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The dependence of macroscoprc systems upor-r their environmertt is studied under the

assumption that quantum theory is univcrsally valid. ln particular scattering of photons

antl molecules turns out to be essential even in intergalactic space in restricting the

observable properties by locally destroying tl.re corresponding phase relations. The

remain ing coherence determines the 'c lass ical 'propert ies of  the macroscopic systems'  ln

this way iocal ciassical properties have their origin in the nonlocal character of quan-

tum states.
The effect of the interaction depends essentially on whether it permanently'measures'

discrete or continuous quantit ies. For discrete variables (l-rere exemplif ied by two-state

systems) the classical properties are given by the measurement basis. The continuous

case. studied for translational degrees of freedom, leads to a competit ion between

destruction of coherence by the interaction ancl dispersion of the wave packet by the

internal dynamics. A non-phenomenological Boltzmann-type master equation is derived

for the density matrix of the center of mass. Its solutions show that the much-discussed

dispersion hardly ever shows up even for small dust particles or large molecules. lnstead

the coherence length decreases towards the thermal de Broglie wave length of the

object. whereas the incoherent spread increases. The Ehrenfest theorems are shown

nevertheless to remair1 valid for recoil-free interactions. Some consequences of these

investigations for the quantum theory of measurement are pointed out.

l. Introduction

The relation between classical ancl quantum me-

chanics is at the heart of the interpretation problem

of quantum theory. Outcomes of measurements are

usually expressed in classical terms at a certain level

of description: the pointer position is assumed to be

definite l ike the position of a classical point mass in

space. On the other hand, the general applicabil ity

of quantum theory that is, essentially, the super-

position pnnciple is important for many phenome-

na of macroscopic objects, for example, in solid state
physics. However. if applied rigorously, this principle

would lead to possible states never observed in na-

ture. l ike superpositions of macroscclpic objects in

r,ery different positions or of other 'macroscopically

different' states. One may also wonder r'vhy micro-

scopic objects are usually found in energy eigen-

states. whereas macroscopic objects occur in time-

deper.rdent states.
In addition to obviously macroscopic bodies, nearly

all molecules except the very small ones seem to

have a well-defined spatial structure. Especially mol-

ecules l ike sugar, alanine etc. appear only in right-

handed or left-handed (chiral) configurations, al-

though eigenstates of a parity-conserving Hamil-

tonian, in particular the ground state, are symmetrlc
(or antisymmetric) under parity transformation and

therefore cannot bc chiral unless in case of degenera-

cy. This phenomenon has sometimes been called the
'paradox of  opt ica l  isomers ' .  The smal lness of  the

transi t ion matr ix  e lement  (qr lH l tpo)  between chi ra l

states is of importance, but is not sufficient to ex-
plain the non-occurrence of eigenstates of the mole-

cule. Therefore this superselection rule must have

reAsons which l ie outside the molecuie.
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Another important consequence of thc superposition
pr inc ip le is  the k inemat ica l  'quantum nonlocal i ty ' .  I t
means that for two spatially separated systems there
are rn general 'quantum-corre lated '  s tates of  type

F^n , . ^ l r p , , ) 1Q , , ) * l , l ) lO ) .  
Such  supe rpos i t i ons

together with the interferences contained therern are
'real' in the sense that the latter may have observ-
able dynamical effects they are not due to incom-
plete information as for classical ensembics. In con-
trast. classical concepts are kinematically 1ocal" even
those used for the description of extended objects
like clarssical waves. Hence. locaiity would have to
be tlerited together with classical concepts for the
approprlate macroscopic situations. if quantum
theory were assumed to be universally valid. This
kinematical nonlocality is more specific than the
general (perhaps dynamical) nonlocality, which has
bcen demonstrated by Bell to be required for possi-
ble theories behind quantum theory (hidden varr-
ables theories).
As is well known, Schrcidinger's original attempts
[1]  to  der ive c lass ical  concepts and equat ions of
motion by means of wave packets obeying l i is equa-
tion have failed. More recently the importance of
the environment for the microscopic dynamical be-
haviour of macroscopic quantum systems l-ras been
reckognized [2 6]. fn principle, taking into account
such interactions is by no means new. ln particular
the sensitivity of interference terms with respect to
interactions with the outside world had rn many
situations to be carefully discussed. Nevertheless,
their general role and the underlying dynamical
mechanism both seem to have bcen misinterpreted.
Otherwise it would not be understandable that
Ehrenfest's theorems are sti l l  widely uscd to justify
classical motion, or the von-Neumann equation
(quantum Liouvi i le  equat ion)  to 'c ler ive '  master
equations. The destruction of interference terms is
often considered as causcd ir.r a classical way by an
'uncontro l iab le in f luence'  of  the envi ronment  on the
system oi interest. In fact, this interpretation seems
to date back to Heisenberg [7] .  But  the opposi tc-  is
true: The system disturbs the environment, t lrerebl.
dislocalizing the phases. I l the system is originally in
a superposition | ( 'u e,), it may influence the en-

tl

vironment @u) as if being measured bf it according
to [8]

Lr ' , l rp , , )  
qro)  - I  ( ' , ,  e , , ) l2n) .  (1.1)

Only becausc of the kinemalical nonlocality (qr_ran-
tum correlation.) does this interaction process have
an effect on later measurements performed at the
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system. The intcrference tcrms sti l l  crist. but they
are not theret (The synonymy of ever.r-da1 language
contains a classical prejudice.) No intcrnal (even er-
godic) unitary evolution can expiain the disap-
pearance ol' local phases [9. l0], just as the in-
teraclion with the environment cannot describe a
non-uni tar i ty  in  thc ' to ta l '  system.
What is 'there' (what can be observed locallv at the
considered system) is in quar.rtum theory described
by the system's densi ty  matr ix .  The use of  the local
density matrix allows at most only a partial deriva-
tion of classical concepts for two reasons: it already
assumes a local description, and it presupposes the
probabil istic interpretation leading to the collapse of
the state vector at some stage of a measurement.
This paper is concerncd only with this partial deri-
vation. The interaction wil l thereby be treated non-
phenomenologically in contrast to conventional
t reatments of  open systems.  The local i ty  assumpt ion
may perhaps be justif ied by a fundamental (underiv-
ablc)  assumpt ion about  the local  nature of  the ob-
server  together  wi th the usual  local i ty  of  in te |act ions
[1 l]. The collapse coulcl then be based on an as-
sumpt ion on how a nonlocal  real i ty  is  crper ienced
subjectively by a local observer L2. l2l. The diff icul-
t ics in  g iv ing a t :ontp lete der ivat ion of  c lass ical  con-
cepts may as well signal the need lbr entirell- novel
concepts.
The density matrix of a subsystem rp is given by

Po :T r4 ,P r , , r , , r .  ( 1 .2 )

where Tr.1 is the trace over the degrees of freedom of
the envi ronment  and p,o," r  iS the densi ty  matr ix  of
the system plus environment ideally the dyadic
product  l t / ) (y l  o f  a pure state of  the r ,vhole uni -
verse. Since p,, wil l in general correspond to a
'mixed state' ( ' improper mixtr,rre'). certain phase re-
lations are not defined locally. Obscrvables that de-
pend on such phases can not be measured (or
measurements wil l give trivial information). I i the
dislocalization of certain phases by thc natural en-
v i ronment  is  unavoidable.  superselect ion ru les ar ise:
Quantit ies corresponding to those subspaces be-
tween rvhich interference terms are permanently de-
stroyed locally can be thought of as always existing

though not necessarily behaving deterministically.
Within tl-re l imits of resolution of 'measurement'

their paths may be assumed to exist. just as i l they
were classical quantit ies.
This 'coming into being of  c lass ical  propert ies '  ap-
pears related to rvhat Heisenberg may have meant
by h is  famous rcmark [7] :  "Die 'Bahn'  entsteht  erst
dadurch, da8 wir sie beobachtcn." It clearly empha-
sizes the irreversible nature of observation. However.
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the Copenhagen interpretation considers classical
conceptions a necessary and fundamental (non-deriv-
able) prerequisite for t l-re description of measure-
ments, and therefore has to deny the possibil i ty of
analyzing them entirely within quantum mechanical
terms. The point of view assumed here is rather
related to Mott's analysis of z-particle tracks [13].
Quar,tit ies under the described conditions are called
'cont inuously measured' .  In  contrast  to  genuine
measurements (as referred tcl by Heisenberg) the
measurement- l ike in teract ion (1.1)  need not  be con-
trollable. lt is only required that the resulting en-
vironment states l@,) arc (approximateiy) orthogo-
nal not that the information indicated by the letter
n is in any way extractable or classical itself in the
sensc of  the above.  Measurements proper ( inc luding
the rcadin-e of the results by an observer) are de-
scr ibed by the col lapse of  the ( tota l )  wave funct ion
leadir-rg to one of its components rp,,) l@,,) , where-
as the (contro l lab le or  uncontro l lab le)  measurement
r', ' i t1.rout reading retains thc complete superposition
(1.1 )  rv i th  i ts  resul t ing densi ty  matr ix  (1.2) .  Con-
t inuous measurement  (even i f  ideal '  as in  (1.1))  wi l l
a lso have cer ta in dynamical  consequences:  i t  may
ei ther  lcad to a f reezing of  the mot ion [11,  15]
(more general ly  to  enforced mot ion [ l6 ] )  ca l led
'Zcr.rtr 's quantum paradox' or the ' lvatchdog effect'
or  to  the val id i ty  of  probabi l is t ic  master  equat ions
likc tl-rose erpressed by Fermi's Golden Rule instead
of  a uni tary cvolut ion [6] .  l t  is  these instead of  the
Schrirdinger equation which should therefore serve
to der ivc c lass ical  equat ions of  mot ion.
The ir.rvestigation of spatial motion under con-
tinut'rr.rs measurement forms the main part of this
paper.  This  subject  is  d iscussed in Sect .  111.2.2.  In
adci i t ion a lso the s impler  s i tuat ion of  two-state sys-
tems (par i ty  versus chi ra l i ty  e igenstates)  is  s tudied in
deta i l  (see Sects.  l l ,  I l I .2 . l  and l l l .3) .  Sect ion I I
presents some introductory remarks about stationary
correlations. whereas the realistic situation of t ime-
dcpcndent  s tates is  considered in Sect .  l l l .  Subsec-
t ion I I I .3  is  devoted to a compar ison of  t ime-de-
pendent and time-independent environmental stales,
in  par t icu lar  in  the case of  thermal  equi l ibr ium. Sec-
t ion [ \ '  g ives a shor t  summary of  the main resul ts
and cliscusses some consequences of this work for
the interpretations of measurement in quantum me-
chanics.

