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The Kasner (Bianchi |) Cosmology



The Kasner Spacetime (vacuum, Bianchi Type I):

ds® = — dt* + t*Prdz? + t°P2dy® + t*P3dz?
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where Zpizlzng
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The three Kasner indices may be parametrized by a single
variable u (introduced by BKL) where 1 < ¢, « o0
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Note that one Kasner index 1s always negative.



The Kasner Singularity:

In the collapse (expansion) direction, one Kasner axis 1s expanding
(collapsing). However,

*/3g:t

and the first non-zero curvature invariant blows up as ¢t — ()
unless ;, — o :

16 u? (u+ 1)

ko= R Ryvpe = - (u2 +u +1)3

This 1s a spacelike, curvature blowup singularity just as for FRW.



The Kasner Spacetime 1s a “free particle” 1n minisuperspace:

In terms of dr = e 3** d¢ and the momenta conjugate to the MSS
variables, Einstein’s equations may be obtained by variation of the
Hamiltonian constraint
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Note that the straight line trajectory in MSS may be described by a
single angle 6 which may be shown to be equivalent to w.

to yield

The Kasner singularity 1s “velocity term dominated” (VTD).



Minisuperspace quantization of Kasner (Wheeler-DeWitt equation):

( One of many methods) Promote the Hamiltonian constraint to be an
operator 1n minisuperspace acting on the wavefunction

w(ﬂa 64-7 6—)

via the Klein-Gordon equation

0% 0%p 0% 0
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to yield a (massless) free K-G field in 2 + 1 dimensions.

Generic MSS issues: (1) approximation to what? (2) time? (3)
interpretation? Wave function of the universe?
Generic K-G 1ssues: (1) negative energy? (2) negative probability?

See M.P. Ryan, Jr., L.C. Shepley, Homogeneous Relativistic Cosmologies, (Princeton U Press, 1975)



Use a different set of variables to describe the
Kasner cosmology:

d82 _ 6()x-|-7‘)/2 (_6—27'd7_2 + d92) 4+ 6—7‘ (€Pd£172 4+ G_deQ)

Einstein’s equations yield solutions for P and \
in terms of a constant v and time 7.
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ADM quantization in MSS 1n these variables can yield a
Schrodinger equation after separating out the A degree of freedom:

oy 0%

1T = = —5 =5

or 2 9P

This 1s the equation for a free particle so that wavepackets
which follow the classical MSS trajectory may be constructed.

Of course, the same MSS 1ssues are found 1n this quantization.

More details and the generalization to polarized Gowdy models
may be found 1n:

See B.K. Berger, Ann. Phys. 83, 458 (1974) and Ph.D. Thesis, U. of Maryland, 1972;
C.W. Misner, Phys. Rev. D 8, 3271 (1973); B.K. Berger, Phys. Rev. D 11, 2770 (1975)



Polarized Gowdy

R. H. Gowdy, Phys. Rev. Lett. 27, 826 (1971); Ann. Phys. (N. Y. ) 83,
203 (1974).



Polarized Gowdy with 3-torus spatial topology:

d82 _ 6()x-|-7‘)/2 (_6—27'd7_2 + d92) + 6—7‘ (€Pd,’l?2 4+ e—deQ)

Now allow P and )\ to depend on 6 as well as 7. The equations
become for * = 9/07 and ' = 0/00 :

P L 6—27'P// _ O
A== (P +e727(P)?], X = PP
Constraints:

HY = mamr + 27p + 3¢ 7T(P')? =0

H' = m, 7"+ N +7pP =0
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Explicit solution to wave equation and asymptotics for ¢ = e~

T .

P(0,t) = Int + »  Zy(nt) cos(nf + ¢n)

n=1

Bessel Functions of the Second Kind forv=0,1234
1] I 1 I | ] 1

T — OO

PO, 1) — —v(0)T
A0, 7) — —[w(0)]* 7T

Different Kasner at every spatial
point as the singularity 1s approached.

Example of the BKL conjecture.
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The waves control the dynamics of the
| background described by the spatial
* average of A\ . This background spacetime

contains a stiff fluid — the effective source
created by the gravitational waves.



Interlude on “classical” particle creation



Classical analog of cosmological particle creation

Gowdy is a special case (but was done first).

