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2. “Weak” Newton-Einstein gravity and transla-
tional gauge theory
...gravity is that field which corresponds to a gauge
invariance with respect to displacement transforma-
tions... R. Feynman (1963)

� Gravity: Mass
spec.rel.
�! energy-momentum is the

source of gravity: “weak” Newton-Einstein gravity.
Conserved energy-momentum current because of trans-
lational invariance in SR, 4 conserved vector currents,
� = 0;1;2;3, spacetime index i = 0;1;2;3:

@i��
i = 0 ; Gauge the translations!

Conserv. energy-mom. current and transl. invariance.

� Definition of a gauge theory (see Yang & Mills 1954,
“Conservation of isotopic spin and isotopic gauge in-
variance”): Formalism that starts with a conserved
current and a corresponding rigid symmetry. The rigid
symmetry is postulated to be locally valid; in order to
achieve this, so-called gauge field potentials (covec-
tors carrying spin 1) have to be newly introduced (“in-
termediate vector bosons”) which couple to the con-
served current and are suitable to describe elemen-
tary interactions.
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The logical pattern of a Yang-Mills theory (adapted from Mills)

Example: Dirac-Maxwell. One conserved vector cur-
rent (the electric current), i2 = �1 ; 	 electron wave
function (matter), k Dirac matrices:

@k J
k = 0 ; Jk �	k	

	 �! ei�	 ; � = const ; Lmat ! Lmat

	 �! ei�(x)	 ; � = �(x) ; Lmat 6= Lmat
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� Introduce gauge pot. A= Ai dx
i and min. coupling:

@k !
A
Di := @i+ieAi ; Lmat(	; d	)! Lmat(	;

A
D	) :

Ai! Ai+ @i� (covector with 4 ind. comp.)

Ai is non-trivial, iff its curl in non-vanishing. Field
strength F � curl A, in components (6 indep. ones)

Fij = @iAj � @jAi ; Fij = �Fji :

Add� F2 to the matter Lagrangian) recover Maxwell.

� Back to gravity: Make transl. invariance local . This
yields 4 translational gauge potentials, i.e., 4 (co-) vec-
tor currents #i� (= Æi

�+Ai
�) that couple to ��

i.

Potentials interpreted geometrically as (dual to the)
tetrad field of spacetime (“vierbein” field). Is defined
at each point. Will be illustrated below.

� Translational potential is #, then the field strength
(Cartan’s torsion) should read T � curl # (6 � 4 in-
dependent components):

Tij
� � @i#j

�� @j#i
�+ suppl. term ; Tij

� = �Tji
� :
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3. Building blocks of the spacetime of a general
relativ. field theory: Coframe, connection, metric
a) Coframe
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Local coord. (x1; x2; x3) at a point P of a 3D manifold and the

basis vectors (e1; e2; e3). The basis 1-forms #a = dxa, a =

1;2;3, are supposed to be also at P . Note that #1(e1) =

1; #1(e2) = 0, etc., i.e., #a is dual to eb acc. to #a(eb) = Æa
b
.

Perform linear comb. of the # in order to find an ar-
bitarary frame. In 4D, #� = #i

� dxi. These are the
4 transl. potentials, num. disussions: Hayashi & Nakano,

Cho, Ne’eman, Nitsch, Lord & Goswami, Mielke, Tresguerres &

Tiemblo, ... Itin & Kaniel, Obukhov & Pereira, Delphenich, Ortı́n...
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b) Connection
“...the essential achievement of general relativity, namely to over-
come ‘rigid’ space (ie the inertial frame), is only indirectly con-
nected with the introduction of a Riemannian metric. The directly
relevant conceptual element is the ‘displacement field’ (�l

ik
), which

expresses the infinitesimal displacement of vectors. It is this
which replaces the parallelism of spatially arbitrarily separated
vectors fixed by the inertial frame (ie the equality of correspond-
ing components) by an infinitesimal operation. This makes it
possible to construct tensors by differentiation and hence to dis-
pense with the introduction of ‘rigid’ space (the inertial frame).
In the face of this, it seems to be of secondary importance in
some sense that some particular � field can be deduced from a
Riemannian metric...”

A. Einstein (04 April 1955)

If a linear (or affine) connection is given, the parallel
transfer of a vector C = C�e�, can be defined, e.g.:

ÆjjC� = ���
� C� ; with ��

� = �i�
�dxi

��� represents 4 � 4 potentials of the 4D group of
general linear transformations GL(4; R). Very similar
to the Yang-Mills potential of the SU(3), say, which
Yuval discussed in 1961. Field strength is called cur-
vature R � curl� or (16� 6 indep. comp.)