II. Time-lndependent Correlations

Tl"re total Flamiltonian can be written as

H : H , + H @ + W ( 2 . 1 )

l"'here rp rcfers to the system and <tr tcl the environ-
ment. The stirt ionary states (eigenstates of H) may be

approximated by product states (' local states') only
if the interaction l,tr/ can be considered as a per-
turbation. Since the density of states is very large for
macroscopic objects. even cxtremely small interac-
tions must not in general be considered as per-
turbations. As an example, the level density of a
macroscopic rotator (negiecting all other degrees ol
freedom) has been compared with the interaction
matrix elcments between two elementary dipoles,
one of them positioned on the rotator and the other
at an astronomical distance [2]. The exact energy
states are clearly non-perturbative in this case.
Hence. if the total system is described by an eigen-
state of H, a macroscopic system cannot be in a
state by itself at all, that is, it is usually strongly
correlated with the environment. The sensitivity of
time-dependent states with respect to interactions
with the environment as well as that of interactions
with a time-dependent environment wil l be discussed
in Sect .  I l l .
If the total system is described by a stationary densi-
ty matrix of large entropy, as for example the
canonical one. the subsystem's density matrix (1.2)
may instead be insensitive to small interactions, as

p . , , n : Z  t  e " p  [  - ( H r *  H @ + W ) i k T )

-  Z I  expl  (H*+ H@)lkT) .  (22)

and therefore

p ,p :Z i  '  T r r  exp  l - (H r+  H@+w) l kT l

-  Z; t  expl  H, ikT) .  (2.3)

This insensitivity of the canonical density matrix is
lacil i tated by the almost-degeneracy of the eigenval-
ues o[ the resulting pr. Although the eigenstates of
H are sti l l  ertremely sensitive to the existence of 14{
the interference terms arising from the individual
eigenstates of II in the eigenbasis of p, cancel (com-
pare a lso I I I .3 . l ) .  They would become important  i f
the situation corresponded to a genuine measure-
ment including the 'reading'. which could single out
the eigenstates. Of course, an environment in ther-
mal equil ibrium is inappropriate as a measurement
device.
However, an equil ibrated environment ls appropri-
ate for the dislocalization of phases. Consider for
cxample the parity eigenstates lrpt) of a chiral mole-
cule in interaction with an unpolarized photon. The
energy difference between these states is in most
such cases extremely small, as the transition between
chirality eigenstates would require a simnltaneous
tunneling of several atoms. In this sense chirality
resembics a macroscopic property. If lXt. t) arc
angular momentum and parity eigenstates of the
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scattered photon, the four scattering eigenstates for
each value of -L can be chosen to be total parity
ergenstates

V " ) : c i * l r p * )  t ] , , > + c ' z ' q  ) l x "  ) . (2 .4a )

lY '  > : c l  lE * ) l t i .  )+c "z - l rp  )  t i . * ) ,  ( 2 .4b )

where s: * distinguishes the two solr,rt ions for each
total parity value n: * assigned by the second bi-
nary upper index. In a spherical box of radius R
thesc are also the energy eigenstates according to the
boundary condition

sin (kR - Lni2 * d) : Q+lai".,:(nr * Lr,i2. - );],)LR. (2.5)

This is an implicit definit ion, as the phase shifts r)
depend (weakly) on /<. ln order to measure chirality
in  the t ime dependent  scat ter ing process (1.1) .  the
states lE,) of that equation now have to be the
chi ra l i ty  s tates l (pR r)  :2  t ' '  (  a  )  t  l tp  ) ) .  Taking
the l imit ol an ir-rf initesimal t ime in (1.1), one finds

[17]  that  the tota l  Hami l tonian ( for  cach subspace
of L) can be written as

_  t t r
H  -  ; " " | , p * )  ( , p * l - kp  )  kp  l l  I  1 r f  H | t " " " "

2 '

+ r ' { lqH) (Eol  I  l lz [ )  Q;  | -  t ; )  Q;  ]
- l , p ' )  ( , p .18 l l x ; )  Qr l  - l t [ )  Q !  ] ] ,  Q .6 )

where 1-" , , ( .n ,  L,  R)  is  a coupl ing constant  and Zi . : )
:2  t  ' ( lz ! )  + lz l  ) ) .  These l inear  combinat ions are
required for total parity conservation. ]7i2) arc as-
sumed to contain tl.re exact radial solutions (see alscr
Sect .  l l l .3) .  The interact ion commutes [18]  wi th the
project ion operators | ,po)  ( rpol  I  l ,  and | ,p , . )  (E t l
E 1 , . For ^11 lE - 0 one obtains thc ei-qenstates

lq*)  l l t )  or  l ,p  )  l l t )  wi th factor iz ing par i ty  and
energ)r bcing independent of photon parity. For
/Er" , :+Q the stat ionary statcs can be chosen e i lher
as the total parity eigenstates

l v , ' * > - 2  " ( l r p * )  t i ) + l q  ) l z l ) ) , ( 2 . 1 a \

1v ! -  ) : 2  " ( l , p - )  l z : )+  rp  ) l t I ) ) ,  ( 2 .7b )

and analogously for  .s :  - .  or  as thei r  superposi t ions
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t inuous measurement '  o f  ch i ra l t ty .  the chi ra l i ty
states lEn.l) facil i tate factorizing energ)I eigenstates.
This degeneracy is thc stationary vcrsion of the
'watchdog effect'.
Pract ica l ly ,  the coupl ing to a s ingle photon is  very
smal l .  and the l imi t  /Et"1 -Q is  not  obta ined.  For  a
non-negligible eilect many photclns i lre rrecdcd. Pfei-
fer [ 19] has in fact demor.rstrated tl.rat for sugar
molecules virtual lbound) photcrlts are sufficient to
produce stat ionary states o l  type (1.8)  nou'  wi th in-
f in i tc ly  many photons instead of  onc.  Btr t  v i r tual  pho-
tons have to be considered as par t  of  the 'dressed'

sugar molecule -  not  as an et t l i ro t tment .  There
now exist thc two degeueratc grottttd states (fbr

7>0) of  type (2.8b)  for  the dressed sLrgr l r  moiecule:
The renormalizecl energy difference i. I l l" '" :0,

whereas the excited statcs (2.8 a) ri i l l  nr)t be bound.
Therefore superposi t ions of  thc tno dresscd states
(2.8 b)  are st i l l  possib le.  This means that  the resui t
by i tse l f  does not  expla in why chi ra l i t )  r ) f  macro-
molecules is a 'classical' property'. Pfcilcr's further
argument is based on proposals b1 .iaucli t20],
Hepp [21] .  and Pr imas [22]  according to which
observarbles must be cclnstructccl in Fock space,
whereas the renormal ized states of  t1 'pe t l .S b)  essen-
t ia l ly  requi re a non-c lenumerable nunber of  contr i -
but ions.  I f  t rue,  Ihrs postu luted superselect ion ru le
wouid mean that non-trivially dress.-cl particles
could never  be observed.  The solut ion o l  th is  ap-
parent paradox is that the observables lrlstr have to
be non-trivially dressed, that is. thev har c- to be
operators for  'physical '  systems.  Ho*erer .  t l . re  im-
por tant  resul t  y '  E"""  :0  (correspondir tg to a sta-
tionary watchdog effect) renders the statioltarv scat-
ter ing statcs wi th non-r ' l r tua l  photons er t remely sen-
s i t ive to the cor , rp l ing.  Sincc /Enes ' ' :0  one a lways
has the s i tuat ion descr ibed b1 '  (2.8) .  r ihere l rp)  are
now the dressed statcs of  the molecr . r le .  and ]7)
describes a real photon again: In a statiot.rary situa-
tion the dressed sugar molecule ri oulcl be strongly
correlated with its environmcnt of f lee photons.
l -he canonical  densi ty  matr i r  ( that  means,  in  par t ic-
u lar ,  an ur- rpolar ized photon)  rs

/ ) " , , . :Z  
t { .  t ^ t ( lY - i - ) (Y ' ^  *  r y l ) ( v t r r l )

+ e;,ri (l q^ ) ( yr^ l + ,!,. ) lrF, ,i (2 .9 )

Partical tracing gives

r t . . - - \ .  ( 2 . 1 0 1

that is. ncl interference terms in ar-ry basis. In con-
trast, the density matrix clf ar.r icleal non-degenerate
girs

l v^* ) :  rpn)  t f ) ,

and

|h .  ) -  E) l t i ) (2 .8  a )

(2.n b)lYo  ) : \ , p ' ) l x ; ) ,  Y ; ) :  E ) l t t )

Such par i ty-mixe d states are possib le as a con-
sequence of a degeneracy of eigenstates with dif-
ierent  par i ty  and the same value of  s .  Hence,  in  thc
case of strong coupling corresponding to a 'con-
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p . " . (X ,  x ' ) :Z  1J r13 / .  exp  l - k212n tk "T  + l k ( x - x ' ) ]

- e x p [ - ( x - x ' ) 2 r r r k 6 f  l ]  ( 2 . 1 1 )

contains coherence effects over the range of the ther-
mal de Broglie wavelen-sth

) " , n : (2nmksT1-  t t z .  
Q . l 2 )

Thc extreme result (2.10) is a consequence of com-
plcte equil ibration in connection with the degcnera-
c1 leading to (2.8). The classical significance of the
chirality states has to be investigated for a time-
dependent  s i tuat ion (see Sect .  I I I .2 .  1) .  I t  wi l l  turn out
fi 'om quantitative considerations that the chirality-
sensi t ive scat ter ing of  photons by sugar is  too weak
to lead to not iceablc cvolut ion towards equi l ibr ium
ni th in reasonable t imcs.  Other  scat ter ing processes
of the same (chirality-measuring) type are respon-
sible for the chirality superselection rule.
Stationary correlations analogous to those with vir-
tual photons have also been considered for super-
posrtions of states with differer.rt charge (Scct. 4 of
Ref. 2-j). Different charges lead to dii ierent polariza-
tion of the surrounding matter by the long range
elcctromagnetic f ield. But this argument in favor ol
chalse superselect ion ru les is  subject  to  a s imi lar
cr i t is ism as before:  Stat ic  polar izat ion descr ibcs
rr-rerell '  a renormalization of the charged particle.
Onc mav conjecture that  only  thc radiat ion par t  of  a
particle's f ield has to be used lor calculating cor-
rclations with the environment. rvhereas the general-
izcd Coulomb par t  [24]  contr ibutes a mat ter- in-
duced renormal izat ion for  bui ld ing up a 'quasi -par-

t ic le ' .  The d is local izat ion of  phases is  then obviously
.r t inre-dependent in fact irreversible process" as
thc Sommerfeld radiation condition has lc'r be em-
plored. Wl.ren generalized this mcans that macro-
scopic propert ies can onl1,  occur  in  an i r revers ib le
s i t L ra t i on  [ 25 ] .

III. Time-Dependent Correlations

I  I  I . l .  Short -T ime Behar iour

In c lass ical  mechanics.  whcre a system and i ts  en-
v i ronment  both possess thei r  own states.  an in terac-
t ion I l ' rv i l l  d is turb the independent  mot ion.  This
kincl of dynamical influence may as well occur for
t ime-c iependent  s tates in  quantum mechanics.  but  in
acidr t ion the in teract ion wi l l  l . rere tend to corre late
t r io  in i t ia l lv  lnctor iz ing states.  Both ef fects can be
inr  cst i - l ra tcd and d is t inguished by rcprcscnt ing the
state lY/)  of  the whole system b1-  the Schmidt-
canonical  form [23] .  that  is .  as a s ingle sum,

v'( t)) : I  p/  ' ( t )  
E,t . t ))  @'(r)) ,

i

where {E;) and {@,} are certain time-dependent or-
thonormal  systems in the Hi lber t  spaces of  system

and envi ronment .  ancl  Ip , : t .  For  an in i t ia l ly  sep-
arating state i

ly  (0))  -  lqo (0))  l4 ,o (0)>.

that  is .  Po(0)  :1.  one f inds in  second

1 r o ( r ) : 1  A t 2 ,

where (now dropping the argument

A , :  I  , , , , 0 1  O , , 1  H l . [ u  @ r ) r :
. l * O . n * O

I  l kp ia^ lw l ,pna)? .
j + 0 . n * 0

B -  A :  L  0 , O , ,  H  t 7 , , c h u > 1 2
. l + 0

f  |  , , t a u  4 , , , 1 H l r p ' , O n ' '

H : ' i> ,a, le , )  (p , ,1p"

221

( 3 . 1 )

(3.2)

order of time

(3 .3  )

r :  U )

(3 .6 )

( -1.7 t

(3 4)

This 'rate of de-separation' [23], which measures the
amount. at which the two systems become corre-
lated. has to be distinguished lrom the total rate of
change of the init ial statc, which is given by

B , :  I  l ( E i a , , l H l t p , ) Q i t ' .  ( : . s )
j . r l * 0 . 0

The difference between the two quantit ies

is the 'classical rate of changc' and thereiore the
sum of the rates ior both systems.
For example.  the von-Neumann-type interact ion
(1.1)  may bc dcscr ibed by the Hami l tonian

where i '  is a coupling constant. e,, a 'pointer scale'
and p the infinitesimal translation operator (momen-

tum operator) of the pointer. The wave function of
the pointer (environment) after t imc r is thcn

@,,(- t ,  I )  :  @o ( , t  -  " , '  i "u t ) . (.r.8)

A measurement  is  'complete '  when the wave packets
@,, for diffcrent /? al 'e approximately orthogonal (and
therefore equirl to the Schmidt states @,,(r)). The de-
separation rate (3.4) can convcniently be written as

l :  t l u Q , , 1  H r l  -  l q o ,  . p o , l { l - l O ,  ( @ u l } I /  , p , , Q , , t
(3 e)

and be calculated fcrr the case (3.7) r 'vith Eu :Lc',q,
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to glve

A : " i t  (a ul  i t  l@ ) { l  a l  1c,1'  I  a, ,  a* lc:  nl2 lc ' , , ,2 \1

A:h ' z tb lLv? r
k . I

where

( 3 . 1 6 )

