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PLAN OF THE TALK

1) A short review of the de Broglie-Bohm quantum theory.

2) Applications: the quantum-to-classical transition of
quantum cosmological perturbations in a classical
background.

3) Discrepancies in quantum cosmology
4) Quantum cosmological perturbations in quantum
backgrounds: possible observational consequences of

Bohmian trajectories

5) Conclusions



1) THE DE BROGLIE-BOHM QUANTUMTHEORY

“The kinematics of the world, in this ortodox picture, is given by a
wave function for the quantum part, and classical variables
-variables which have values - for the classical part:

(P(t,g ...), X(t) ...). The Xs are somehow macroscopic. This is not
spelled out very explicitly. The dynamics is not very precisely
formulated either. It includes a Schrodinger equation for the
quantum part, and some sort of classical mechanics for the
classical part, and collapse’ recipes for their interaction.

It seems to me that the only hope of precision with the dual (W¥,x)
kinematics is to omit completely the shifty split, and let both W and x
refer to the world as a whole. Then the xs must not be confined to
some vague macroscopic scale, but must extend to all scales.”

John Stewart Bell.




The de Broglie-Bohm interpretation
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However, P(x,t=0) # A2 (x, t=0), relaxes rapidly to P(x,t) = AZ (x, t)
(quantum H theorem -- Valentini)

Born rule deduced, not postulated




MEASUREMENT PROBLEM - Decoherence: explain why
we do not see macroscopic interference, but...

IT DOES NOT EXPLAIN THE
UNICITY OF FACTS!

Dead + Alive

Alive



Solving the measurement problem:

position in configuration space determines
chosen branch (depends on X;)

PRIUATE USE

Dead + Alive PRIUATE USE

PRIUATE USE

“PRIUATE USE



SOLUTION OF THE MEASUREMENT PROBLEM:

Bohm-de Broglie: particles and fields have real
trajectories, independently of any observation
(ontology). One trajectory enter in one branch and
singularize it with respect to the others.



Some remarks

a) Q is highly non-local and context dependent!
(Bell's inequalities are violated, like in usual QM)
It offers a stmple characterization of the classical limat:

=0
b) Probabilities are derived in this theory. The

unknown variable is the initial position.

¢) With objective reality but with the same statistical
interpretation of standard quantum theory.

d) One postulate more (existence of a particle trajectory)
and two postulates less (collapse and Born rule) than
standard quantum theory: 1-2 = -1 postulate






Bell in Speakable and unspeakable in quantum mechanics

“In 1952 | saw the impossible done. It was in papers by David Bohm.
... the subjectivity of the orthodox version, the

necessary reference to the ‘observer,’ could be eliminated. . . . But why
then had Born not told me of this ‘pilot wave’? If only to point out
what was wrong with it? Why did von Neumann not consider it? ...

Why is the pilot wave picture ignored in text books? Should it not be

taught, not as the only way, but as an antidote to the prevailing complacency?
To show us that vagueness, subjectivity, and indeterminism,

are not forced on us by experimental facts, but by deliberate theoretical
choice?” (Bell, page 160)




2) The quantum-to-classical transition of
primordial cosmological perturbations.

with Grasiele Santos and Ward Struyve

Phys. Rev. D 85, 083506 (2012)
Phys. Rev. D 89, 023517 (2014)




‘Evolution of scalar perturbations: ‘

ds® = a*(n) {[1 + 2¢(n, x)] dn* — [1 — 2¢(n, x)] §;;dz*dz’ }

®(x) is the inhomogeneous perturbation, related to theNewtonian
potential in the nonrelativistic limit, ¢ is the scalar field perturbation.

/

r

Mukhanov-Sasaki variable  — y(n,x) = a |dp(n,x) + %c‘»(n_.x) , (2)
where H = a'/a, and a prime denotes derivative with
respect to 7.
The Hamiltonian describing the Mukhanov-Sasaki
variable dynamics coming from General Relativity reads

Hamiltonian for the perturbations from GR — H = % /d3a' (p'2 + vy + Q%yp) : (3)

where z = 2y/mayp’/(mp;H)., and the symbol ,i corre-
sponds to derivative with respect to the ith component
of x. The corresponding equation of motion is

"z

Equations of motion — y' —y;— —y=0. (4)



IN TERMS OF THE
FOURIER MODES

In terms of the Fourier modes, defined through

d*k
un.x) = [ ke, ()

where y; = y_ (due to the reality of y(n, x)), the Hamil-
tonian reads

-
H = - d*k lpkpi + K yeyp + — (pevi + wepy) |, (6)

yielding the equation for the modes,

o+ (k-? - "—) e = 0. (7)