Consider a scalar field @(Z,t) in an anisotropic, spatially
homogeneous, background. Perform a mode expansion and
change time variable so that each mode satisfies a time-
dependent-frequency harmonic oscillator equation

é,;’ -+ w%(T)@;:O
Suppressing the mode vector,
o(1) = AZ\(1) + B Zs(7)
with A, B chosen to yield the Wronskian
W(Zl, ZQ) — 2122 — ZQZl =1

B.K. Berger, Phys. Rev. D 18, 4367 (1978)



Classical analog of cosmological particle creation

WKB (adiabatic) limit: wave mode period much shorter than
time scale of frequency change (high frequency)

OPWKB R w2 A cos (/ wdT’ —|—§> + w Y2 Bgin (/ wodr! _|_€>

gives a (formal) energy in the mode

E:%$2—I—%w2¢2

with the number of quanta
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Classical analog of cosmological particle creation

Case 1: There is a singularity at 7s where lim w(7) =0 .

T—Tg

@ behaves as a free particle: $s = qo + poT

To preserve the Wronskian and if, e.g., the singularity occurs at
an infinite value of the time variable,

21%6 T ’ 22%1/04

to yield
4 A=py/aa , B=aqg —Bpo

and

1
N=1|a"q + (&2 | 52> Py — 2aBpoqo

N 1s the number of WKB quanta given qg, po at the
singularity. Add zero-point energy to recover full QM results.



Classical analog of cosmological particle creation

Case 2: Frozen cosmology

Choose 70 > 7s where > means "after".

To preserve the Wronskian and if, e.g., the singularity occurs at an infinite
value of the time variable, set w(T ) — W(T 0) = W for all earlier times.
Further assume that

¢$o = C'sin (/TowdTnLC)

holds at this time with W
N(T()) — NO — 7|C‘2

but that the solution 1s described by

leﬁ—FOéT ) 22%1/04
This yields an arguably unphysical amplification factor
N(1) o’
~ > 00 a8 Tg — Tg

N() 2(,00



Polarized Gowdy: quantum graviton creation



A Case 2 Example:

Quantization

1: Instantaneous diagonalization and Bogoliubov

transformations. Treat P as a scalar field in a Kasner-like

background.

Pick an 1nitial time 79 . At that time, define a set of states of the

scalar field P

Define creation and annihilation operators and a

number operator. Find the transformation coefficients to write the
number of particles 1n a state, 1.e. the expectation value, at 7o

with the com
7 . This ca

parable number of particles defined at the final time
culation proceeds mode by mode. The momentum

constraint 1m

noses overall zero momentum on the field P.

B.K. Berger, Ann. Phys. 83, 458 (1974) and Ph.D. Thesis, U. of Maryland, 1972
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Issues: Instantaneous diagonalization at the initial time fails to represent
the Kasner like behavior at that time.

Success: Early example of graviton creation in a cosmology.



A Case 1 Example:

Quantization 2: Embrace the evolution from Kasner-like free
particle behavior to that for a scalar field in a time dependent
background.

Use established methods to solve the time-dependent-frequency
harmonic oscillator. For each mode, the wavetfunction 1s that for a
minimum uncertainty wavepacket at early times (appropriate for
the free-particle MSS behavior) and that for gravitons in a
background at late times. The particle number 1s conserved and
represents the number of gravitons at late times.

Issues: Neglecting the usual MSS 1ssues, this quantization seems
reasonable. It 1s 1n the spirit of the ADM quantization because the
constraints are solved a priori.

C.W. Misner, Phys. Rev. D 8, 3271 (1973); B.K. Berger, Phys. Rev. D 11, 2770 (1975)



Ground state wavefunction for mode n of field P:

On _ 1 8° i 4T 2)
zP}‘&T —(—Zaqn2+2nze dn | ¥n -

lim ¢,= Z ay exp[ —;(N+%)frd7'wn] WKB limit

T—>4 %

X On(qn; Wn)
™ -1/2 Valid at all times, min.
w""’:m[%(i?{e“ﬂ uncert. wp at early times

—a 2T 72, 21') / ( )
Xexp[ zinl e’z <2Px In/ Zo 2Px

A =iln|e*"Z (L’}_l_ez?)* 4 (17l 2,) 5 Annihilation
" 1\2p, ¢ /= %0\2p,¢ ) aq, operator

Anlp, =0
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These models have been used extensively by others to explore a
number of formalisms for quantum gravity or quantum field
theory 1n curved spacetime.