(3. I  7)

( 3 . 1 8 )

(3.20)

( 3 . 2 1 )

( 3 . 1 1 )

where b2:( r - r - )2 def ines the width b o l  the wave

packet @c,(r). "i ib clescribes the 'effectivity of

measurement' [6]. The total rate of change

B : i , t  (An l f ' 16 , r )  o , t , > ' , , ' r . i  q t t  ( 3 .12 )

depends on /,1, whereas ,4 is determined solely by

the spread of the e,.
For coupled harmonic oscil lator Hamiltonians the

de-separation rate is proportional to the product rl1{

of quantum numbers, if the init ial states lrpn) and

l@n) are assumed to be eigenstates lrp,,) and l@.v) of

H,, and H. respectively (see Sect' 4 of Ref. 23)' This

*.unr that the sensitivity increases with leve1 density -

in  accord wi th s tat ionary considerat ions (Sect '  l l ) '

However. if the init ial states are coherent states (ei-

gens la tes  o f  t hc  ann ih i l a t i on  ope ra to r l .  t he  ra te  i s

independent of the eigenvalues and remains small

with small interaction. Therefore coherent states can

remain approximatcly uncorrelated even in the mac-

roscopic 1imit. This argument may explain the dom-

inance of the field aspect over the particle aspect

for boson fields.
Another example appropriate for investigation by

this methocl is an interaction by long range forces lf

r n  an  i n i t i a l l l  f ac to r i z i ng  t \ \ ( ) - pa r l i c l e  s ta le

Y / ( r 1 . r 2 ) : E $ t ) Q ( r z \ ( 3 . 1 3 )

Equat ion (3.16)  is  of  course inra l iant  under ex-

change of the particles and indepenclent of particle

masses. (The formation of correlatiot.ts is indepen-

c lent  of  the in ternal  dynamics o l  each s ls tem in

Sec t rnd  o rde r  o l  t ime ,  see  (3 .4 t . t  Thc  i t l t e r r t r : l i on  can

be interpretecl as a measurement trf t l .re position of

par t ic le  1 by par t ic le  2 and v ice rersa unl ike von

Neumann's in teract ion (3.7) ,  which neglccts momen-

tum conservat ion.  The ' resolut tc l t . l '  t r f  the 'po inter '  I

is  1 'b,"  that  is  the width of  the n l t r l re l l tum wave

funct ion @(pr)  or  6(pr) ,  s ince t lp  t t r  order  r2 an

interaction potential transfers trnlr lnLrmentum

(wi thout  sh i f t ing the wave packet  spat ia l l t  t '

The significance of the quantit l .-1 cali ftrr this situa-

t ion be demonstrated by a s impie c ' r lc t l la t ion be-

i,ond the short-t ime expansion. For nlecrtrscL-rpic ob-

jects (with large masses) the effcct t ' i  the spreading

of tn. wave packet can be neg['ctetl Hence' in a

f i rs t  approximat ion only the in ter i ic t iLr l i  I  t r t  - r2)  tn

the Hami l tonian may be ret i r ined.  fh"  der ls i t - i  ma-

t r ix  of  the whole system then evohes a 'c t r rd l l lg  to

V1,1,: luc:, I/(r! - r!).
- - i t  ( an l i t l o )  ( a ,  "  Y

i f  (@ol  I  l@n) :0 From the
(Fourier theorem) one obtatns

A>"; t1u--  a1i  ;4112.

(3.  L0)

uncertainty relation

(3 .14)

the two wave packets have width bi and are local-

ized at r l  wi th b,( | .?-r ! l  the interact ion part  I /of

the Hamil tonian

) )
H  :  : ' t  + . / ' ,  _  / ( r r  r : )

l l l l  I  l n l 2

may be expanded at r! r')

v (r 1 -r 2)- t '(r? -r!1 +l{r, - rz- rl + rl)ka:klz(r? -r9)

+1f (r ,  - rz--r l '+r i i , t t  - . r r - . r l  +r !1,
k , l

. i* i, r, 1r! - r!). (3. 1 5)

For Gaussian wave packets the rate of de-separatton

is in this approximatton

p ( r 1 .  r 2 ,  t ' r , r ' 2 , t |

: p ( l : 0 ) e x p - i t [ / ( r r - 1 2 )  I  l r i  - r : r ]

The init ial  state wil l  again be i lsst lmed tt) iactorlze.

p ( ,  :  o)  :  (p ( r  1)  @(r2)  rP* ( r '1)  @* ( r :  ) ' ( 3 . 1 e )

The clensity matrix for, say'. particle I aiicr t ime I ls

P ,p ( r r , r ' r , t ) :T to  P
:  p , / r  t .  r l .  0 t  J , / r r ' , @ t r r  

-

.  e x p  [ -  i t l V ( . r r  1 1 -  I  t r ' - r ) ] )

Hence.  the in i t ia l  densi tv  matr i r  t r f  par t ic le  I  is

multiplied by a factor. originating from the for-

mation of correlations betweerl the nr o particles and

expectecl to yield a suppressi(rrl t ' l  int. 'rference terms

belween different locaticlns r 1 ancl rl Expanding

I / ( r1 -12 )  aga in  as  i n  (3 .1 -5 )  g t t es

s t * ( r t , r \ ,  / )  :p , r ( r1 '  r i ,  u )

.  exp  {  -  t r  [ I ( r1  -  r ' i ) r i  r t '+  I  I i r

.  [ ( rrrr i r  _ r11111), i2+(/ '1 -r ' i  ) r1r ' f  - r l )1, ] ] ]

.  J r /3 r l@(r )1 ' :  exp ' ,  +  t r  I ( r1  - r ' i ) ^  4  l ' ^1 | .

Obviously only thc last factor describes a damping

of interference terms. lt may be discussed by insert-
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ing a Gaussian wave function of width b for particle
2 .  Up  to  a  phase  fac to r  t he  i n teg ra l  1 i n  (3 .21 ) then

Decomes

I : e x p  l - t ' b '  I { I  l r ^ , ( t '  - r ' i ) ' } 2 1 .

Table l .  ( lohcrence range lbr
t i r ncs  r  r t  r l r i ou :  t l i : t l r r ec t
interact ion and calculatccl  i l
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t \ ro e lemenlar) '  chargcs af ter  varrous
a.  as resul t ing f rom thci r  Coulomb
short- t ime approximatron

r - 1 0  - ' s 1 = l s  a : l  ) ' e a r

v

I  t r t : i ,
r

one  has

1  ) - .

l r k r t -  r -  o k r
t , , : t ''  d r  5  5r '

For small arguments the dampin-u factor reads

1 -  1 -  t t b ' z L { > , 1 ' ' * , ( r ' , - i ' i 1 r l 2 .  ( 3 . 2 3 )

The s imi lar i ty  of  thc second term wi th the de-sepa-
rat  i r )n paramcter  I  in  (3.  I  6)  is  obvious.  For  a
Coulomb- l ike potent ia l  u i t l - t  coupl i r ,g  constant  g

1 0 "  c t l

1 0 1 c m

10 :  cnr

I I1.2. Irrerersible Protluc't ion ol C orrelrtt ittrts

If a system is originally in a superposition f c,, lrp,,)

with respect to thc measurement basis. its density
matr ix  in  th is  basis  is  puu, :c , r ' ; f , .  A measurement  of
type (1.1)  lv i11 be cal led ' incomplete ' "  i f  the apparatus
or environment states l@,,) are not (approximately)

orthogonal after measurement. The matrix elcments
pn,. ate thereby multiplied by factors (dr,, | @,,,) with

l<Q,,@,, .> l< 1 for  n *n ' .  that  is .  the nondiagonal  e le-
mcnts lv i l l  be suppressed.  In col l is ion- type interac-
t ions these processcs wi l l  last  only  for  a shor t  t ime,
but  may occur  repeatedl l .  Many indiv ic lual ly  in-
e f f ec t i ve  co l l i s i ons  (<Q, , lQ" '> -1 )  may  i n  t h i s  way
become important .  Mul t ip ly ing the densi t l  matr ix
elements repeatedly with interference-reducing fac-
tors (rD,, @n.) corresponds to the integration of an
irreversible maste r equation analogous to Boitz-
mann's Stof.lzahlansatz.
If, in addition. the duration of a scattering process is
shor t  compared to the typrcal  t ime scales of
evolution oi the object by itself. the total evolttt ion
can approximately  be descr ibed by an a l ternat ing
dynamics:  Thc change of  p is  equal  to  the change
grven by the intcrnal dynamics interrupted by com-
plete scattering processes, or formally

l 1  ? 1 1

(3.2.4)

(3.25 )

a : 1 k m
.r :  1 n l
a :  I  c m

1 0 3  c m
1 0  l c m

I 0  a c n r

1 0  l c n r

1 0  5 c m

l0  8  cn r

The order  of  magni tude of  suppression of  in ter fer-
e l lce tgrms over  a d is tance / , :  r r  - r ' r  can now be
est imated by combin ing (3.1- l t  and (3.25)  and con-
sidering the special case, \\ 'here 11 r'r is parallel to

n  r r  T r
I i  - I t  t  l l € 1 1

J l )  h 2  o 2
1 - t  , -  t ' ,  (3.26)

L l "

u here rr , : 1.9 - .? l is the disti lncc bet\reen thc two
part ic les.  In  the range where the above approxi -
matrons arc val id .  (3.26)  can be Lrsed to est imate the
coherence range /  under the in f l l tencc of  the second
part ic le  wi th wave packet  width b.  I ts  in f l r . rence is
appreciable i i  the second term in (3.26)  is  t lon-neg-

v l is ib le.  r 'oughly t f

For  s impl ic i ty .  the symmetr ica l  s i tuat ion b:  /  is
consiclered. Table I i l lr.rstrates the case of clectrostat-
i c  i n te rac t i on  g :q tq2 i4TEo  be tween  two  pa r t i c l es
each carrying one elementary charge.
For  grav i tat ional  in teract ion the smal l  va lue of  the
coLrpling constant can be compensated bir stt l-
f icientl l large masses. For example. two dust par-
t i c l e s  n i t h  r n : 1 0  u g  a t  a  d i s t a n c e  o f  a :  l c m  w i l l
loosc interference propcrties over a range
1- l0  + cm af ter  t :1  s .  Two ear th l ike bodies at  ear t l - r -
moon d is tance . ,vould reduce thei r  coherence
lengths to 10 rs  cm wi th in 10 ro s wi th respect  tc ' r
an erternal observer. Hencc the center of mass states
of macroscopic bodies nlay always be assumed to be
wcl l  local ized.

(3'27) 
r j : IH,,,,".n,r,p]+,#1."",, (3 .28)

-  r  t t l
nherc ;Ll is defined by means of the S-matrix.

( . '  f  I  scatt .

