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In loop quantum cosmology (LQC) the holonomy corrections
deform the classical Friedmann equation to

H2 =
8πG

3
ρ

(

1− ρ

ρc

)

,

where the critical energy density ρc =
3

8πGλ2γ2 ∼ ρPl. Because
ρ ≤ ρc , the classical Big Bang singularity is replaced by the
non-singular Big Bounce1.

Contracting and expanding branches are causally connected.

1Bojowald, Ashtekar, Paw lowski, Singh, ...
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The holonomy corrections mimic the loop quantization.

For the FRW model, the holonomy corrections can be introduced
by the following replacement in the classical Hamiltonian:

k̄ → K[n] :=
sin(nµ̄γk̄)

nµ̄γ
,

where k̄ is canonically conjugated with p̄ = a2. Furthermore,
µ̄ ∝ p̄δ where −1/2 ≤ δ ≤ 0 and n ∈ N.

Holonomy corrections can be seen as bending (periodification) of
the phase space. For the FRW model, the classical phase space
ΓG = R×R is deformed onto ΓQG = R× U(1).
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Inhomogeneities

Problems:

The procedure of introducing quantum corrections suffers
from ambiguities.

In general, the algebra of modified constraints is not closed:

{CQ
I , CQ

J } = gK
IJ(A

j
b,E

a
i )CQ

K +AIJ .

Can we introduce quantum corrections in the anomaly-free manner
(i.e. such that AIJ = 0)? We found that, at least for linear
inhomogeneities on the flat FRW background, the answer is
affirmative:

scalar perturbations - T. Cailleteau, J. Mielczarek, A. Barrau,
J. Grain, Class. Quantum Grav. 29 (2012) 095010,

vector perturbations - J. Mielczarek, T. Cailleteau, A. Barrau
and J. Grain, Class. Quant. Grav. 29 (2012) 085009,

tensor perturbations - no problem with anomalies.
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Some details...

The constraints generate gauge transformations:

The algebra of constraints (hypersurface deformation algebra):

{D[Na
1 ],D[Na

2 ]} = D[Nb
1 ∂bN

a
2 − Nb

2 ∂bN
a
1 ],

{S [N],D[Na]} = −S [Na∂aN],

{S [N1],S [N2]} = sD
[

gab(N1∂bN2 − N2∂bN1)
]

,

where s = 1 corresponds to the Lorentzian signature and s = −1
to the Euclidean one. Due to the factor gab the algebra of
constraints is not a Lie algebra.
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Gravitational part of the holonomy-modified scalar constraint:

SQ
G [N] =

1

2κ

∫

Σ
d3x

[

N̄(H(0)
G +H(2)

G ) + δNH(1)
G

]

, where

H(0)
G = −6

√
p̄(K[1])2,

H(1)
G = −4

√
p̄ (K[s1] + α1) δ

c
j δK

j
c −

1√
p̄

(
K[1]2 + α2

)
δjcδE

c
j

+
2√
p̄
(1 + α3)∂c∂

jδE c
j ,

H(2)
G =

√
p̄(1 + α4)δK

j
cδK

k
d δ

c
kδ

d
j −

√
p̄(1 + α5)(δK

j
cδ

c
j )

2

− 2√
p̄
(K[s2] + α6) δE

c
j δK

j
c −

1

2p̄3/2
(
K[1]2 + α7

)
δE c

j δE
d
k δ

k
c δ

j
d

+
1

4p̄3/2

(
K[1]2 + α8

)
(δE c

j δ
j
c)

2

− 1

2p̄3/2
(1 + α9)δ

jk(∂cδE
c
j )(∂dδE

d
k ).