For an extensive review, see J.F. Barbero G., E.J.S. Villaserior, Living Rev.
Relativity 13, 6 (2010).

C.P. Winlove, D. Raine, "Pair Creation and the Gowdy Model,”
Ann. Phys. 93, 116 (1975)

Husain, V., “Quantum effects on the singularity of the Gowdy cosmology”,
Class. Quantum Grav., 4, 1587-1591, (1987).

Husain, V. and Smolin, L., “Exactly solvable quantum cosmologies from two
Killing field reductions of general relativity”, Nucl. Phys. B, 327, 205, (1989).

Mena Marugan, G.A., “Canonical quantization of the Gowdy model”,
Phys. Rev. D, 56, 908-919, (1997).

orre, C.G., “Schrddinger representation for the polarized Gowdy
model”, Class. Quantum Grav., 24, 1-13, (2007).



The BKL Conjecture



Spatially inhomogeneous cosmological spacetimes:

BKL claim that sufficiently close to the singularity, spatial
derivatives become dynamically irrelevant compared to time
derivatives so that each spatial point evolves as a separate
universe with either an AVTD or Mixmaster singularity.

!

toward
the
singularity




A Mixmaster simulation with > 250 bounces:

B-/18]

B4 /19

Ringstrom has proven that the Mixmaster singularity for non-Taub
initial data 1s of the curvature blow-up type.

H. Ringstrom, Class.Quant.Grav. 17 (2000) 713-731.



A Mixmaster simulation with > 250 bounces:
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Ringstrom has proven that the Mixmaster singularity for non-Taub
initial data 1s of the curvature blow-up type.

H. Ringstrom, Class.Quant.Grav. 17 (2000) 713-731.



Kasner metric in Gowdy coordinates:
g =M V2(—dt? + do?) + t(ePda? + e P dy?)
Add @-dependence for P and A to obtain polarized Gowdy.

Rotate the axes 1n the x-y plane to obtain generic Gowdy:

g=eM27V2(—at? + do*) + ePt (de + Q dy)? + e Tt dy?

Rotate in the x- 6 and y- § planes to obtain generic T2-symmetric:

+el't (d:C+Qdy)2 + e Tt (dy+Gd9)2

27



Generic Gowdy models:

ds® = ePMTT/2 (—e™27dr? + dO?) + P77 (do + QdS)* 4 e T ds?

Einstein’s equations consist of wave equations for P and Q
and constraints which may be solved for A. The wave equations

may be obtained by variation of
OH = 15 + 6_2P7T22 +e TP; —|—€2(P_T)Q,g
where 'H # 0 ,
As T — o0, the VTD solution (neglect spatial derivatives) is

PO, 7)—v@)T , wp(0,7)— v(h)
QO, 1) — Q%) , mqe(0,7) — m(h)



Terms 1n the Hamiltonian act as potentials. For AVTD behavior
of the model, these potentials must decay exponentially.

_ _—2P 2 —2vu7 (02
Vl — € 7TQ — € (7"-@)
requires v > () for consistency.

Vo =27 (Q)* — 2D (Qpp )

requires v < 1 for consistency.

This means that the singularity 1s AVTD (at any
spatial point) only if (< 4 < 1 -



Numerical simulations show how v 1s driven into the range (0,1)
by bounces off the potentials. A typical single spatial point 1s shown.
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B.K. Berger, D. Garfinkle, Phys. Rev. D 57, 4767 (1998).












General T2 symmetric spacetime adds twist potential:

d82 _ _6()\—37')/2617_2 4+ 6(>\—|—,u—|—7')/2d6)2

P~ T[da+Qd5+(/ (QO) Q/ >

e P15 — / 0) db)

where @ — (A +2P+37)/2 /4 .
Hamiltonian formulation:

H = HO + Hsmall + Hk;zn + chrv + Htwist

2 2 =27 7.‘.2 6_2P
H — "p | Py | < Gowdy: Kk =0, =&, =3
471')\ 471')\ 47‘(‘)\
2 2(P T)
| Qa | | O'/i oY €(>\—|—2P—|—37)/2
U

B.K. Berger, J. Isenberg, M. Weaver, PRD 64, 084006 (2001)












Bounce laws relate w betfore and after bounce.
Quantitative agreement 1s found.
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Recurrent spikes: a non-local feature of (7, evolution

W.C. Lim, L. Andersson, D. Garfinkle, F. Pretorius: Spikes in the Mixmaster Regime of G2 Cosmologies,
Phys. Rev. D 79, 123526 (2009)

J.M. Heinzle, C. Uggla, W.C. Lim: Spike Oscillations, arXiv: 1206.0932, preprint

Advanced numerical methods with high spatial resolution reveal
recurrent spikes.