To work out  such a Bol tzmann-equat ion one has
only to solve thc ecluations of motion for the in-
tcrnal  dynamics and the scat te l ing proccss sepurdte l \ '
( instead of a Schrodinger equation with the fLrl l
Hamiltonian and complicated init ial conditions). Tct
begin wi th,  only  the scat ter ing term in (3.28)  wi l l  be
consiclered. neglecting the internal dynamics of the
systcm.
Thc most obvious measuring process for macroscop-
ic  bodies is  scat ter ing o l  l ight .  To just i fy  th is  s tate-
ment  one just  has to c lpen one's  eyes.  l t  wi l i  turn
out. that even the cosmic background radiatton can
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where p, ?> represents the p-wave part of a plane
wave with polarization z. If, for example. the mole-
cule were init ially in its ground state,

l r p  * ' ) : 2  '  ' ( lE )  + lq r ) .  ( 3 .39 )

the density matrix of the total system with uncJe-
tcrmined photon polarization would read

p(o) :  +( l (pR) + lq) ) ( ( ,p^ l  +  (Er l )

O ( l z )  ( r l  L l l  I  r  l )  ( r r  n  2  ; , (3.40)

uhere po7.(0) :1 i2.  In  a scat ter ing process the two
pafts of the photon polarization contribute inde-
pendent ly  to (3.38) .  (The form of  the photon densi ty
marrir is here independent of the choice of a special

1 '  basis .  For  a d iscussion see Scct .  I I I .3 . )  Thereforc po1
afref  scat ter ing is  pp1:J(cos2 r ) -s in2d) ,  whereas por ,ot
reruains unchanged.  In th is  'uncontro l lab le measure-
nteur no iniormation is transferred to the environ-
nlc l1L

Fol  a s ingle scat ter ing process d is  obviously  very
smal i .  hence

t ,  k t  -  t ,  R L c o s  t 2 r 5 1 : / , n r ( l  -  2 i 2 ) . ( 3 . 4 1 )

I1 Q :cattering cvents per second occur. one has an
appro\ imate ly  exponent ia l  decrease of  pn1.

t )  Rr . t  t |  -  pp1(0)  exp(  -2d2 Qt )

: , 1 r ^ 1 ( 0 )  c x p ( _  l , i r ) . (3 .a21

v

Thc characteristic t ime r may be estimated lrom
c\perllnental data ol optical activity (coherent lor-
\\rlr l i  scattering). The observed angle rp of rotation is
. , l r i r r ined as thc sum of  contr ibut ions f rom al l  mole-
culc .  [28] .  Thc scat tercd waves inter fere construc-
t i rc l r  only  in  forward d i rect ion.  The angle (p turns
()ut trr clepend on d. the vessel length ri. the density n
of rntrlecules and the wave number fr of the photons
acc(r f f l ing to go-  t lnd, 'k2.  For  sugar the r ,a lue of  d
t l c r i r ed  f r om measu remcu t  o f  r p  i s  abou t  5 .10  16

radians ( for  i ' is ib lc  l ight) .  For  sunl ight  f )  -  1011 s
lead ing  to  a  cha rac te r i s r i c  t ime  r : 10 t t  1ea rs .
Onc therefore has to conclude that  opt ica l  act iv i ty  is
l lot sufficient to explain the absence clf coherence
betrr c'cr.r chiral states. However, quite general cir-
cunlstauces provide measurements of  ch i ra l i ty  to-
-scther wilh other properties of spatial orientatton.
Fol  erample.  scat ter ing of  a i r  molecules at  room
tcmperature (wi th thermal  de Brogl ie  wavelcngth of
2.,1, - l0 ' cm) corresponds to a characteristic t ime
r: l0 

' '  
s, as the wave lengths are small enough for

scat ter ing to d is t inguish between chi ra l  s tates wi th
almost perfect efi iciency.

z ) l

IIL2.2. Localization of Macroscooic Obiects

As mentioned before, macroscopic objects canuot
avoid scattering photons and other particles. The
effect of these scattering processes on the scattered
particles of course depends on the position of the
scattering object. As a consequence, this position is
measured. In this way certain interference terms in
the density matrix of the macroscopic object wil l be
destroyed.
The mechanism of position measurement by scatter-
ing can be described in analogy to that oi chirality
measurement. If a particle is scattered off a lracro-
scopic objcct, its resulting state 17,) wil l depend on
the  l oca t i on  x  . r i  t he  sca t tL . r i nu  cen te r .

lx) lz) - x) l l*) :  r) S,lz), (3.43)

where S* is the scattering matrix for an object with
center of mass positioned at r. The mass of the
macroscopic object is considered as infinite in this
treatment (recoil-free coll isions). I i the position of
the center of mass is instead described by a wave
function E(x). the state of the whole system evolves
according to

Id r r rp ( r )  x )17 ) * . [ r / r - r r p ( r ) l x )S -17 ) .  ( 3 .44 )

The densi ty  matr ix  of  the posi t ion of  the scat ter ing
center after scattering reads

p (x ,  x ' ) :  r p ( x )  E *  ( x ' ) (Z  S I .S , l z ) .  ( 3 .45 )

Hence, the density matrix elements are multiplied by
factors (Z ^Sl. .S, lZ), the matrix elements between the
corresponding 'pointer  posi t ions ' .  For  suf f ic ient ly
large ,1 r, : lx x' one may expcct (71 Sl, S- l7) - 0.
For sr,rch distances one clearly hers a strong damping
of interference terms. On the other hand. for smail
values of y'r a single scattering process wil l merely
have  a  sma l l  i n f l uence .  t ha t  i s  l ( 7 lS l ,S * lZ )=1 .  Th i s
situation wil l be assumed in the following, thus great-
ly underestimating the rate of damping for large
distances, where the interfcrence terms wil l very
soon vanish anyhow.
lf the scattering interaction is invariant under a
translation in space, the scattering rnatrices lcrr scat-
t e r i ng  a t  r  a r rd  x '  a re  i n  momen tum rep resen ta t  i on
related by a phase factor,

(3.46)

wherc S(k, k') is the usual scattering matrix rvith the
sca t te r i | l g  cen te r  a t  t he  o r i g i n .



The expression to be calculated is

(zls, l  s ' lz)
: J.13 ft d3 k'd3 k" s,(k. k') s*, (k. k") r'(k') r'* (k"1

: I(13 kd3 k' (t3 k" S(k, k') S'k (k. k")

.  e  
i k ( r  x ' )  

" i k ' x  

i k " x ' c ( k / )  r , *  ( k " ) ,  ( 3 . 47 )

where c(k) is the momentum wave function of the

scattered Particle.
In the consiclered range of ineffective single scatter-

ing. the typical wavelength ol the measuring particle

is iurge compar.d to t l - re d is tance lx-x ' l  between the

two iositions of the scattering center, that is' the

wave function may be replaced by a plane wave witl-r

appropriate normalization (one particle in a cube o{

f.ngtft L). The momentum wave function may then

be approximated bY

c (k)  -  L  3 '2 d3 (k  -  ko) , (3 .48)

E. . loos and H t ) .  Zch:  Emergence of  C lassical  Propert tes

The imaginary part, containing ir.rfolmation about

the clirection of incidence. has disappearecl'

The effect o[ a singie scattering process clt l the denst-

ty matrix is therefore approximatell gir en b1'

i  ( A "  ' x  -  \ ' l ) 2  \

1 r ( x .  x ' ) - . n { x .  x ' t \ l  -  
E n 2  L 2  

o . , ,  I

o" , , , : \ i  r /  cos  @ l . /  (cos  o) l ' l (2 -  cos  o  ) '  -  l l  (3 '51)

I  he  e l l ec t  o l

processes is

p (x ,  x  )+p (x .  x

n subsequent indepentle l lt scatterlng

where n is given bY

n : L r ' f l u x ' t

: Lr .parlicle clensity' mean velocitr ' t : Ll

(3 .56)

The density matrix thus changes tlcc(rrLlLlls Io

p ( x , r ' ) + p ( x , r ' ) e x p { - , 4 r ( r - r ' ) t l '  ( 3 ' 5 7 )

where

,  k f ro"11  Nr
,tr :  

{ni

-p(r.x')."0 (-q'Jl#l lo",,). (3 s3)

where

, ) .*p (- , , ( 'o l - ; ; !  o. , ,1 (3.s5) r

| 1 .
I

where kn is  the momentum of  the inc ident  par t ic le

and kul r -x ' l (  l .  The scat ter ing matr ix  can be cx-

oressed in terms of the scattering amplitude as

s(k. k') : d3(k k') + 
zlt f(k. k') r)(/< - k')

Inser t ing (3.48)  and (3.a9)  in  (3 47)  and expanding

the exponential Yields

I  r J , .
( z l  S l ,S , l z )  : ,  *  . n :E I ' * -  t  I  ( k .  k , , l l 2  J ( f t  - ko )

(3.4e)

1 , ( k - k o ) ( x - x ' ) - [ ( k - k o ) ( x - x ' ) ] ' ]
(3.50)

lntegrations over angles can be performed elemen-

tari ly'. Let the angle between x-x' and the directiotl

o f  inc idence k6 be a.  Then

. l

( t i  S , l ,  S- lZ )  :  |  *  
+A r ' l<u lx  

-x 'J  cos  a

2 ' o

( 3 . s 1 )

The parameter  ,4 .  wh ich  mar  be  ca lL ' t i  
' l t r ca l i za t ion

,ot. ' .  d.r.r ibes the ol elal l  el iect tr i  t ' t lat l l  indi-

r, iclual ly ineffect ive f i lessLlt 'el l lc l l t '  " l  | tr ' i t ion bY

scattering. Using (3.57). the ctrt l t l ' i i r1111'r11 f;pt1I scot-

tering to thc Boltzmatlt . t  cQtl l l t i t rn t-:  l \ r  cl tn l lor 'v be

wflt ten as

! !9 I l  : - ,1 ( r - r ' ) r1 r ( r . r  r
(  t  J s c a l t

( 3 . 5 8 )

(3 .59  )

.  {o ,o,  -  2 t { r /  cos @ |  /  (cos @)12 cos @ }

r A , J x - , x ' r l r { " i , ,  
, ,  r c o s 2  r l

6 f t " L -  ( .  I

*  n(3 cos2 a -  1)  i  r l  cos @ |  /  (cos @)12 cos

-  4n cos2 a J r /  cos @ I  I  (cos @t l 'z  cos '  @)

The above exprcssion o[ course depends on v' If the

scattered particles (e.g. photons) are randomly dis-

tributed. one can average over I and replace the

result by

This equat ion descr ibes an l r rerer : ib le damping of

interference terms in thc dcrlsit l matrir for the po-

sit ion of the scatterin,s center. A phetlomenological

ra te  equa t i on  o l  t h i s  t l pe  ( f csp  t l 18 ) )  has  been

suggested by Wigner [ '1 ] .  Ecluat ion (3 59)  as wel l  as

t:.1S) witt in the follori ' ing be disctrssecl for the case

ol various objects scatterir.rg pl.tt l tous or other par-

t ic lcs.

111.2.2.1.  Vt t r io t ts  Pt ts i t io t r ' \ [c t rs t t rcntet t ts '  Sc i r t ter tng

of electromagnetic rvaves b1' small objccts (i 'e' with

size much smaller than the u'rirelength) is described

by Rayleigh's law. Scatterir-rg u'i l l  then be dominated

,  (k6 lx  -  r ' l )2
) , )

6ft- L-

.  { 3 i ' 4o , . , ,  +n t2 ! t t  cos  @l / ( cos  @)12  cos2  @

2nld cos @ l . /  (cos @)1'z  cos @). (3 .52)



, , , , , ; :  r ,  , r  ( :_ I  ) , ,  r  + cos2 o r 2

Hcr rcc  r3 .54 )  g i ves

v 14t- 
".,,:t,T ^-,,^ (:; j) '
and

^,: l(#)' ! , truou
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by the dipole contribution and the well-known fre-
quency dependence o -t,)4 arises. The cross sections
for simpie situations can easily be calculated. Some
examples wil l be employed in order tcl demonstrate
the suppression of interference terms between dif-
lerent locations for small objccts.
Let the scattering object be a small dielectic spl.rere
il ' i th radius a and uniiorm isotropic dielectric con-
star.rt a(t,r). Then the differential cross section for
scatterin-e radiation wilh wave vektor k is (after
aleraging over polarizations) [29]
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Tl.ris means that interferences between a characteris-
tic distance

1 ( r ) ,  :  ( 8 ,1  r )  1 i 2  (3 .68 )

are supprcsscd 1/  is  c lef ined such that  1 ' - i r : -  r ) '  for
a Gar.rssian wave packet, comp. (3.98)). The order of
magnitude of this effect can now easily be calculated
by inserting some typical vah-res in the above equa-
tior.rs. The resulting coherence length may be i l lus-
trated for t: 1 s by the following examples. For a
large dust  par t ic le  ( t r :  l0  2 cm) background ra-
d iat ion leads to 1:  l0  6 cm. whereas lor  a smal ler
one  ( r i : 10  s  cm)  a  va lue  o f  on l y  / : 103  cm resu l t s .
For  T:  300 K the la l ter  example y ie lds /  :  10 6 cm.
Thermai radiation alone would therefore prevent ob-
servation of interference cffccts even for very small
dust particies.
Even free clcctrons (or other cl-rarged particles) are
affected by thermal radiation. Inserting the classical
Thomson cross sect ion

(3 .60)

( 3 . 6 1 )

l l . 6 l )

gir  ing the density

\  .  . / rk  - ] :  / . " r  r r
, . :  i  -  .  r r 1 k ; :  

- ,  
r ( - 1 . ) {  

' " '  
}  1 3 . 6 4 )

I  l : f t ) '  f t -  \  1  l

.11 ma,v be replaced by i ts  average value
v

, : ,  1 t ^ .  , { k r , 4 1  ;  
/ t k ,  

, , r k r'  
t 2 f t ) ' '  