Here, αi (p̄, k̄) are the counter-terms (αi (p̄, k̄) → 0 for µ̄ → 0 ).
Jakub Mielczarek Euclidean Big Bounce



Exemplary bracket

{

SQ
G [N1],S

Q
G [N2]

}

= (1 + α3)(1 + α5)DG

[
N̄

p̄
∂a(δN2 − δN1)

]

+
N̄

κ

∫

Σ
d3x∂a(δN2 − δN1)(∂iδK

i
a)(1 + α3)A5

+
N̄

κp̄

∫

Σ
d3x(δN2 − δN1)(∂

i∂aδE
a
i )A6

+
N̄

κ

∫

Σ
d3x(δN2 − δN1)(δ

a
i δK

i
a)A7

+
N̄

κp̄

∫

Σ
d3x(δN2 − δN1)(δ

i
aδE

a
i )A8

The A5, . . . ,A8 are anomaly functions. The diffeomorphism
constraint is multiplied by the factor (1 + α3)(1 + α5).
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Anomaly freedom

The requirement of anomaly freedom is equivalent to the
conditions Ai = 0 for i = 1, . . . , 13. Furthermore
(1 + α3)(1 + α5) = (1 + α10). These conditions uniquely
determine form of the counter terms αi for i = 1, . . . , 10.

Moreover, we have

A7 = 2(1 + 2δ)(ΩK[1]2 −K[2]2),

A8 = k̄(1 + 2δ)(K[2]2 − ΩK[1]2).

The anomaly freedom conditions for those terms (A7 = 0 and
A8 = 0) are fulfilled if and only if δ = −1/2. The choice δ = −1/2
is called the µ̄−scheme (‘new quantization scheme’).

Our results show that the µ̄−scheme is embedded in the structure
of the theory and this gives a new motivation for this particular
choice of quantization scheme.
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Cosmological perturbations

Tedious calculations lead us to deformed EOM for the Munhanov
variable:

d2

dτ2
v − c2s ∇2v − z

′′

z
v = 0,

where the holonomy corrections are introduced through

c2s = Ω = cos(2γµ̄k̄) = 1− 2
ρ

ρc
.

Similarly for the tensor modes and scalar matter2. The EOMs are
of the mixed type:

hyperolic - for ρ < ρc/2 (Ω > 0),

parabolic - for ρ = ρc/2 (Ω = 0),

elliptic - for ρ > ρc/2 (Ω < 0).

Nontrivial boundary/initial conditions à la Tricomi problem.
2T. Cailleteau, A. Barrau, J. Grain and F. Vidotto, Phys. Rev. D 86 (2012)

087301, J. Mielczarek, PhD thesis (2012).
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Algebra of constraints:

{D[Na
1 ],D[Na

2 ]} = D[Nb
1 ∂bN

a
2 − Nb

2 ∂bN
a
1 ],

{

SQ [N],D[Na]
}

= −SQ [Na∂aN],
{

SQ [N1],S
Q [N2]

}

= ΩD
[

gab(N1∂bN2 − N2∂bN1)
]

,

The algebra is closed but deformed with respect to the classical
case due to presence of the factor

Ω = cos(2µ̄γk̄) = 1− 2
ρ

ρc
∈ [−1, 1] where ρc =

3

8πG∆γ2
∼ ρPl.

What is the interpretation? Classically, we have

{S [N1],S [N2]} = sD

[
N̄

p̄
∂a(δN2 − δN1)

]

,

where s = 1 corresponds to the Lorentzian signature and s = −1
to the Euclidean one.
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Signature change

The sign of Ω reflects a signature of space: Ω > 0 (ρ < ρc/2) -
Lorentzian signature, Ω < 0 (ρ > ρc/2) - Euclidean signature.

Based on this, a new picture of the Big Bounce emerges: In the
Planck epoch, space-time becomes a four dimensional Euclidean
space. This behavior resembles the famous Harte-Hawking
no-boundary proposal (1983).

Causal connection between contracting and expanding branches is
limited.
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Silence in LQC

The light cones are collapsing onto the time lines for. ρ → ρc/2.

The effective speed of light ceff =
√
Ω =

√

1− 2 ρ
ρc

→ 0.

Communication between different space points is forbidden3.