Mumerical solution Numerical solution
50 - T 1001 A ¢
2.7 A i 2,2 A
COIBHY g [ ——, CCIGH)" g [
TED e -100 e

L
L e .
- -
-
-

Original spike First recurrence

Numerical simulations match exact spike solutions with increasing

accuracy as singularity 1s approached. N



EXpanding
cosmologies



Generic Gowdy cosmologies: nonlinear terms decay. Each
polarization propagates as a linear wave.
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Generic Gowdy cosmologies: nonlinear terms decay. Each
polarization propagates as a linear wave.
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Ringstrom has proven that the asymptotics of expanding Gowdy
spacetimes depends on the sign of C. The behavior described so

far only holds for C > 0. The waves decay as t-1/2 as before but the

spatial averages of P and Q are oscillatory 1n In t rather than
respectively logarithmic and constant int as ¢ — oo . A behaves as

before. He speculates that the solutions are asymptotically

Ringstrom's solutions forC <0 ¢

el = \)ﬁ_i'c _cl — (9 COS (ﬁln%)_

G CRSE)
28 151 {01—62005 (\/TCIn%)}

Q) =

H. Ringstrom, Comm. Pure Appl. Math. 57, 657 (2004).





















For all Gowdy models: Gravitational wave amplitudes decay
Linear growth of spatial average of A

~172 oy
t "~ decay of target space orbit circumference
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Generic T?-symmetric metric (polarized case):

/ Replaces v

g = MATV2(—dt? + 4m3d6?) + 2T tda?

t 27
—P A+2P A
+e 't [dy + </ dj/ﬁe + (t’)5/2) d@]

Replaces G, twist constant

2

1 Py  k2eM2tP P,o 7,0
0=P - P | 1+ tP,;)
bt +t it in2 247/ (1+tPy ) 4
P,2 6>\/2—|—P
)\7t — t P,% I g - l‘f2
475 £5/2
L N2
Tt — K UP)
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Generic T?-symmetric metric (polarized case):

/ Replaces v

g = MATV2(—dt? + 4m3d6?) + 2T tda?

t 27
—P A+2P A
+e 't [der (/ d;"/-s;e (t’)5/2) d@]

Replaces G, twist constant

2

1 P)QQ
0=P —P
vt —|—t 't 47T§

PQ
)\’t:t<P’% I 7(9) _
477?\

P,o 0
3
47'(')\

| 14+ tP,;)

Exponentials change
st = A the Gowdy behavior.
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Generic T?-symmetric metric (polarized case):

/ Replaces v

g = MATV2(—dt? + 4m3d6?) + 2T tda?

t 27 ;
—P A+2P A
+e 't [dy + </ dj’ﬁ;e + (t’)5/2) d@]

Replaces G, twist constant

1 P,op Pomx,0
= P —P | 1 +tP, |
7tt+t T 47_‘_§\ —I_ t) 47T§\
PQ
A\,=t|P?+22) —
5 ( : '47@2\)

Exponentials change
the Gowdy behavior.

Make exponential terms as small as possible:

T\t — A

P=—1Int , A=5Int

42



Triangles, etc. are simulation data for different initial
conditions; solid lines are fits using conjectured form.
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Generic T?-symmetric spacetimes — compared to polarized:
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Generic T?-symmetric spacetimes — compared to polarized:

——P_avg_pol
——P_avg_gen
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Generic T?-symmetric spacetimes — compared to polarized:
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Generic T?-symmetric spacetimes — compared to polarized:

—»—._avg_pol
——A_avg_gen
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Movies from the early part of a typical generic simulation:
how the exponential terms drive the solution into the
required form for P and Q.
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The behavior found 1n the simulations 1s not completely crazy:

Instability of spatially homogeneous solutions in the class of
T?-symmetric solutions to Einstein’s vacuum equations