' ( 2 / r ) "

For black body radiation thc rvavc-numbers /< are
occupied according to Planck's larv

2
r i l k l : (3 .63  )

e x p ( r ' A  k B T l -  l '

l 1  .  / i : { A ) -  |  \ )  k 8
, r t " t ' l t l A l  ,  I

4 n '  '  \ r ; { A ) +  2  /  e x p t , ' A  A s f  t -  l '  { . 1 . 6 5 }

If r;(ft) is approximately constant (for frcquencics be-
low the resonance region it can be replaced bi, its
. t r r t i c  v r r l ue l .  l he  resu l t  i s

' : (-lul' (#)' t t! u,, c,((e), (3 .66)

n ] rere i ( r )  is  thc Riemann ( - funct ion.  wi th
r r 9 t -  1 . 0 0 2 .
The t i r le  dependence of  t l - re dcnsi ty  matr i r  (3.57)  can
be u r i t ten as

(3 .6e)

where e2,nrr '2  is  thc 'c lass ical  e lect ron radius ' .  g ives

1 7 N ,  . / e 2  \ 2
A t , :  -  A ' l  , l

f t  t /  \ l l l  a_  /

and as average value

1 1  ^ z  , 2  A +t - " . l ' \ . i , t r
"  -  

4 x j  \ r r r , :  /  
'  J " "  c x p ( r . A  A o f  )  |

1 1 )  , . 2  , 2 . 1 - 7 - , .
: ' " , , t 5 ) . ' ( ' . )  { " " ' )

f t -  \ i i l ( - /  \  t '  I

O . 1 1  1 d - . o , , , .  1  / 6 1 1 2

1-r.70)

( 3 . 7 1 )

(3.12.1

wi th  ( (5 ) -  1 .03 .  Fo r  t  -  1  s  a  ' cohe rence  l eng th '  o f  / ( l
: 1 s ) : 1 0 a c m  f o r  T : 3 .  a n d  / ( r : 1 s ) : 0 . 1  c m  f o r  f
:300 resul ts .  Al l  va lues of  /  depend on t ime as t -  r12

(see (3.68)) .

On the other hand. i i  the wavelength of the scattered
part ic le  is  comparabie wi th or  smal ler  than thc ex-
tcnsion of the scattering object (c.g. a dust particle).
the geometr ica l  cross sect ion bccomes re levant .  In
particular the comparatively small de-Broglie wave-
length (2.12)  for  par t ic les of .  say"  room temperature.
leads to a strong cclherence dirmping for clbjects
subjected to scattering by air molecules even in the
bcst  avai lable vacuum. For  the case of  geometr ica l
scat ter ing one has in  (3.58)

where r r  is  the er tension of  lhe scat tcr ing object .
Averaging over rvavelengths gives, c.g. for thcrmal/ l  ( r  )  :  1r  (0)  cxp [  -  (x  -  x ' )2, '8  / :  (0 ] (3 .67)
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Table 2.  Local izat ion rate ,1 in cm t  s t  fot  three s izcs ol  'dust

part ic lcs '  and var ious scat ter ing proccsses
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l t  is  convenient  to  in t rodl lce rotatec l  \  ar iables

a :  l 0  3  c m  a : 1 0  5  c m

dust  dus t

a - 1 0  " c m
large
molecule

z : : - x - | - { ' ,

which transform the above eqttation irtttr

a p \ t ' . 2 . 1 )  2  , ' f t
-  i  l  t  -  , t

t .
L t t  n 1  (  I ' (  :

One may construct  specia l  so lut icrn:  t  i  th is
by a Gaussian ansatz

(3.76 a)

(3 .76  b)

(3 .11)

e quatlorl

Cosmic background
radiat ion

Room temperature

Sunl ight  (on earth)

A l r

Laboratory vacuum
(106 part ic lcs cmr)

1 0 '

1 0 "

1 0 2  I

i 0 3 6

1  0 2 1

1 0  n

1 0 r l

1 0 1 '

1 0 3  2

1 0 ' ' '

l 0  1 2

1 0 6

[ 0 1 3

l 0 r 0

1 0 1 '

radiation.

1 A  / 1 .  - / - \ 5

, l :  l -  ,  r t 2  c  ( l B '  )  ; t S 1
l . l f t f  \  c '  /

(3 .7  3  )

(compare (3.66), where ,4 depends in a quite different
way on radius and temperature). Table 2 gives a
listing of various scattering processes for three sizes
a of ' dust particles'. The last value .t - 10 - 6 cm
corresponds to large molecules. The table contains
rough estimates for the localization rate ,4 for the
different measuring agents l isted in the first column.
,4 is  g iven in uni ts  of  cm '  s
The table shows that in general scattering of air
molecules is most important, mainly because of the
smali thermal de Broglie wavelength of the scattered
particles.

111.2.2.2.  Equat ion of  Mot ion.  In  the preceding sec-
tions the influence of scattering processes on the
density matrix was considered neglecting internal
dynamics. For a complete treatment including also
the unitary evolution of the system itself, the full
Eq. (3.28) has to be discussed.
For a 'free' mass point one has

D 2U
r r  i n t e r n a l  

-  
-
/n't

(3 .14)

The quantum mechanical evolution of the system
described by this Hamiltonian leads to the well-
known spreading of wave-packets, corresponding to
an increasing coherence length. The opposite effect
is generated by the scattering term. The equation of
motion (3.28) now reads ([or one space dimension)

; 2  ,. . i ) ( . \ . . \ , r J  I  l r 'r  .  : -  l r , r - " , ) r ,  l , l  1 . v - r ' ) 2 p .  { . 1 . 7 5 ,
( l  l m  \ ( . \  

-  { - . Y - /

p 0 ' ,  z ,  t ) :  exp -  lA ( t )  l ' t  +  i  B ( t l r ' :  -  ( .  r  I  r  - - r  -  D 1t11,
(3 .78 )

where p is  Hermi tean i f  the t ime-dependent  coef-
f ic ients A,  B,  C are real .  D(r )  nrr rnta l lze:  t race p to
uni ty .  This  ansatz appears suf f ic ieni l r  gencral  to
exhibit the essential properties tri thr' >,' l l tt ions of
(3.75) .  Obviously  ,4(r )  descr ibes the range o i  coher-
ence conta ined in p,  whereas Cl t t  specr i ie .  the er ten-
s ion in  space of  the ensemble.  erp l ic i te l l

^  I  8 2 \
1A i l '  :2 l  A  t -  1 .  {3 .80)

1  + L  /

hence the lefthand side of the uncertauttv relation
can be written as

1/x )2(ap12: t . (+* -4  )  (3 .8 r )
4 \ C  4 C 2  |

For  ,4 :  C (pure state)  and B:0 t rnc has the wel l -
known case of  a real  Gaussian sare packet  wi th
minimum uncerta inty .  The ansatz t -1. -St  lcads to the
coupled ordinary differential equilt ir)ns

^ l
( / r ) ' :  - .

6 L

The spread in momentum is  g i ren br

d A 4
- . : -  A B +  A ,

d t m

L l B 2 ^ 8
- :  B z  -  A C ,

d t m m

d c  4
.  : -  B C ,

dt t't7

while D(r) is given by

e D :2 (C in )1  
2 .

( 3 . 7 9 )

(3.82 a)

(3.82 b)

(3.82 c)

(3 .8  3  )
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Rescal ing the t ime I  by in t roducing t , : r / r? reta ins
only the product ,4m as a dynamical parameter,

23s

rp, , ( ,x) :N.FI , [2( ,4 C)1 'ar ]  exp 12l21AC)t  t2  + iB l
(3 .e 1)

with

1 v :  
l a . c l t 4 , -  

r r q ) l) '  
2 n  

I  
n r . n l  

2  t J " - '

(1I,, are Hermite polynomials). The eigenvalues p,,
are given by

Pu:  Po Q",  (3.93)

where

d A
,  : 4 A B + A M ,

A I

, lB
,  : 2 8 '  8 A C ,

d T

d C
,  : 4 8 C .

d T

The solution is characterized by a
nomial G(r) obeying

G "  - 3 2 A m .

Then

GIz  G ' '
l / - r -

O + t r  - ) Z

(]'
B t r l :  -  * ,

4tt

I
C ( r ) :

G

(3.84 a)

(3.84 b)

(3.84 c)

third-order poly-

(3 .85)

(3.86 a)

(3.86 b)

(3 .86  c )

(3 .88  a)

(3.88 b)

(3.88 c)

2  C | t 2
r t ) -  

A t  2  +  C r  z .
A 1  i 2  -  C t i z

" 1  
- A t 2 + C r 2 ' (3.e4)

(3.e5)

use the ' l inear en-

(3.e6)

The diagonal representation (3.89) also allows calcu-
lat ion of  the entropy ( .ks: l ) ,

S :  -  ( l n  p )

:  - t r ace  (p ln  p ) :  * I  p , l npn

identically fulf i l l  (3.84). Writing

- 1 6
G ( r ) :  

,  
A m r ' l L 2 T z  + c 1 r l c 6 ,  ( 3 . 8 7 )

the coefficients may be determined by init ial con-
di t rons,  e.g. ,  a t  r :0 ,  as

:  -  po ' ko  l n  ps *  t t l n  q ) .

T t  may  be  more  conven ien t  t o
tropy'

S 1 1 " ' :  - 1 0 ;

: -traceb2): 
Lp|

:  - ( c l A \ 1 i 2

I

" 
- 

c-(o)'
v , B(0)

' c ( 0 ) '

, . -  +  (q ,q ror+  LB(o l l - l  \_ \ c(o) |

Thel are obviously related to the physical quantit ies
(.1,r)2 and (/p)2 (see (3.79) and (3.80)).
The Gaussian density matrix (3.78) has the further
advantage that its diagonal representation

p:Lp,lrp,) (E,,1 (3.89)

can be explicitely constructed by soiving the integral
equation

p, , tp , , lx) : ldr 'p( r ,  x ' )g, (x ' ) .  (3.90)

Solutrons [30] are the harmonic oscil lator wave
functions

with - 1 3 S,," { 0. S,,, is obviously monotonuously
connected with S rn this case. As (3.75) is a master
equation, the entropy is expected to increase. This is
indeed so. as

dStt"
-  : - / ' I r a c e p p

a t
:  *2 

[dx 'p(x,  x ' )  l (x ' ,  -x)

:  + 2A I  dr 'p(x, r ' )  (x  -  r ' )2  p(x,  x ' )

: 2 ,4 [dx ' ( x - x ' ) ' l p ( x , x ' ) | 2  >0 .  (3 .91 )

For C > A the entropy S is negative (resp. S11n < - 1)
corresponding to the presence of negative proba-

bil it ies. This range has to be excluded. It would
occur by integrating (3.75) backwards in time be-
yond a pure state, just as exponential decay would
lead to normalizations greater than unity for nega-
tive times.
The lollowing discussion wtll concentrate on the
question, over what distances interferences can be
observed at the mass point under consideration,
described by a density matrix p of type (3.78). The



(3 .98)

It describes the width of p in .r", lor which coherence

is present. For a pure init ial Gaussian state of width

b ,
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crucial 'cohcrence width' 1 of t l-re
(3.78)  is  g iven by

/ ( r ) ,  :  [ 8 ,1  ( r  ) ]  
1  2 .
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molecules.  which dominate as a meast l r ing agent  in

almost ali situatiotts, this cot.tsistency condition for

pure init ial states could be realized in nature only

for very small init ial widths b.

The large- t ime behavior  (3.104)  corresponds to a

coherence length decreasir.rg as (,1r) I I This again

holds only as an approximation, since the coherence

length has to asymptotically approach the thermal

de Broglie wavelcngth l",n of the r.rbfect as -eiven by

the tempcratLlro of the particle bath. t l-rat is

A( t )<)"*2.  This l imi tat ion of  the prcsent  r rodel  is

due to the assumption of passive meiistLrements (re-

coi l - f ree col l is ions) .  dynamical ly  equrra ler l t  to  an ln-

finite mass. and therefore vanisl.ring de Bloglic wave-

length.
lnvestigitt ion of the higher order ternls ot' thc expan-

s ions (3.103)  and (3.10,1)  shows that  thel  are negl i -

gible i l the sets of inequalit ies

/ t  < t  <  l n i  b6  <  An12  ) . 6  and

.  h2 nt2 )"2 m2
r ' < <  <

A  
- A

for small  t imes, or

1  1  . .  b 2 n t 2
t > i r , t >  

i ,  
a n d  t - >  

A

(3 .10s )

density matrtx

(3.9e)

(3 .100)

(3 .  r  01 )

(3 .102 )

rp ( - r - ,0 )  : (2nb2) -  l ra  eXp ( -  x2 , '4b t ) ,

one has

1
, 4  ( 0 ) :  C r t l l - . , '  ,  .  B t 0 t  -  0 .