Rij�
� � @i�j�

��@j�i�
�+nonl. term ; Rij�

� = �Rji�
� :
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Torsion T� = Tij
�dxi ^ dxj=2 and curvature R�

� =

Rij�
�dxi ^ dxj=2 as field strengths. Symbolically,

T� = d#�+��
� ^ #�

R�
� = d��

� � ��
 ^ �

�

Field strengths of the gauge theory of the affine group

A(4; R) = R4��GL(4; R)

uR

uR
||R

Q
P u

v vP

P

Q
vQ

||

T(u,v)

u,v[     ]∆
∆

u

vu
v

On the geometrical interpretation of torsion: It represents the

closure failure of an infinitesimal parallelogram.
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c) Metric g(x)

Experience points to more structure. Time and space
intervals and angles should be measurable) pseudo-
Riemannian (or Lorentzian) metric gij(x) = gji(x).
10 indep. comp. If g�� are comp. w.r.t. coframe, then
gij = #i

�#j
�g�� and g = g�� #

�
 #�. In the 4D
spacetime of SR and GR w.r.t. an orthonorm. basis:

g�� = o�� :=

0
BBB@
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CCCA :

More recent results (Peres, Toupin, M.Schönberg...,
Obukhov, Rubilar, H): Metric g(x) is an electromag-
netic ‘animal’, it is not a fundamental field.

Premetric electrodynamics�: dH = J; dF = 0 with
H = (H;D) and F = (E;B). Formulation free of
metric. Assume local and linear spacetime relation
H = �(F). Here � carries 36 components.
�Hehl & Yu.Obukhov: Foundations of Class. Electrodynamics.
Birkhäuser,Boston (2003), see also Post, Kovetz, and Lindell
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Study propag. of elmg. waves in the geom. optics limit
by using dH = J; dF = 0 and H = �(F). Forbid
birefringence in vacuum (Lämmerzahl & H) ) light-
cone. Recover conformally invariant part of metric:

Light cones are defined at each point of the 4D spacetime mani-

fold (see Pirani & Schild). A light cone, if parallelly transfered, is

deformed by the nonmetricity ) violation of Lorentz invariance.
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The ‘gravitational’ potentials are

g�� metric
#� coframe
��

� connection

By differentiation, we find the field strengths

Q�� = �Dg�� nonmetricity
T� = D#� torsion

R�
� = d��

� � ��
 ^ �

� curvature

The material currents coupled to the potentials
(g��; #

�;���) are energy-momentum and hypermo-
mentum (���;��;��

�). The hypermomentum splits
into spin current� dilat(at)ion current� shear current
(add. sources of gravity):

��� = ���+
1

4
g���


+

_
�%�� ; ��� = ����

The 3 potentials span the geometry of spacetime: It
is the metric-affine space (L4; g). The corr. first or-
der Lagrangian gauge field theory is called MAG. It
is a framework for gravitational gauge field theories.
We developed mainly the bosonic, Yuval Ne’man, to-
gether with Šijački, its fermionic version.
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Two vectors at a point P span a triangle. If we parallelly transfer

both vectors around a closed loop back to P , then in the course

of the round trip the triangle gets linearly transformed.

After this excursion to geometry, we come back to
gravity.
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4. Teleparallel equivalent GR jj of general relativity
GR

GRjj in gauge �
�
= 0, Weitzenböck spacetime, field

equation Maxwell like

Dk T
ki
�+ nonlin. terms � ����

i

#i�+ nonlin. terms � ����
i

Compare Einstein’s equation (gij = gji):

gij + nonlin. terms � �� �ij

For scalar and for Maxwell matter, that is, for �ij =

�ij, it can be shown that GRjj and GR are equivalent.
That T2-Lagrangian which is locally Lorentz invariant
is equivalent to the Hilbert-Einstein Lagrangian.

Mini-Review: Mass as source of gravity! energy-momentum!
conservation of it ! rigid translational invariance ! local trans-
lational invariance ! coframe #� as potential ! torsion T� as
field strength ! Maxwell type field equations ! equivalence to
GR for scalar and Maxwell matter ) ...gravity is that field which
corresponds to a gauge invariance with respect to displacement
transformations...
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Riemann-Cartan spacetime. Simplest Lagrangian is
L � #i

�#j
� Rij

��(�k
Æ)

M4

V4

Qαβ=0

Tα Rαβ,

W4

Riemann

Minkowski

(teleparallelism)
Tα Rαβ

.