The similar behavior is expected at the classical level by virtue of
the famous BKL conjecture (Belinsky-Khalatnikov-Lifshitz).

3J. Mielczarek, “Asymptotic silence in loop quantum cosmology,” AIP Conf.
Proc. 1514 (2012) 81
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Carrollian limit

“A slow sort of country ..., ... now, here, you see, it takes all the
running you can do to stay in the same place ...” Lewis Carroll
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General relativity → Hypersurface deformation algebra

{D[Na
1 ],D[Na

2 ]} = D[Nb
1 ∂bN

a
2 − Nb

2 ∂bN
a
1 ],

{S [N],D[Na]} = −S [Na∂aN],

{S [N1],S [N2]} = D
[

gab(N1∂bN2 − N2∂bN1)
]

.

Special relativity → Poincaré algebra

{Pµ,Pν} = 0,

{Mµν ,Pν} = ηµρPν − ηνρPµ,

{Mµν ,Mρσ} = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ.
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From DHDA to deformed Poincaré algebra

In the limit of vanishing space-time curvaure, the loop-deformed
algebra of constraints, reduces to the loop-deformed Poincaré
algebra. This corresponds to linear deformations of the
hypersurface4:

N(x) = ∆t + vax
a, Na(x) = ∆xa + Ra

bx
b, and gab = δab.

Based on this structure of deformed Poincaré algebra can be

inferred. Schematically, we have S ∼ P0 + Ki and D ∼ Pi + Ji .

The fact that only the {SQ ,SQ} = ΩD bracket is deformed
imposes constraints on the possible deformations of the Poincaré
algebra:

�
�
�
��{P0,P0}+ {Ki ,P0}+ {Ki ,Kj} ∼ ΩPi +ΩJi

4M. Bojowald and G. M. Paily, Phys. Rev. D 87 (2013) 044044
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Loop-deformed Poincaré algebra

[Ji , Jj ] = iǫijkJk , [Ji ,Kj ] = iǫijkKk , [Ki ,Kj ] = −iΩ(P0,P
2
i )ǫijkJk ,

[Ji ,Pj ] = iǫijkPk , [Ki ,Pj ] = iδijP0, [Ji ,P0] = 0,

[Ki ,P0] = iΩ(P0,P
2
i )Pi , [Pi ,Pj ] = 0, [Pi ,P0] = 0.

Generalized version of the Ω = Ω(P0) case studied in Ref.5.
Assuming that Ω(P0,P

2
i ) = A(P0)B(P2

i ), the Jacobi identities are
satisfied if

Ω =
P2
0 − α

P2
i − α

.

The constant of integration α plays a role of the deformation
parameter.

5J. Mielczarek, arXiv:1304.2208 [gr-qc]. Essay honorably mentioned in the
2013 essay competition of the Gravity Research Foundation.
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Random walk on the loop-Minkowski space

We consider random walk

which on average is described by the diffusion process described by
the heat kernel equation

∂

∂σ
K (x , y ;σ) = ∆xK (x , y ;σ),

where σ is a diffusion time.
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By introducing the average return probability

P(σ) = trK =

∫

dxK (x , x ;σ) =

∫

dµ(p)eσ∆p

the spectral dimension can be defined:

dS ≡ −2
∂ logP(σ)

∂ log σ
.

The Laplace operator in the momentum space ∆p can be expressed
in terms of the Wick rotated (P0 → iP0) first Casimir operator

∆p = −C1 +
∑

n=2

cnα

(C1
α

)n

.

In what follows we set ∀n≥2cn = 0, dµ = d4p
(2π)4

and use

C1 = α(Ω − 1) =
−P2

0 + P2
i

1− P2
i

α

.
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Spectral dimension:

dS = −2
∂ logP(σ)

∂ log σ
.

10-4 0.01 1 100 104
0

1

2

3

4

5

ΑΣ

d S

Dimensional reduction from dS = 4 at the large scales to dS = 1 at
the short scales.
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The dimensional reduction reflects the ultralocality (Carollian limit,
c → 0) recovered in the high energy limit (Ω → 0). The four
dimensional spacetime becomes a congruence of the time lines.