6 t  -

The time dependence of ,4(t) according to tl.re mas-

ter  equat ion (3.75)  as descr ibed by (3.86a)  is  then

given by

L t , \ -

whi le

4  A2  m2  b2  ta  I  2  Amf  +  24  Amha  t  +  3  h2
. - : C I , 1 , , * ' r r  

. 3 r '  -  l l h + t

3b2r / - \ -'  
" ' -  1 1 8 , ' 1 r , i h 2  r r  -  3 r 2  -  l 2 b a l

,4 (r) increases l inearly with timc lor small r,

l _
, 1  ( r )  : , - *  A t + 0 ( r - l ' ,

6 n -

as well as for large r,

A r 1 ,
1 1 t 1 :  .  * . ^ , ,  l ' 0 ( l  r ) '

4 .t1-t')-
( 3. 1 0,1)

In  the l i rs t  case the term, '1r  ar iscs f rom the scat ter-

ing term in (3.75) .  whereas for  largc t imes 3 '4 of  i t  is

compensated by the intert.ral dynamics. ln both cases

the destruction of coherence dominates tl-re dlsper-

sion ol the wave packet.
As ment ioned above.  the l inear  t ime dependence
(3.103) ivould lead to ne-qat ive entropy and r legat ivc

eigenvalr . res o l  the densi ty  matr ix  for  ncgat i rc  t imes.

In fact. thc exact behavior for very small t imes is

characterized by a quadratic t ime dependence (com-

pare Sect .  l l I .1) .  As the l inear  t ime dependence can

be  j us r  i f i ed  b1  a r  e rag ing  ove r  m i tn )  sc r l l e r i ng

cvents.  the master  equat ion (3.75)  wi l l  ho ld for  t imes

r being large compared to the time intcrval ,1 r be-

tween two col l is ions:  t )At .  The in i t ia l  condi l ion
(3.100) is  therefore consistc l t t  wi th the master  equa-

tion only if i t is not cssentially cl-ranged by a ferv

measur ing col l is ions.  This holds t rue i f  thc or ig inal

ividth b is small compared to the effective i l i tr e

length l" of t l-re scattcred particles: b(i '  Bu'causc of

tl ic very small thermal de Broglie wavelengths of thc

( 3 . r 0 6 )

asymptot ica l ly ,  are s imul tancously fu l f i l led Here the

consistency condi t ions d iscussed above harc been

added for  completeness.  Al though.  according to
(3.104).  ' ,1  ( t )  becomes asymptot ica l ly  independent  of

the ori-einal width b. the range of ialidit l t)f asymp-

tot ic  behavior  s t rongly depends on i t .  The complete

shape of  the solut ions d i f fer ing in  the phrs ica l  pa-

rameters b. nt and ,{ is characterized solell by the

dimensionlcss quant i ty  l t , :  Anrha.  Ft ' r r  example,

i rom the expression (3.101)  one may der i re the re-

sul t ,  that  A( t )  can never  drop belon . '1(0)  i f

p > 1 9 2  1  2 .

In order  to i l lust rate the d i f ferent  types o i  so lut ions

for  ,4(r ) ,  thc cohercnce lcngth / ( r ) : (81(r ) )  I  2  is  pre-

sented in Fig. I for the sir sets of parameters that

resul t  f rom combin in ing T:0.  3 K and 300 K wi th b
:  10 2 cm and 10 5 cm. and nt  -  l0  1 ' r  g  (smal l  dLrst
par t ic le) .  Measurement  b l  thermal  radiat ion only

al though not  bc ing ver l '  real is t ic  is  cot ls idered,  as

it ir l iows to displal ' the dilfcrent t) pes most dis-

t inct ly .  Thc resul t ing valucs of  the c l imer ls ionless
qr . rant i ty  t r r  are 0.  l0  1.  l0r -  for  f  -0.  3 K.  300 K.

rcspect ivc ly .  ior  b -  10 r  cr .n.  ar . rd p :0.  l0  '3 .  10s
for b : 10 5 cm. Onl-v for the cor.nbination

b:  10 5 cm and 7 ' :300 K the consistency condi t io t l

for  pnre in i t ia l  s tates is  not  iu l f i l led.
As can be seen f rom Table 2.  scat ter ing of  a i r  mole-

(-r.10-r)
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1 0 5 l o l o  l o r s

F ig .  l .  T ime  dependence  o f  t he  cohe rence  l eng th  i ( t ) , : ( 8 . 1 ( t ) )  ' '

l , r r  ccntcr  of  mass of  a smal l  dust  part ic lc  $: i th radius a:  l ( )  
'crn

l r l l i ls \  i r?-10 t*g)  under cout inur)us mcasurcmcnt b1- thermal
ra! l rat i r )n onl l ' .  Six typical  s i tuat ions di f fer ing in temperaturc f
aud iLJhclence length h: i  (0)  o l  thc in i t ia l  Grussian wave packet  arc
:htr$n.  Al l  curvcs wi th l r+0 star t  wi th negat ive der ivat ive (compare
( -1 .1 { )+ l )  r c ckogn rzab l c  on l y  f o r  f  : 300  K .  No t i ce  t he t  i nc re r se
of  e. ,herence length corresponding to qLrantum mcchanical
spreading of  wave packets domrnates onl)  in a l imi te i l  t imc range
and i f  h rs suf f ic ient ly  smal l ,  or  i f  7 ' :0 (no measurement) .  For
larse t imes /  decreases in a l l  cascs I*0 lv i th r  1r .  Dccrcase of  I
l i l l  cc lsc l inal l l '  a t  thc thcrmir l  c lc  Brogl ie ualc length l . , ' ,  o l  the
du.t  part ic le (not  descr ibed by the model l .  I r r  real is t ic  s i tuut ions
:c. i t tcnng of  molccules ui l l  redr-rce the coherence length even
r.r.iore elleclivel)

cules dominates in effectivity under realistic con-
di t ions.  main ly  because of  the smal l  thermal  de
Blogl ie  wavclength,  e.g.  2-  10 e cm for  I :300 K.
For the same dust particle as in Fig. 1 with rirclius
r i :  10 5 cm! now wi th in i t ia l  wave f l lnct ion width
l r  :  10  I n  cm,  one  f i nds  1 r :  10s  and  A t  =  l } - r a  s .  The
as)  nptot ic  region wi l l  then begin a l ready at
t  -  10-  s  s .  Hence.  under usual  c i rcumstances a l l
' l 'r lacfoscopic' objccts can be assumed to be local-
izecl rr ithin tlrcir Ihermal dc Broglie wavelengths.
Another  important  physical  quant i ty  is  the spat ia l
e\ tensio l r  o f  the ensemble descr ibed by thc c lensi ty
matr i \  p .  I t  is  g iven by the coei f ic ient  C(1) .  namel) , '

r l  1
I  I r r r : ^ ^  - . ' ^ { 8 , { r r r r r + , - ,  t 2  I  l 2 F }  1 3 . l 0 7 t

d (  ( / )  t t \  n '

(compare (3.79)  and (3.102)) .  Again as is  thc case
for the coherence length for lar-ue times the ,4-
dcpendcnt tcrm dominates. Hence the spreading of
the ensemble is  more rapid than had to be expected
from a usual dispersicln of the wavc packet by itsclf.
Frgr"r re 2 presents z l r ( r )  for  the same s i tuat ions as in
F i -9.  1.
The stror-rg influence of the environment can also be
seen bJ considering the er.rtropy S of the density

L )  |

Fig.2.  Timc dependcnce of  the spt t ia l  exte l ls lon l . r (a)
-(EC(r))  I  2 of  the enscmble erolv ing f rom an in i t ia l  Gaussian

rvar 'e packet  for  the samc si tunt iotrs as in Fig.  1.  In a l l  cascs r l i th

T>0 .4.r  incrcases faster  that t  n i thor-r t  measurement ( f  -0)

matrix p. In the case of a dust particle measured by
air molecules, the entropy, when expressed as tl le
number l { :es of  s tates conta ined in the or thogo-
nalizing ensemble tl lrns out, for example f 'or

r  :  l0  6 s ,  to  be about  l { :5  .  10"  (sec (3.95)) .

IIL2.2.3. Ehrenlest Tlteorems. The time dependence
of  the mean values of  posi t ion and momcntum of  a
free particle follows thc 'classical' equations

se c l

v

v

d , ,  ( p )

d t  t l l
(3 .108  a )

-  ( p ) : O  ( 3 . 1 0 3  b )
d t

These cquations are special cascs of what is known
as 'Ehrenfest t l.reorems'. which formally conrrect the
time dependence of mean values of canor.rically con-
jugate observables wi th the Hami l ton equat ions of
classical mechanics. They are often used to l ink
quantum mechanics with classical mechanics. How-
ever, theorems on expectation values are by no
means sufi icient. Nevertheless. the time dependence
of mean values is of importance for a purtiul deriva-
t ion o i  c lass ical  mot ion as d iscussed in the in t roduc-
t ion.  Eqr"rat ions (3.108)  have to be rcder ived for  sys-
tems under continuous measurement. as tl.rc density
matrix does tl.ren not obey a von Nellmann cqua-
t ion.  This could inval idate the Ehrenfcst  theorem. In
addi t ion,  the so-cal lcd 'watchdog-ef fect '  or  'Zeno

paradox'  might  in f luence the mot ion of ' the par t ic le .
This effect is a consequence of repeated (cven ideal)
measllrements and can lead to a freezing of the
mot ion of  the cont inuously observcd object .  Analy-

A x  ( t )  l c m l
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sis of this mechanism has shown [6], that systems

with dense spectra are not as sensitive to this freez-

ing as,  e.g. ,  two-state systems.  In the case of  a ' f ree '

particle one has a continuum of states, therefore

ideal measurements are not expected to lead to a

f reez ing  t r l  t he  mo t i on .
The Ehrenfest theorem in the form of Eqs. (3.108) can

be shown to remain valid by direct calculation.

Writing the equation of motion (3.75) in operator

notation as

(3 .109)

where

(xl r I,r ') : - .4 (.t - r ')2 P (x, 'x'), (3 .1  10)

the time derivative of the expectation value of po-

s i t ion is

while for momentum one has

These equations are identical to (3.108) if the terms

containing ) vanish. This can be seen immediately,

since

Tr  { r f }  :  A Idxdx '  5 ( , x  -  x ' ) . x ( x  - x ' ) 2p ( r .  x ' ) : 0 ,
( 3 . 1 1 3 )

Tr  {p)}  :  -  i  A I  dx d.x '  d ' ( r  -  r ' ) ( r  -  r ' )2  p(r .  x ' )  :  0 .
( 3 . 1  1 4 )

Hence. the connection between the expectation val-

ues of position and momentum, as given by the

Ehrenfest theorem. is retained. A contlnuous

measurement by (ideal) scattering processes, when

described by (3.75), does not lead to a damping of

the spatial motion.

I  I  L3.  St  at ionctr  1 '  Ent i ronment

The measurement of a certain property leading to

the destruction of local phases requires that the en-

vironment changes in dependence on the value of

the property to be measured, as described by von

Neumann's interaction (1.1). As discussed previously,

E. . loos and t I .D.  Zch:  Emergence of  Classical  Propert ies

the measurement may well be 'uncontrollable' in the

sense thal the environment is in a homogenuous

mixture of all 'pointer positions' before and there-

fore also after measurement. lf the probabil it ies for

all pointer positions are equal, the init ial density

matrix of the environment can be diagonalized as

well by means of an orthogonal set of stlperpositions

of pointer positions. Especially one ma)' choose ei-

genstates of the interaction Hamiltonian (in the fac-

tor space of the environment), that is. states that

cannot. vary in dependence on the measured proper-

ty. This raises the question (to be discussed in

I I I .3 .1)  of  how the destruct ion of  phases can be

understood in th is  's tat ionary represel l ta t ion ' .  Ho-

mogeneous mixtures occur in particular in canonical

ensembles l ike black body radiation. for instance if

chirality is measured by unpolarized photons.