-
~

The classical
solutions

at early times (1 — 1;, where 7; is some initial time, with
|:| = 1), is given by

yk(n)fve_ik" (1+%+) (8)

The physical modes will grow larger during inflation and
will eventually obtain wavelengths much bigger than the
curvature scale, i.e., k? < 2" /z. At that stage, the modes
are in general approximately given by

yi(n) ~ Afn®e + Ajns ~ Aln®s, (9)

where ag > 0 and agz < 0. The first term represents the




QUANTIZATION

In the Schroedinger picture:
¥(y,n) = <y|0,n>
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The ground state mode wave function reads (see Ref. 3])
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with f; a solution to the classical field equations (7), and fi.(;) = 1/v/2k, where |n;| 3> 1. This state is homogenous
and isotropic.

2

Vi (vg ypm) ocexp (—=klyg(m)|") exp (—ink),  (22) | h=1
fk” + (k*2 - 2"/z) tk =0 m=2

where the phase corresponds to the ground state energy k=w/2

of the mode k, F,. = k.



THE PROBLEM

|0> is homogeneous and isotropic,
and so is <0]y(x)y(x)|0>
(= <0|T" y(x)T T y(x)T|0> = <0]y(x+3)y(x+5)|0> )

oT rof
T (0:9) = IZ; 1mYim (0, ).
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3
Y=0

What do we put in the place of ¢?
The mean value (zero!), a realization?



Attempts for solving the problem:
squeezing > positive Wigner distribution in phase space
—>quantum distribution looks like classical stochastic distribution of

realizations of the Universe with different inhomogeneous configurations.

decoherence: avoids interference among realizations.

Criticized by Lyth, Liddle, Mukhanov, Sudarsky,
Welinberg, ...

1) The state is still homogemeous and isotropic;
2) What is the environment of the perturbations in the Universe?

3) In the standard interpretation, different potentialities are not realities:
how ONE of the potentialities become our real Universe?;

4) What makes the role of a measurement in the early Universe?
(we cannot collapse the wave function: we could not exist without stars!)




QUANTIZATION

In the Schroedinger picture:
¥(y,n) = <y|0,n>
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The ground state mode wave function reads (see Ref. [3])

b= «27|1fk(n)|exp{'m'y“'2+i [(||ffi((?)||' )t [ 2|f:-igﬂ|2” ’ )

with fi a solution to the classical field equations (7), and fi(n;) = 1/v/2k, where |r;] 3> 1. This state is homogenous
and isotropic.

2

Vi (v, yzsm) o< exp (—klyg(m:)|7) exp (—ink),  (22)

where the phase corresponds to the ground state energy

of the mode k, E,. = k.



The de Broglie-Bohm solution

—->The existence of an actual field configuration breaks
translational and rotational invariance.

-1t obeys guidance equations.

- Its initial condition satisfies Born rule at initial time.
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The quantum-to-classical transition

2> 2" 2]t et (102

For small wave lengths and  — n;, the behaviour of
fr(n) is given by Eq. (8). As such,
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f(n) classical, y(n) quantum

f(n) ~ Afn™ + Al ~ Aln®, y(n) o [f(n)] a f(n)



In terms of the quantum potential

1 2 2
Qx = AL (2| fie]” = |w|”). (19)
and gives rise to the quantum force
0Qx Yk

Fox=— = 20
ke Ay Alfil? (20)

for the mode k. The classical force can be read from
Eq. (7) and is given by

Foyx=— ("'2 - zT) Y- (21)
Their ratio 1s
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Statistical predictions:
the two point correlation function

(y(n,x)y(n,x + 1)) 4pp (23)
= / Dy |9 (e, i) Py(m, x we)y(n, x +159:) - (24)

. / Dy|W(y, ) Py (x)y(x + ) (25)

which is the usual expression for the correlation function,
and can be calculated to yield

1 sin kr

(y(n, x)y(n,x +1))4pp = 972 dk k|fk(”l)|2’

(26)
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‘3) DISCREPANCIES IN QUANTUM COSMOLOGY

Physical Review D 86, 063504 (2012).

Massless free scalar field (v

ds?= N2(t) dt?— a?(t) (dx? + dy? + dz?)

Definingv r=a-¢@ and v_| = a + ¢, the classical solutions are

v_r = const. and v_| =const.
They represent universes expanding to infinity from a singularity
and universes contracting from infinity to a singularity, respectively.

=0 - Klein-Gordon equation




The Wheeler-DeWitt equation is:

A G
(23 - 15202 w(a.0) =0,

Put it in a Scroedinger form in order to define a positive
measure by taking its square-root

+idy¥(an.0) = VO U(a, d),
with

O =———0p9%.
3 (a3

and choose one sign (single frequency approach).