This is consistent with what was observed in the cosmological case
for Ω → 0 which corresponds to the state of silence.
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Silence is everywhere

Classical GR → Belinsky-Khalatnikov-Lifshitz conjecture →
Close to the initial singularity spatial derivatives are
suppressed → Asymptotic silence.

Spatial derivatives are suppressed also in the strong coupling
limit GN → ∞, which leads to the ultralocal gravity
{S [N1],S [N2]} = 0 (Isham).

Causal Dynamical Triangulations → In the so-called phase A

of gravity, universe factorizes into independent components →
in this phase the strong coupling limit is realized.

Hǒrava-Lifshitz gravity with anisotropic scaling x → bx and
t → bzt. Ultralocal gravity is recovered for z → 0. However,
then dS → ∞. On the other hand dS → 1 for z → ∞. The
relation dS = 1 + 3

z
has been used.
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Silent beginning?

The Lorentzian phase of expansion begins with silence. . .

We need observational verification → e.g. analysis of primordial
perturbations and their relevance for the CMB aniostropy and
polarization.
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Quantum generation of perturbations

Let us focus on the tensor modes (gravitational waves)
h+,× =

√
16πGφ for which we have the following EOM:

d2

dη2
φ+ 2

(

H− 1

2Ω

dΩ

dη

)
d

dη
φ− Ω∇2φ = 0.

By introducing u = zφ with z = a/
√
Ω we get

d2

dη2
u − Ω∇2u − z

′′

z
u = 0,

which after Fourier transform u =
∫

d3k
(2π)3/2

uke
ik·x takes the form

d2

dη2
uk +

(

Ωk2 − z
′′

z

)

uk = 0.
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The equations of motion can be derived by considering wave
equations �φ = 0 on the effective FRW line element

ds2eff = g eff
µν dx

µdxν = −
√
Ωa2dη2 +

a2√
Ω
δabda

adxb.

Based on this, action of a given mode is

S = −1

2

∫

d4x
√−ggµν∂µφ∂νφ

=
1

2

∫

dηd3xa3
[
1

Ω

(
φ′)2 − (∂iφ)

2

]

=
1

2

∫

dηd3x

[

v ′2 −Ω (∂iv)
2 + v2

z
′′

z

]

=

∫

dηL,

which, using π = δL
δv ′ = v ′, leads to

H =

∫

d3xπv ′ − L =

∫

d3x

[

π2 +Ω(∂iv)
2 − v2

z
′′

z

]

.
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Characteristic scale for the modes is

λH =
a

kH
,

defined such that
∣
∣Ωk2H

∣
∣ =

∣
∣
∣
∣
∣

z
′′

z

∣
∣
∣
∣
∣
.

The modes are called super-horizontal if λ ≫ λH and
sub-horizontal if λ ≪ λH . The modes are “frozen” at the
super-horizontal scales and decaying at the sub-horizontal scales.

Let us investigate properties of the modes in the case of barotropic
fluid p = wρ for which

z
′′

z
= ρcκa

2 x

Ω2

[
1

2

(
1

3
− w

)

+

(
9

2
+ 13w +

9

2

)

x

− (3 + 30w + 15w2)x2 +

(
11

3
+ 21w + 12w2

)

x3
]

,

where x = ρ/ρc . Danger of a divergence at Ω → 0.
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w=-1.01

w=-1

w=-0.99

0 1
8

1
4

3
8

1
2

0

3

1

3

4

Ρ�Ρc

Λ
H
Κ
Ρ

c

For w > −1 all wavelengths are super-horizontal at Ω = 0.
For w < −1 (phantom case) all modes can be made sub-horizontal
close to Ω = 0.
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Quantization of modes

Let us quantize the Fourier modes uk(η). This follows the standard
canonical procedure. Promoting this quantity to be an operator,
one performs the decomposition

ûk(η) = fk(η)âk + f ∗k (η)â
†
−k,

where fk(η) is the so-called mode function which satisfies the same

equation as uk(η). The creation (â†k) and annihilation (âk)

operators fulfill the commutation relation [âk, â
†
q] = δ(3)(k− q).