PG

|| GR
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.
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Riemann-

GR

cu
rv

atu
re=

0

torsion=0

torsion=0

cu
rv

atu
re=

0

Weitzenbock

Nonmetricity=0: A space with a metric and a metric compatible

connection is called a Riemann-Cartan space U4. It can either

become a Weitzenböck space W4, if its curvature vanishes, or a

Riemann space V4, if the torsion happens to vanish.
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5. Poincar é gauge theory PGT: “Strong” Yang-
Mills type gravity

GRjj is somewhat degenerate. Extend translations to
Poincaré transformations. Additional conserved angu-
lar momentum current (spin + orbital), 6 components
of the spin vector current ���

i = ����
i,

@i
�
���

i+ x���
i � x���

i
�
= @i���

i+������� = 0

Spin is intrinsic part of angular momentum, we need
6 Lorentz gauge potentials �i

�� = ��i
��. PGT

with potentials (#�;���) and currents (��; ���) and
16+24 second order field equations. Simplest Lagrangian:
Einstein-Cartan Lagrangian ) ECT, see below.

Can be generalized to 16 potentials ���, if antisym-
metry is dropped!metric-affine gravity MAG. In both
cases, new hypothetical “strong” gravity à la Yang-
Mills with dimensionless coupling constant [Yang him-
self proposed such a theory, PRL 33 (1974) 445]. Re-
call earlier strong gravity, fg-gravity (tensor dominance
model), etc. by Isham-Salam-Strathdee, Wess-Zumino,
Renner..., chromogravity by Ne’eman & Šijački. Hadronic
stress tensor and gravity type fields are involved. Strong
gravity can be (very) massive or massless, depending
on the Lagrangian.
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6. Einstein-Cartan theory: GR plus an additional
spin-spin contact interaction Ricij := Rkij

k

Ric�
1

2
tr(Ric) � ��� � �� energy-mom. ;

Tor+2 tr(Tor) � �� � � �� spin

Here is � Einstein’s gravitational constant 8�G=c4. If
spin � ! 0, then EC-theory!GR, and RC-spacetime
! Riem. spacetime.

With � 6= 0, modified source of Einstein’s equation:
� ! �+ ��2 ) at suff. high densities ��2 � � )

�crit � m=
�
�Co`

2
Pl

�
, more than 1052g=cm3 or 1024K

for electrons, see H. et al., RMP 1976. This is valid up
to 10�34 s after the big bang, cf. Raychaudhuri’s book
on cosmology (10�43 s corr. to Planck era). For Dirac
spins, the contact interaction is repulsive (O’Connell).
The EC-theory is a viable gravitational theory.

Contact interactions in particle physics were searched
for by Ellerbrock, Ph.D. thesis DESY 2004, see re-
view by Goy (2004) on HERA, LEP, Tevatron. Nothing
found so far.
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7. Measuring torsion

� Precession of elementary particle spin (of electron
or neutron, e.g.) in torsion field. Rumpf (1979) (polar-
isation vector w of the spin) found

_w = 3t�w ; t� := ����Æ T�Æ=3!

Independent of particular model, check GRjj against

GR. On the Earth, using GRjj, find only jTj � 10�15 1
s
,

see Lämmerzahl (1997). He determined experimental
limits of admissible torsion by using Hughes & Drever
tpye experiments.

� Gravity Probe B, instead of the quartz balls, spin po-
larized balls: Spin gyroscope (see Ni gr-qc/0407113 ,
also Kornack et al. physics/0505089 ). GR plus tor-
sion induced spin precession, eqs. of motion by Yasskin
and Stoeger (1980), Leclerc CQG (2005).

� Papini et al. (2004): measuring a spin flip of a neu-
trino induced by torsion, Lambiase calculated cross
section for corr. process.

� Preuss, Solanki, Haugan: birefringence caused by
torsion if non-minimally coupled to electromag. field.
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8. Quadratic models: PGT and MAG

� Make contact interaction propagating ) intermedi-
ate GL(4,R) [or Lorentz SO(1,3)] gauge bosons with
spins 0,1,2, massive or massless. Quadratic Lagrangian

VMAG �
1

�
(Rsc+�0+T2+TQ+Q2)+

1

�
(W2+Z2) :

Q�� := �Dg�� (nonmetricity) 6= 0, if �i�� 6= �i
��

(see figure), “strong gravity” with dimensionless cou-
pling constant �. Rotational curvatureW�� := (R���
R��)=2, strain curvature Z�� := (R�� +R��)=2

� If Q�� = 0, PGT; otherwise MAG. For PGT ghost-
free Lagrangians exist which can be quantized: Sez-
gin+van Nieuwenhuizen (’80), Kuhfuss+Nitsch (’86).
Limits of PGT, Pascual-Sánchez (’85), Leclerc (’05)

�MAG: Generalization of Dirac spinors to world spinors
of Ne’eman, see Kirsch and Sijacki (’02). “Fermionic”
hyperfluid of Obukhov and Tresguerres (’93). Post-
Riemannian cosmologies: Puetzfeld (’04,’05), Cheng,
Harko, Wang (’05), Preuss et al., loc.cit.