The physical scalar product is given by

(B[ = /o  dab0.)¥06),



Craig and Singh, phys. Rev. D 82, 123526 (2010).

- Single frequency with allowing superpositions of left and
right-handed sectors.

- Consistent histories approach

Family of two-time histories, the two times taken to be the
infinity past and the infinity future - the family is
consistent and the probability that in one of these times
the universe is singular and in the other it is spatially
infinity is ONE!

Conclusion:

No bounce, singularities are always present.




HOWEVER

What happens if one add a third moment of time in between

and construct the family with 3 times?

Then one can show that the this family is consistent if and only if
the following integral is null:

o0 ax—o \IJ(’UT)‘I’*('U”)
/a*_¢ dvr/ dv;’[ o — v, - ] where v, = a—

— o0

This is not null in general. As the domains of intregation are disjoint,
this integral can be made null if the wave function is highly concentrated
in v,, = a— @, which is a semi-classical state, which is of course singular.

Hence, when we have a third intermediate time, the consistent histories

interpretation cannot assign probabilities for non-classical states, and
hence cannot decide whether there are singularities or not in this case.




The two-frequencies approach

Halliwell et al were able to define a positive measure without
restricting to a single square-root of the Klein-Gordon equation.

They define the inner product,

o)

_ 2/ °°ﬁ dkk] (|9 (k) + |9_(k)[*)

(0, 0) = i /da (w;‘cZ\p_—\pz
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from where they obtain the off-diagonal term of the decoherence functional

/da/da U (o, ¢') 0y C'(+)(a ¢ a, cb)d¢\1'+(a b) +

We have shown that such off-diagonal terms cannot be made null,
even with only two instants of time!



The de Broglie-Bohm approach

Whatever is the probability density defined, one can
construct a velocity field satisfying the continuity equation:

doy | “ |
e =ulad)=——— [ dadyla,)
pla, o) .

and dpp + Oa (v2p) =0,

General two-frequencies solution

U(v,v,) = /— | dkU (k) et + /_ | dkV (k) ekvr



General results:

a) In the infinity past and infinite future the classical limit is always valid!
b) Knowing that, and using the figure below, we get:’

a
P L, initial A P R, final

AN 27
Pri+ P;i=1

>
P

2z AW

P R ,initial P L, final

We can summarize the situation for an arbitrary state ¥ as

Pbounce — Precollapsing — n]in(PR.i-. PI,.i) ;
Pexpanding — lnax(PR.i - pL.is O) s
Pcontracting — Il]élX(PLj - PR,is 0) . (1)
This implies that the probability Pangularity = 1 — Poounce tO Tun into a singularity
satisfies

< Psingularity g 1 3 (2)

b |



ly recollapse and bounce

IS on
P bounce =1/2

PL,f then there

Pp;

If

OPPOSITE CONCLUSIONS FROM THE PREVIOUS APPROACH !



Discrepant conclusions coming from the de Broglie-
Bohm and consistent histories perspectives.

Furthermore, consistent histories approach does not
make predictions for histories with more than two
instants of time

In the two-slit experiment this already happens: from de
Broglie-Bohm one can say from where the particle comes
while in the consistent histories approach one cannot.

Can such kind of discrepancy be tested?
Maybe in cosmology, when we put perturbations!




4) Quantum cosmological perturbations
in quantum backgrounds.

Scalar perturbations:

ds® = a*(n) [(1 4 20)d” — (1 - 2®);dr'da’]

®(x) is the inhomogeneous perturbation, related to the Newtonian
potential in the nonrelativistic limit. dt = a dn



NOW PERTURBATIONS AND BACKGROUND
SHOULD BE QUANTIZED!

MORE GENERAL THAN MINISUPERSPACE AND SEMICLASSICAL
THEORY OF COSMOLOGICAL PERTURBATIONS

No use of background equations of motion.
The first to try: Halliwell and Hawking.

Hamiltonian -2 Quantization

H, ¢= 0 : too complicated




YES > HAMILTONIAN FROM GR

(without using background equations)

H =N H = N [Hy(a,p.,®,p,) + Hy(V(x),,(x),a,p)]
H =7;f§[ P: + P +f (\/_-i-\/_em | )]

v (=y) is the Mukhanov-Sasaki variable,
which is a linear combination of ® and &¢.