Two-point correlation function for the φ filed is given by

〈0|φ̂(x, η)φ̂(y, η)|0〉 =
∫ ∞

0

dk

k
Pφ(k , η)

sin kr

kr
,

where the power spectrum

Pφ(k , η) =
k3

2π2

∣
∣
∣
∣

fk

z

∣
∣
∣
∣

2

,

and r = |x− y|.
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Wronskian condition

Based on the Klein-Gordon inner product:

〈φ|φ〉 = i

∫

Σ
d3x

√
q (φ∗nµ∂µφ− φnµ∂µφ

∗)

= i

∫

Σ
d3x

a3

Ω3/4

1

aΩ1/4

Ω

a2

(

u∗
du

dτ
− u

du∗

dτ

)

= i

∫

Σ
d3x

(

u∗
du

dτ
− u

du∗

dτ

)

= −i

∫

Σ
d3xW (u, u′) =

∫

Σ
d3x = V0 = 1,

where

W (u, u′) = u
du∗

dη
− u∗

du

dη
= i .

The Wronskian condition preserves its classical form.
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Vacuum

Vacuum expectation value of the Hamiltonian

Ĥ =
1

2

∫

d3k
[

âkâ−kFk + â
†
kâ

†
−kF

∗
k +

(

2â†kâk + δ(3)(0)
)

Ek

]

,

where Fk = (f ′k)
2 + ω2

k f
2
k , Ek = |f ′k |2 + ω2

k |fk |2 and ω2
k = Ωk2 − z

′′

z

is

〈0|Ĥ |0〉 = δ(3)(0)
1

2

∫

d3kEk .

The ground state (vacuum) can be found by minimizing Ek with
the Wronskian condition fk(f

′
k)

∗ − f ∗k f
′

k = i taken into account.

The energy can be minimized only if ω2
k > 0 - interpretation in

terms of particle-like excitations of the filed is possible.
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w=-1.01

w=-1

w=-0.99 w=-0.48

0 1
4

1
2

3
4

1

0

1

-1

1
2

-
1
2

Ρ�Ρc

z'' z
�H
ΚΡ

ca
2 L

Only for w = −1 (Cosmological constant) evolution of z
′′

z
across

the moment of signature change is regular. No well defined
vacuum state in any part of the Euclidean domain for
w > 1

6 (−7 +
√
17) ≈ −0.48.
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Regions of ω2
k > 0 for w = −1, where ω2

k = Ωk2 − z
′′

z
.

Ω
2
>0

Ω
2
>0

ΛH

0 LorentzianHW>0L 1
2

EuclideanHW<0L 1
0

3 � 2
3

3

5

Ρ�Ρc

Λ
Κ
Ρ

c

In the Euclidean region, the state of vacuum is well defined for the
large scale modes. This is in opposite to the Lorentzian case.
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Vacuum at Ω = −1 for λ ≫ λH : |fk |2 =
√
3

2
√
2κρca

, which leads

to the power spectrum

Pφ(k) ≡
k3

2π2

∣
∣
∣
∣

fk

z

∣
∣
∣
∣

2

=

√
3

4π2
√
2κρc

(
k

a

)3

∝ k3.

The correlation function is vanishing 〈0|φ̂(x, η)φ̂(y, η)|0〉 = 0
(white noise).

Vacuum at Ω = 0 → Silent initial conditions? (in progress)

Vacuum at Ω > 0 for λ ≪ λH : |fk |2 = 1
2k

√
Ω
, which leads to

the power spectrum

Pφ(k) ≡
k3

2π2

∣
∣
∣
∣

fk

z

∣
∣
∣
∣

2

=
k2

4π2

Ω

a
∝ k2.