Hans Ringstrom

December 4, 2013

Proposition 1. Let (Pog, abg; Abg) be a pseudo-homogeneous polarised solution to (2) and (4)-
(6) with K # 0. Assuming that the relevant existence interval is (tp,00) for some to > 0, fix
te € (to,00). Then there is an € > 0 such that if (P,a, \) is a non-pseudo-homogeneous polarised
solution to (2) and (4)-(6) with the same K # 0, the property that t, belongs to its existence

interval and such that
I(P = Pog)(tay Micr + 18:(P = Pog)(tay Mlco + (e — ag) (fas Yl + X = Aog) (tas Nl < e,

then there is a time sequence tp — oo, k=1,2,..., such that

lim ||a(t,-) co = 0, (12)
t—o0
. P(t’ ) g2
A% me Y. T 0 =
lim “A(t’“") —5 = 0. (14)
k—o0 lntk Co
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The behavior found 1n the simulations 1s not completely crazy:

Instability of spatially homogeneous solutions in the class of
T?-symmetric solutions to Einstein’s vacuum equations

Hans Ringstrom

December 4, 2013

Proposition 1. Let (Pog, abg; Abg) be a pseudo-homogeneous polarised solution to (2) and (4)-
(6) with K # 0. Assuming that the relevant existence interval is (tp,00) for some to > 0, fix
te € (to,00). Then there is an € > 0 such that if (P,a, \) is a non-pseudo-homogeneous polarised

solution to (2) and (4)-(6) with the same K # 0, the property that t, belongs to its existence
interval and e»~h that S

|(P— Pog) . P(t,-) leo < e,
then there is llm 1n t + 1 0,
L—oC 0 5

A (tk ) .) 0. (13)

lim | 5
k—o0 Int k oL (14)
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Final remarks:

Gowdy models and their generalizations are tractable
both mathematically and numerically.

Yet, they are sufficiently interesting to offer serious
testing grounds for classical and guantum cosmology.

While they cannot represent the actual universe,
generic and generic + twist models exhibit interesting
phenomenology that may be present in physically
relevant spacetimes.

| recommend that you consider testing your tavorite
formalisms on these models!
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Aside on the role of matter (or effective matter):

——DeSitter
—eo—Kasner —--log(shear/expansion)
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Is the Mixmaster singularity generic?

1

The vacuum trajectory always
returns to the Kasner circle.

Minimally coupled
scalar field destroys
Mixmaster oscillations

because U—QI— L2 <1

H=—p4 +pL +p> + 0o+ V(B 8-) + ' V(p)=0

Scalar fields and extra dimensions can cause a final “bounce.”
Additional fields (e.g. magnetic) can restore Mixmaster dynamics by
adding walls.
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Is the Mixmaster singularity generic?
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The vacuum trajectory always
returns to the Kasner circle.

| Minimally coupled
(¢) ; scalar field destroys
Mixmaster oscillations

because Ui L2 <1

H=—p4 +p5 +p> +p, + eV (By,8-) + 5V(p) =0

Scalar fields and extra dimensions can cause a final “bounce.”
Additional fields (e.g. magnetic) can restore Mixmaster dynamics by
adding walls.



| 2t
Fhe —

Fic. 3. Particle creation from a vacuum at 7, . The number of particles at time ¢ in mode n,
2N,(1), is plotted as a function of the final time parameter 3n¢*'. The curves are labeled by the
initial time parameter trne®o. Equation (110) is used to calculate 2N,(¢).



Quantization 3: Use this model as a laboratory to explore some
1ssues of quantum field theory 1n curved spacetime.

The scalar field P can be analyzed to show the Kasimir energy
from discrete modes associated with 3-torus topology and an
overall violation of the energy conditions leading to singularity
avoldance via a bounce.

B.K. Berger, Ann. Phys. (N.Y.) 156, 155 (1984)



Horizon size vs mode wavelength:
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The Kasner Spacetime (vacuum, Bianchi Type I):

2/3

Each u-value in |1, 00| indicates a distinct Kasner evolution.

A set of measure zero: The (1,0,0) Kasner 4 = oo 1s the
Minkowski spacetime in different coordinates.



The Kasner Spacetime (vacuum, Bianchi Type I):

2/3

Each u-value in |1, 00| indicates a distinct Kasner evolution.

A set of measure zero: The (1,0,0) Kasner 4 = oo 1s the
Minkowski spacetime in different coordinates.  “Milne universe”