In Sect. III.2 measurements were described b1' means

of successive coll isions. This procedr.rre is equivalent

to the application of a master equatl(rn. and to the

assumption of a time-dependent environment (in-

coming wave packets). In the case of an equil ibrated

environment, eigenstates of the interaction-free

Hamiltonian have to be considered as init ial en-

vironment states. Since

exp (  -  H , l kT )Oexp  ( -  H  @lkT )

is only an approximation of exp [ \H a+ H@

+W)lkT), information may then sti l l  f lon into cor-

relations between the systems. The tLse of a master

equation in the case of a stationarl state of the

environment wil l be justif ied in Sect' III.-1.1

111.3.1. Measurement b,,- Eigenstates o.l t l te Interuc-

rion. Consider the situation of a t\\.o-state system rp

measured by another two-state system 7. b1 means

of the Hamiltonian

n: i |<po) (Eol - lE') kp'll

8 | z * ) ( z  l + l x  ) Q . l l ( 3 . r r 5 )

It corresponds to chirality being measured by polar-

izat ion as in  Sect .  I I  (wi th /E:0)  e\cept  for  the

important difference of spatial degrees of freedom

now being neglected. The polarization / rotates ln

dependence on chirality l ike

l rp*  1)  [cos ( . t t ) lX*)  + I  s in (7t )  7 ) ] (3 .1 r6 )

d  ,  - l , | P l  
( r n 2  r )

j , (r) :rrt .* ; ; i :  
- i  rr i , .L;, ,  r l i -rr  {rr l

1 n \
: ) ' 1 + T r  { . x f l ,  ( 3 . 1 1 1 )

m

i , rr ,  : r ,{ ,nf, \ : - , ' '  
t ' [ i ; ' ] ]  -  rr  ipr i

: T r { p I } .  ( 3 . 1 1 2 )

This time dependence is reversible. since the particle

carrying the polarization cannot 'run awav' in this

model .  An in i t ia l  superposi t ion 2 t  t ( lEo)  + lqL>)

ieads to a density matrix of the subsystem q glven

by
, t  I  c o s ( 2 ; t t i  

( 3 . 1 1 7 )1 t ' \ t l : i \ c o r 1 2 1 r ;  |  |
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in the chirality basis. There is no l inear term in r
corresponding to a master equation for a two-state
system. The interfcrence disappears reversibly at
2. , , t :n12,3ni2,eIc.  Since the samc resul t  is  obta ined for
an in i t ia l  polar izat ion l7  )  instead of  lZ-) ,  i t  ho lds
as well for a mixture of both.
A mixture corresponding to the unity matrix can
also be written as a mixture of the superpositions

1 / . t . . ' ) : 2  
t t t ( J l , ) *  

I  ) ) ,  be ing  e igens ta tes  o f  t he
Hamiltonian. They are not able to measure chirality,
as they obey the trivial t ime dependence

rp a.  r )  lL)  exp I  f  l7 t ]  and

q n  ) 1 t ) e x p  [ { l 7 r ] .  
( 3 ' 1 1 8 )

In th is  case the superposi t ion 2- t ' t ( l rp*)  + l<pt) )
leads to the density matrix of a pure state for all
t imes.

u'ith the upper or lower sign corresponding to an
init ial state l lt) or 172), respectively. Al1 interference
terms are 1ocal1y preserved. Bclth systems remain
passive according to (3.118), and neither measures
the other  one.  Nevertheless,  a mixture of  ]X1)  and

7.) ri ' i th equal weights leads to (3.117) again. and
thcrefore surprisingly is able to 'measure' chirality
(to destroy locai phases).
This situation can be i l luminated by considering the
case of an init ial mixture p, which is not due to
inctrmpiete information, but instead due to a ki-
nematical correlation with an environment @ of the
envi ronment  7 ( ' improper mixture ' ) ,  2  ' i t ( lZ) lOr)

+ l)lb)), without interaction between Q and 7
\v and (@1 l@r) :0.  This corresponds to the same in i -

t ia l  densi ty  matr ix  pr : I12 that  leads to (3.117) .  The
t ime dependence is  now given by (compare 3.118)

rp n )  t , \ t ) l@1) exp [  + t ) ' r ]  + lX)  @.)  exp [  {  l7r ] }

:  r - rn  i - ) { ( l r r ) l@r)  + lxr>\@2>)
.  cos(7/ )+ i  ( lx1)  l@1) l t )@') )  s in  (7t ) ) .  (3 .120)

The  comb ined  s ta tes  2  " ( . l t ) l@r )+ l7 r ) l@2) )  now
lead to a time-dependence that does measure chiral-
it1'. and thereby they assume the role of lXl ) in
(3.116) .  As the 'Schmidt  representat ion '  (3.1)  is  de-
sene re te  i n  t h i s  case .

1 t ' )  a r )+ l t ) l@) : l x - )  l@*>+ lx  ) l o  ) ,  ( 3 .121 )

Eq. (3.120) can also be wri t ten

lrp* .)  { [  7-)  cos (" i t ) t i lx )  s in(7r)]  l@*)

+ l + i l 7 * )  s i n ( 7 r ) + 1 7 - )  c o s ( r r ) l  l @  ) )  ( 3 . r 2 2 )
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wherein l@1) remain complete ly  passive and 171)
resume their original role as in (3.116). In the generic
case the Schmidt representation of a correlated state
is unique, and the phase relations defining the states
which diagonalize the density matrix p, are given
unambiguously.
The situation described by this simple model essen-
tially holds in more complicated systems except that
the recurrence time for local phases dramatically
increases with the number of effective degrees of
freedom of the environment.

111.3.2. Meusurement bv a Stationtu'1, State of the
Eru:ironntent The preceding simple two-statc model
for the environment led to an oscil lating time-de-
pendence of the interference term FrRr. A more re-
alistic environment @(r.;) wil l in general cause a
more complicated behaviour. The Boltzmann-type
master equation (3.28) corresponding to a l inear
time-dependence '- is usually justi i ied by averaging
over coll isions occurring at a constant rate. The
exact t ime-dependence of p*r would then be given
in a complicated way by the shape of the incoming
wave packets.
For stationary init ial states of the environment con-
stant rates may be derived in the usual manner from
a Born approximation. In a one-dimensional model
the interaction with the scattered particles may be
assumed to be of type

W : l lE ) (rpol - l,p ) (E ' l)

8 l lz r )  Qzl+ lxz)  (z , l ]  r ( ' ) (3.  I  23)

where lX) refers solely to the particle spin. If the
init ial state is assumed to be

v(0)) : ] ( lq^)  + l ,p . ) ) ( l r ' )  +  l t r ) )  l@(0))

i t  wil l evolve according to

Y(r)) :  ]( lrpo) x ) + l ,p ) f t)) l@* (r))

+ 1( E^) lx) + lq ,) l l1)) l@- (r)),

(3.  I  24)

(3 .1  25)

where l@ a (r)) is the spatial part of the scattered
particle state, corresponding to the potential f lz(-t),
respectively. The interference term

pnrft):Il(a* (r) l@ (r)> + (@- (r) l@* (r))l
: *  R.  (@. ( r ) j@ (r )> (3.126)

is most conveniently calculated from the interaction
representation (in second order)

( -  t  r

p 
",(t) 

: t Re J 1 - 2 < @(0)l ! d-c I d t' vwk) vwk' )la(U)
l o o

p, , t r t - ! ( . "0r i2 , r ,1  ' "p t tz i i t l l  (3 .1re)

, ( @ (o)l l'! u, r* otf' @ (o))] (3 ,127)
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wi th / ry( t ) :  exp ( lHo t )  Iz( ' r )  exp (  -  iH o t ) '  Inser t ing a

.o-pt.t. system of plane waves lk') normalized on

an interval'of length 2L and assuming l@(0)) also to

be an eigenstate of I{s with eigenvalue E(k)' one

obtains the usual resonance factors

. ,  i , , 1  I  , -  
s i n : [ t E t k t -  E t k ' t t r  2 1 , l z t k . k , t l 2  

1 . r . l i x ), '  ̂ 1 . r r  t  -  y z  I  t E { A  ) _  E ( A ' ) ) r

where

+ (  -  ) ' - ' '  
t t l@r+ J" '  )  ( - l '134)

(n |  r r r )  7 t+ / , , -  + J , , ,

Although the denominator of the first tel 'm causes a

resonanle-like behaviour in / ' ; - k' i f rr atld trt are

replaced by kLt2r- and /. 'Lt2n. the statcs L^iln never

be considered as clense within the resouauce' and

may contribute indiviclually under A slrl l l '  crit ically

J.p"naing or- r  the values of  / , , r -1, , ,  T l . re second

term vanishes wi th L-Y' .

The general t ime-clependence o[ pp1(l) is l1o\\ ' grven

by eipanding the init ial state by mealls \)f thc sta-

t ionary statcs (3.1 3 I  ) ,

( lrpn) + l ,p"))( lz '  ) + lzz)) l@(0))

: ( lrpn) \7,) -t  le r) lzr)) I . ' ,-  i@,- )
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p R L ( t )  i i r e  c l r l c u l u t e d  a s

sin ( ,4, , *  -  / , ,  \
<Q,  l 4 ' , , , ) : ( - ) ' * " '( n - n r ) f t * / n .  - 7 u ,

+  ( l (pR)  17  )  * i o  )  l r . ) )1 r , ,  lQ , , ' ) ( 3 .  l  3 5 )

wi th  
n

, ,  -T  , .  ( , i , ,  u  S ln ( / , ' L  i l "  )  ( 1 .136 )
( r ,  - L \ \ I t  '  

, , ,  _ t t t ) f t _  1 , , -  1 , ,
/ ,  t t s

one obta ins f rom (3.126) for  mirss less per t ic les ( rv i th

E , , n - k , r + c )

For sufficiently largc timcs the resonance factor in

(3.128)  may b l  replaced by n rd(E( /<)-E(k ' ) ) ' '2  and

ih. ,u- over k' for large L be approrimated by an

i r - r tcgra l ,  l -Lr2nldk 'o{ .k ' )  
(wi th densi ty  of  s tates

o(k)). This lcads to the l incar time-deperrdencc

L

i1k,k '1 ' :  J dt  lz( ,r)  cos (k r)  cos (k '-r) '
L

( 3 . 1 2 9 )

f o r  r ( 0 .  t l . l I I u )

i o r  r z 0 .  l l . l 3 l h )

(  3 . 1  3 2 )

p* r ( t )  = i ( t  - ; ' )  = f  . *o  ( -  ; ' )
( 3 . 1  3 0 )

@- ( . r )  : ,4  -  s in [k1 ( - r  + L) ]

@ r  ( r ) :  B 1 s i r . r  [k .  ( . r  -  L) ]

u  i t l r  e i gen r  i t l ue  cqua t i o t t

k :  T" i  tan ( /<L)

der ived f rom the cont inui ty  condi t ion at  'x :0 '  The

e igenva lues  c l t n  be  u r i l t cn  as

Lk,,: (rt - !) t - l y',, y '. rr : 1 ,.2^ 3, ( 3 . 1 3 3 )

t ) n t . \ t \ : ! R c  I  c , , ,  c u * ( - ) ' ' * "

. .t1!., -:1, )
( m -  1 t ) n l  / , , -  -  l u

'  c x p  { - i [ ( r n - i r )  n l  ' l u - - 1 , , ,  ]  (  |  1 - ]  ( 3 ' 1 3 7 )

In order  to get  a l inear  t ime dei ret r t le t ret -  r t '  in  (3 '130)

onc has to employ a s imi lar  i r r i t ia l  c t t r lc l r t i t )n .  Choos-

i ng  fo r  s imP l i e i t l  t ' , ,  : ' i , ' ,  r l i r c :