DIRAC QUANTIZATION

H¥Y=0



Proceeding with the Dirac quantization

H¥Y = (H,+H,)¥ =0
W= ‘-Po(a,(p) qJZ(a!(P!V(X))

1) At zero order:

Solution yields a phase and
— Bohmian trajectories a(n), ¢(n),

as we have shown, where
BOUNCES MAY OCCUR.




Connection with observations

Are there observational consequences of a primordial
contracting phase in our Universe?

Cosmological perturbations - structures -2
anisotropies of CMBR

What happens with the perturbations in the case of a bounce
with a preceding contracting phase?




2) At second order:

Choosing a W, suitable for a semi-classical limit, which
predicts classical behaviour when the universe is big;

Using the background Bohmian trajectories in order
to define a conformal time derivative;

+
W




QUANTUM EQUATIONS FOR
PERTURBATIONS

OV 9y [v, 7] 3 162 A -ad
— = "2 [ —== —v ;0" — — 2 ) W[, 1]
I on /C : ( 2 dv2 + 21’ l 2al ) (2)[l | 77]

pP=Ap
For the modes we have:

where now a is the Bohmian trajectory.



w7 ,X}CQ a” v = 0
U+ _7 U — U. A:cz

Before the bounce, ; After the bounce,

in the contracting * In the expanding

phase phase.
Ak2>a”/la ]l ... <C. R

| Sound horizon:c_ R (R-Hubble radius) Physical wavelength:l = alk

phys

Point of crossing: Ak? = a”’/a




THE POWER SPECTRUM

2]{3 dIn(
‘373 _ n(P)
k' |(D| ng =1+ dln(k) ’

- Non relativistic fluid (dark matter?): scale invariant.

It 1s not necessary to have ordinary matter dominating all
along; just at the moment when perturbation scale becomes
comparable with the sound horizon.

Another fluid or field may dominate at the bounce: radiation.



One fluid: three free parameters: n, (cuvature scale at the bounce).
a, (scale factor at the bounce).
A, (equation of state parameter).

Mo ~ 10° ()\nr)_1/4 IpI

Large range of values for a,: avoid transplanckian problems.

Two fluids: calculation of C, with radiation at the bounce and a non
relativistic fluid at sound horizon crossing in order to find the best
fit parameters.

- n, close to one.

- reasonable amplitudes for bounces between nucleosynthesis
and Planck scale.

- superimposed oscillations and running due to a cosmological

constant.

- non gaussianities

- more than one fluid: entropy perturbations
- gravitational waves

- dark energy
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FEATURES OF THE MODEL

1) No singularity.

2) Perturbations of quantum mechanical origin.

3) Enhancement of perturbations at the bounce.

4) No horizon problem.

5) Flatness problem: if the contraction phase 1s much longer
then the expansion phase, then the Universe 1s almost flat because
it has not expanded enough!

6) One fundamental parameter: the curvature radius L at the
bounce, which must have the reasonable value 10°1 .

7) Transplanckian problem can be solved.

8) Homogeneity problem may be less severe.

_ - N
Qi=er/€. =1 Qr =1 = -2

(1



Quantum theory helping cosmology ...

cosmology helping quantum theory:

Consequences for quantum theory:

1) One instance where one quantum theory (BDB) may yield
observational results which are not known how to be obtained
in others.

2) Observational effects of a quantum trajectory a,(t)!
3) Valentini = early freeze out of some particle may suppress
quantum relaxation: dark matter, long wavelength perturbations

originated from vacuum state, RELIC GRAVITONS.

4) Corrections to Schrodinger equation for the perturbations in the
quantum background regime: departure from quantum equilibrium.




V - CONCLUSION

de Broglie-Bohm quantum theory is very
suitable for quantum aspects of cosmology!

It explains in a very simple way a very old
controversy concerning cosmological
perturbations of quantum mechanical origin.

It can go beyond other quantum theories!




Basic General Relativity and de Broglie-Bohm QuantumTheory
yield a sensible bouncing model which can explain the origin of
cosmological perturbations.

-- There are no observational reasons for a beginning of the
Universe, so why not exploring the consequences of bouncing
models? (In such models inflation can be present but it is not
necessary: another perspective concerning initial conditions).

Allows calculations of potentially observational effects.
What about the other quantum theories?
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Contemporary quantum theory ... constitutes an optimum
formulation of [certain] connections ... [but] offers no
useful point of departure for future developments.

Albert Einstein.

"To try to stop all attempts to pass beyond the
present viewpoint of quantum physics could be
very dangerous for the progress of science and
would furthermore be contrary to the lessons
we may learn from the history of science.

This teaches us, in effect, that the actual state
of our knowledge is always provisional

and that there must be, beyond what is actually
known, immense new regions to discover."

Louis de Broglie