This is Ω−deformed analogue of the Bunch-Davies vacuum.
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Inflationary power spectra for Ω > 0

Using the Ω−deformed Bunch-Davies vacuum the inflationary
spectra can be derived6:

PS(k) = AS

(
k

aH

)nS−1

and PT(k) = AT

(
k

aH

)nT

,

AS =
1

πǫ

(
H

mPl

)2

(1 + 2δH) and nS = 1 + 2η − 6ǫ+O(δ2H),

AT =
16

π

(
H

mPl

)2

(1 + δH) and nT = −2ǫ+O(δ2H).

For the typical inflationary models δH := V
ρc

∼ 10−12. The
corrections are extremely hard to constrain observationally.

6J. Mielczarek, “Inflationary power spectra with quantum holonomy
corrections,” JCAP 1403 (2014) 048
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Signature change due to SSB?

In metamaterials composed of ordered nanowires, electric
permittivity in the direction of alignment can be negative7.
Therefore, the Laplace equation becomes effectively hyperbolic -
one of the spatial directions transforms int the effective time.
Transition to the oriented phase from the random one can proceed
as a result of the spontaneous symmetry breaking.

T > TC T < TC

Rotational symmetry SO(3) of the high temperature phase is
broken onto SO(2) symmetry below the critical temperature TC .

Something similar in the case of gravity?
7I. I. Smolyaninov and E. E. Narimanov, Phys. Rev. Lett., 105 (2010)

067402.
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Symmetry breaking from SO(4) to SO(3) at the level of an
effective homogeneous vector field φµ. This translates to a
symmetry change from SO(4) to SO(3, 1), at the level of
geometry described by the metric gµν = δµν − 2φµφν .

Let us assume that the free energy for the model with a
massless scalar field v is 8

F =

∫

dV

(

δµν +
2φµφν

1− 2|~φ|2

)

︸ ︷︷ ︸

gµν

∂µv∂νv

+β

[(
ρ

ρc
− 1

)

|~φ|2 + 1

2
|~φ|4

]

︸ ︷︷ ︸

V (φµ,ρ)

,

where |~φ| =
√

δµνφµφν and β is a constant.

8J. Mielczarek,“Big Bang as a critical point,” arXiv:1404.0228 [gr-qc].
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Modulus of the filed φµ as a function of the energy density ρ. The
region ρ > ρc is forbidden within the model.

An interesting possibility is that the system has been maintained at
the critical point before the energy density started to drop. This
may not require a fine-tuning if the dynamics of the system
exhibited Self Organized Criticality (SOC), which is observed in
various complex systems.
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Without loss of generality, let us assume that the SSB takes
place in direction φ0, for which

g00 = 1− 2φ0φ0 = 1− 2

(

1− ρ

ρc

)

= −1 + 2
ρ

ρc
= −Ω, gii = 1,

leading to the effective speed of light c2eff = Ω.

As a consequence, the equation of motion for the scalar field
v takes the form

gµν∂µ∂νv = − 1

c2eff

∂2

∂t2
v +∆v = 0,

manifesting SO(4) symmetry at the critical point (Ω = −1),
and SO(3, 1) symmetry in the low temperature limit (Ω = 1).

The form of the above equation agrees with the one derived
from the holonomy deformations of the HDA.
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Summary and outlook

Loop deformations of the space-time symmetries lead to a
new scenario in the Planck epoch - the Euclidean Big Bounce.

The smooth signature change and the Big Silence.

The model of Euclidean Big Bounce unifies various ideas, such
as signature change, the Hartle-Hawking proposal,
ultralocality, variable speed of light, gravitational phase
transitions . . .

Different approaches to quantum gravity meet in the silence.

Attractive from the conceptual viewpoint.

Phenomenology available thanks to loop-deformed Poinceré
algebra. Complementary methods of testing the same
quantum gravitational effects: cosmology and astrophysics.

Signature change as a gravitational phase transition?
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