I  :  , i n r {  1 , , ,  -  1 r  )
^  r , t -  \  - -t ' R I " t - 2 , ! , l l r ,  1 l n -  l "  -  1 r  l -

cos [ ( r r r  -  l \ t r t ' t  I - ] . (3 .  r  38)

with a :2 lV(k,k) l 'zo(A) .  The coei f ic ient  vanishes wi th

increasing L due to the normalization of the particle

wave fun-ctions. For ,N independently scattered par-

ticles, with N being proportional to L (fixed density)'

the damping factoi in (3.130) occurs l{ t imes and the

t-aeperli.nic crtttecls in close analogy to (3'42) arnd

(3 '57) '  
here beHowever, the Born approxlmatlon can

avclided in a simplc way' as the stationary solutrons

l@.)  corresponding to the chi ra l i ty ' 'sp in s tates

l ,po)  lz , ) ,  l ,p) l t )  and l tpn)  l t ) '  lE) l t ' ' ) '  respec-

ii;;y: ."n u. r.una exactly' For examplc' for a iocal

potent ia l  I r ( t ) :7d( t )  and an in tet"val  -  L3r3L

they are g ivcn bY

J t l t { 1 ,  -  1 .  )

( r ? - / ' r ) i -  l ,  - 1 , ,

(3 .13e )

assuming 7, , , -  ( ' I  L(  f  .  in  thc Bor l l  approximl t l t t rn

rangc  1 j , , * - , ' t ,  : z r  f t l t ' " ' -  11  t he  t c rm  r ' v i t h  m- - l - 1

Joi inu, .J  for  smal l  r -  icec l ing t t ' r  a  quadratrc

time dependcnce. ' ' \  l inear timc clependence cannot

be obtainetl from a paftial stl l l l  ovel rlr '  It is there-

lbre conventent ro partit ion the sttm it ito tl.rree parts'

wi th 1r4, ,1 l<r ,2.  The d i f feren ce 7, ,*  -  t1 , ,  : '  z1-1"  tn-

creases smoothl,v from 0 for small k to zr for large k'

wherc the Born apprt lx imat io l . r  holds '  For  gr \en mo-

mcntum the quantr-rm number rt can be trssumed tt 'r

be ol order L' The overlap intcgrals reclr"rired for

/  r  1  r i  I  l + k

s -  T  t  +  t  +  t
L -  L '  L  ?

r , r  -  I  t t l - -  t  t t l -  '  t ' t  ' l  I  r ' r  r ! A *  I

thereby leavin-q thc cr i t ica l  terus in  the f in i te  sum'

The inl ' inrte sums call be replaccd bf integt'als ovet'
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by the influence of a specific cnvironment. and con-
trary to usual thought are not intrinsic to macro-
scopic systems. This demonstrates clearly that classi-
ca l  physics is  not  a l imi t ing case of  the quantum
physics of  iso lated systems.  On the othcr  hand the
origin of classical properties can be successfully ana-
lyzed within quantum mechanics. The 'particle' as-
pect - usually consiclered as the representation of
spatial discontinuity - is thereby obtained as a (,ol-
setluence of the fundamental quantum measrtrement
or  col lapse of  the state vector  ( impl ic i te ly  conta ined
in the density matrix lormalism). This is analogous
to the possib i l i ty  of  e l iminat ing as a fundamental
process thc concept  of  'quantum jumps'  in  atoms
represent ing a d iscont inui ty  in  t ime and o i  replac-
ing them by the time-dependent Schrcidinger equa-
tion in connection with thc collnpsc during measure-
ments or  observat ions [8] .  The interact ion wi th the
envlronment even if passive - icads to a non-
unitarl" evolution in timc of the local density matrix.
This appears as a local indeterminism lor the en-
semble of  d iagonal iz ing states.
In cletail the situatictn is diiferent for discrete or
contir-ruous spectra of the considered degrees of free-
ciom. Tl.re first case has been studied from r.arions
points of  v ierv for  the example of  a s imple two-state
s)'stem. If the internal dynamics is negligibic, thc
resul t ing densi ty  matr i r  is  d iagonal ized by the repre-
sentation being 'measurecl' by the intcraction. In the
case of cl.riral molecules in a normal environment
th is  basis  wi l l  consis t  of  the chi ra l i ty  s tates.  Al -
thougir  an opt ica l ly  act ive moleculc in teracts wi th
light so weakly that it cor-rld remain in its parit l '
eigenstates if kept in a sufficient vilcuum and free
from col l is ions wi th the wal ls ,  i t  can hardly  ever  be
proclucecl in such a statc. lf exposed to coil isions
wi th a i r  molccules,  for  example.  chrra l i ty  s tates wi l l
be prcserved in contrast to parity slatcs. although
both pai rs  of  s tates i f  'dressed'  by v i r tual  photons

may be energy e igenstates.  I f  thc in ternal  dynamics
is non-negligible. it may be suppressed by the
watchdog-effcct [6].
The situation of continuous degrees of freedom be-
ing measured b1 '  a cont lnuous measurement  scale is
representecl by the translational motion of small
dust particles or large moleculcs interacting with
pho tons  o r  mo lecu les .  I f  t he  pos i t i on  i s ' con -
t inuclus ly  mcasured' .  thc densi ty  matr ix  resr , r l t ing
from an in i t ia l  Guussian wave packet  is  c letermined
by an interplay of measr.rrements with the dispersion
of t l.rc wa\rc packet. Asymptotically thc eflect of
measurements dominates: The coherence length de-
creases rvhereas the spreading clf the density matrir
in  space increases wi th t imc,  thus local ly  mimic ing
an indetermin is t ic  rnot ion.  Howcver,  as the densi ty

(3 .140)

11rx1(r ) - , ln'1,t rt  11,,11{
t

1  . r I
;+-nl

v

He tc  aga in  t he  smc lo th  dependence  o l  / 1 * : / _ ( ko )
on  k . : ) n l , i l .  and  1 ,1  <z  t oge the r  r v i t h  r )1  have
bcen taken into account .  In tcgrat ing by par ts  and
erpanding the resul t  for  smal l  va lues of  rcc: t . 'L  g ives

E 1
\-

, L  * 7 r , n + / / ( t \ , D '

( 3 . 1 4 1 )

.\s erpected, this expression depends only l inearily
c)u t ime.  The constant  term has assumed an lncon-
renient  form as a consequence of  thc approxl -
mat i r )ns.  I t  can,  of  course^ be calcLr lated exact l l i "  and
is kntrw'n to be uni ly  f rc lm the in i t ia l  normal izat ion

o f  t - 1 .126 ) .  I ndeed .  I  ( r n+z )  I  i s  r he  po le  expan -

s ion of  I 's in2(e) .  fh1 ,esut t  up to f i rs t  order  rn cr ,  l ,
then reads

( l
1 , , * ,  r l  -  t  -  

^ , , s i n - {  
|  l ( k , , 1 )

(1 .  r  42)

Again.  as in  (3.130) ,  the L-depenclence cancels i f  the
nr , rmber of  independent ly  in tcract ing par t ic les is  pro-
pr) r t io l ta l  to  L.  This rcsLr l t  holds ber ,ond the Born
appror imat ion ( i .e .  for  arb i t rary r ' / (koD and ma1 be
cr-nera l ized by means of  (3.137)  to inc luc le ot l . rcr
i n i t i a l  cond i t i ons  and  t imes  r>L , r ' .

I\-. Surnmary and Conclusions

The microscctpic behirviour of macroscopic systems
is drnamical ly  ext remely sensi t ive to t l ie i r  envi ron-
meuts.  ln  par t icu lar  cer ta in phase rc lat ions wi l l  be
destroycd local ly  by '  thc speci f ic  nature of  the in-
teractior.r, which may be i lssurned to be entircly pas-
s ive.  I f  the system by i tse l f  is  for  thc us l ra l  purpose
ol calculating probabil it ies for futurc local measure-
ments descr ibcd by i ts  r lensi t l  mutr ix .  rvh ich in
turn is diagonalized bv an ensemble of states" the
latter may turn out 1o appropriately charae terize
class ical  propert ies in  a wa1'  s imi lar  to  the wave
packets or ig inal ly  used by Schrc id inger  to represcnt
'par t ic les ' .  In  th is  wa) c lass ical  propert ies are causecl

*
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matrix remains Gaussian, its eigenstates are elgcn-

functions of thc harmonic clscil lator with arbitrary

number of nodes and asymptotically increasing

wiclths. They are inappropriate to represent localized

particles. A reduction or Everett branching of the

total state vector according to the corresponding

Schmidt- representat ion (compare Eq'  (3 1))  [11]
would not describe the observecl situation'

Measurements proper scem in any case to contaln a

discrete observation representation at some stage'

Even if a photon is observed directly by the eye. it is

registered by dist'rete visual cells. In such situatrons

of 'measurements of continuous variables by discrete

pointers' the unitary description of a measurement is

(for measurements of thc first kind)

,p(" )  @o-T E,( r )@,,  (4 '1)

where rp, , ( r ) :R,p( . t )  is  the restr ic t ion o i  rp(-x)  onto

the interval of -r being registered by the- pointer

posi t ion @,.  Since in  th is  case in contrast  to  a

continuum of pointer positions the states @,, may

bc considered as mutually orthogonal after a

measurement-l ike interaction, t l-re local density ma-

t r lx

P,n:1,q,,(r)<P;l  (r ' ) t 4  ) l

does not contain any interference between posltlons

in different intervals. Flence' the eigenstatcs wil l be

restricted to these intervals.
It is crucial ior this algttment that the discrete potrtt-

er by itself is not init ially in a superposition lt ' ' , ,Q,n

oi different posrtrons. This wil l in turn be ach'i ivcd if

the d iscrete pointer  is  mucrosct lp ic  in  being con-

tinuously measurecl by scattering photons or mole-

cules as studied lbr  two-statc systems (chi ra l i ty  in-

steird of pointer position)' As demonstratcd by the

l inear i ty  of  t l ,e  master  ec luat ion (3 '59) '  the com-

ponents rp,(.t) @, wil l then in addition evolr'e ir l t ime

ir,dependently of one another. (In spite of the l inear

Schrcidinger equation this cannot always hold trr 're'

since the density matrix of a system irlteracting 'uvit l.t

i ts environment cannot in general obey i i I 'on Neu-

mann equat ion [23] :  Usual ly ,  factor iz ing statcs are

not stationary.) This rcsult allows to spccify the re-

duction of the state vcctor equivalent to the Everett

interpretation. provided an appropriate cosmological

init ial conclit ion is assumed for the total Everett

s tate [25] .
Of course, no unitarl '  treatment of the time de-

penclence can explain why only one of these dlnami-

cally indepenclent components is experienced Hclw-

evcr .  i l  does expla in ht rw mi leroseopic s tates ln
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particular the discrete oncs l ike those occurring in

measurement devices or in the central nervous sys-

tem will develop quantum correlatit lrts with mac-

roscopic states of other systems. and form dynami-

cally inclependent components (branches)' For exam-

p1e, if I c', p,(.r) V; describes the eigenstates rp' of thc
a

densi ty  matr ix  of  a dust  par t ic le  (compare Secl '

I l I.2.2). corrclatcd to the states V, of thc photon

f ie ld,  an observat ion of  the dust  par t ic le  as in  (4 '1)

now leads to

I ., E,(:r) Y, iD 1t -l t ' , P, <P,(x) Y' Q,,

-Lr,E,E,(x) Y,.u{Du. (4.3 )

where the second step corresponds to the scatterlng

of photons ofi the cliscrete 
'pil inter' r lr '  Srr.rce thc

states Y1.,, wil l be mutually orthogonal ir l circl.r index

cluc to the enormous informat iot r  capacrn t l i  the

photon freld Y-', thc components dif lering in z and n

ivil l  brm clynamically independent blancltes As this

is  rcqui red in  order  to render the ret lLrct l t r l t  rers ion

ol thi measurement dynamically ctlt.tslstctlt n ith the

Schrc id inger  equat ion ( i f  Evcret t 's  in terprct r t t r t rn [31]

is accepted). this result is hoped to bc rtl i  inrportant

step in understanding the meirsurcmellt procL-ss'

Thls mechanism oi producing classical 11r't)perties
would be cf fect ive a lso for  theor ics l ike Bohni 's  [32 '

33] ,  that  expl ic i te ly  in t roduce c lass ical  r ' i r iab lcs in

adclit ion to a universal wave fut-tctioll l  i lrs ma1'

unclermine tl 'rc motivation for sucli thcot' ic: [-] l] '

We rv ish to thank DcLl tsche Forscl tut tgsgcnlc inschai t  I ' r  f inancl i l l

sLrpport  by a grant .  The l igures I 'erc k incl l l  prcpared 
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