zero-Birefringence
- Largely confirmed by astronomical observations (Kostelecky/Mewes, PRD 2002).
- Very restrictive, \(\sim \) implies spacetime with usual distance (metric).
- Itin (PRD, 2005).

Invariance under EM duality (quite restrictive too).
\((H, D) \rightarrow a(-E, B)\) & \((-E, B) \rightarrow -1 a(H; D))\).

Other requirements for vacuum response*.

Zero-Birefringence
Other requirements for vacuum response*.

Zero-Birefringence

- Largely confirmed by astronomical observations (Kostelecky/Mewes, PRD 2002).
Other requirements for vacuum response*

Zero-Birefringence

- Largely confirmed by astronomical observations (Kostelecky/Mewes, PRD 2002).
- Very restrictive, \(\sim \) implies spacetime with usual distance (metric).
Other requirements for vacuum response*.

Zero-Birefringence

- Largely confirmed by astronomical observations (Kostelecky/Mewes, PRD 2002).
- Very restrictive, \sim implies spacetime with usual distance (metric).
Other requirements for vacuum response*

Zero-Birefringence

- Largely confirmed by astronomical observations (Kostelecky/Mewes, PRD 2002).
- Very restrictive, \(\sim \) implies spacetime with usual distance (metric).
 - Itin (PRD, 2005).
Other requirements for vacuum response*.

Zero-Birefringence

- Largely confirmed by astronomical observations (Kostelecky/Mewes, PRD 2002).
- Very restrictive, \(\sim \) implies spacetime with usual distance (metric).
 - Itin (PRD, 2005).
Other requirements for vacuum response*.

Zero-Birefringence

- Largely confirmed by astronomical observations (Kostelecky/Mewes, PRD 2002).
- Very restrictive, \sim implies spacetime with usual distance (metric).
 - Itin (PRD, 2005).

Invariance under EM duality (quite restrictive too).

\[
(H, D) \rightarrow a(-E, B) \quad \& \quad (-E, B) \rightarrow -\frac{1}{a}(H; D).
\]
Other requirements for vacuum response*

Zero-Birefringence

- Largely confirmed by astronomical observations (Kostelecky/Mewes, PRD 2002).
- Very restrictive, \sim implies spacetime with usual distance (metric).
 - Itin (PRD, 2005).

Invariance under EM duality (quite restrictive too).

$$(H, D) \to a(-E, B) \quad \& \quad (-E, B) \to -\frac{1}{a}(H; D).$$

Requirements for a general material*.

The requirements constraining a general vacuum can be interpreted as requirements on a general laboratory material. Actually, talking of materials...

General material to allow TE/TM decomposition.

- Lindell/Bergamin/Favaro (PIER, 2011).

Other metamaterials stuff...
Conclusions.

- Maxwell’s equations only require spacetime \(\sim\) continuous and smooth. Nothing more.
- Eliminating unnecessary assumptions puts the focus on a \(\sim\) minimal set of experiments.
- Charge conservation \(\Rightarrow\) Inhomogeneous Maxwell’s Eqs.
- No mag. monopoles \(\Rightarrow\) Homogeneous Maxwell’s Eqs.
- Vacuum response assumed late: after Maxwell’s Eqs.
- Maybe nonlinear? Remember, QED says so.
- Maxwell’s theory is still fundamental science.
Electromagnetism is still fundamental science.

Outline.
Less is more.
Experiments
Maxwell’s Eqs.
Vac. response.
Conclusions.
Thank-you.