� Exact solutions with Q � 1=rd, see Obukhov et
al.(‘97), suggest existence of massless modes.
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9. A generic exact solution of MAG

� Generic exact spherically symmetric solutions of the
field equations belonging to the Lagrangian [Heinicke,
Baekler, H. gr-qc/0504005 , ��� := ?(#� ^ #�),
� = volume element]

V =
1

2�

�
�R�� ^ ��� � 2�0 �+Q�� ^

?
�
1

4
(1)Q��

�
1

2
(3)Q��

��
�

z3
2�

(3)Z�� ^ ?(3)Z�� :

� Coframe #� is Schwarzschild-deSitter,

#0 = e�(r)dt; #1 = e��(r)dr; #2 = r d�; #3 = r sin� d�;

with Schwarzschild coordinates xi = (t; r; �; �) and
with the function

e2�(r) = 1� 2
m

r
�
�0
3
r2 :

� The coframe is orthonormal. The metric reads

g = �#0 
 #0+ #1 
 #1+ #2 
 #2+ #3 
 #3 :
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Nonmetricity 1-form Q�� = Dg��:

Q�� =
e��(r)

2r2
�

0
BBBB@
3`1#

0+ `0#
1 0 �`1#

2 �`1#
3

0 �`1(#
0 � 3#1) `0#

2 `0#
3

�`1#
2 `0#

2 0 0

�`1#
3 `0#

3 0 0

1
CCCCA :

Integration constants `0 and `1 can be interpreted as
a measure for the violation of Lorentz invariance.

Torsion 2-form T� = D#�:

T� =
e��(r)

4r2

0
BBBB@

`0#
01

�`1#
01

�`1#
02 � `0#

12

�`1#
03 � `0#

13

1
CCCCA :

We have a Coulomb-like behavior for torsion and for
nonmetricity!
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The curvature can be decomposed into antisymmetric
and symmetric pieces:

W�� := (R�� �R��)=2 (rotational curvature) ;
Z�� := (R�� +R��)=2 (strain curvature) :

We find with the help of Reduce-Excalc, for example,

(1)W�� =
� m

r3|{z}
Riem:

�
(`0+ `1)(4`1 � `0)

96r4 e2�(r)| {z }
post�Riemannian

�
�

0
BBBB@
0 2#01 �#02 �#03

� 0 #12 #13

� � 0 �2#23

� � � 0

1
CCCCA (weyl ) ;

(4)Z�� = �
`1
2r3

g�� #
01

| {z }
post�Riemannian

(dilcurv ) :

The exact expressions for torsion, nonmetricity, and
curvature can be taken in order to evaluate possible
effects on equations of motion etc.
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10. Test matter and nonmetricity

Equation of motion of a matter field in MAG: Derive it
with the help of the corresponding Bianchi identities
(quantities with tilde denote the Riemannian parts),

fD h
��+��

�
e�c}��

�i
+��^

�
$e�}��

�
= ��^

�
e�c eR�

�
(Obukhov ’96, Ne’eman & H ’96),

where}�� := ���
e�� denotes the post-Riemann-

ian part of the connection. On the r.h.s., Mathisson-
Papapetrou force density of GR for matter with spin
�� := �[�]. For �� = 0, we have fD�� = 0.
Without dilation, shear, and spin ‘charges’ the particle
follows a Riem. geodesic, irresp. of the form of VMAG.

Thus, test matter has to carry dilation, shear or spin
charges, whether macroscopic or at the quantum par-
ticle level. At the latter, the hadron Regge trajecto-
ries provide adequate test matter, as Ne’eman’s world
spinors with shear.

Detailed discussions show that torsion can be mea-
sured by precession and nonmetricity by pulsations
(mass quadrulole excitations) of test matter.
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11. Discussion

It is possible to compute the conserved charges of our
exact solution, mass, spin � orbital angular momen-
tum, dilation charge, shear charge. The shear charge
is a measure for violating Lorentz invariance. MAG
provides straightforwardly consistent models for vio-
lating local Lorentz invariance by attributing the viola-
tion of Lorentz invariance to a geometrical property of
spacetime, namely the nonmetricity Q��.

—————

Soli Deo Gloria
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