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The Time Arrow of Radiation

After a stone has been dropped into a pond, one observes concentrically
diverging (‘defocusing’) waves. Similarly, after an electric current has been
switched on, one finds a retarded electromagnetic field that is coherently
propagating away from its source. Since the fundamental laws of Nature,
which describe these phenomena, are invariant under time reversal, they are
equally compatible with the reverse phenomena, in which concentrically fo-
cusing waves (and whatever may be dynamically related to them – such as
heat) would ‘conspire’ in order to eject a stone out of the water. Deviations of
the deterministic laws from time reversal symmetry would modify this argu-
ment only in detail (see the Introduction). However, the reversed phenomena
are never observed in Nature. In high-dimensional configuration space, the
absence of dynamical correlations which would focus to create local effects
characterizes the time arrow of thermodynamics (Chap. 3), or, when applied
to wave functions, even that of quantum theory (see Sect. 4.3).

Electromagnetic radiation will here be considered to exemplify wave phe-
nomena in general. It may be described in terms of the four-potential Aµ,
which in the Lorenz gauge obeys the wave equation

−∂ν∂νAµ(r, t) = 4πjµ(r, t) , with ∂ν∂ν = −∂2
t + ∆ , (2.1)

using units with c = 1, the notations ∂µ := ∂/∂xµ and ∂µ := gµν∂ν , and Ein-
stein’s convention of summing over identical upper and lower indices. When
an appropriate boundary condition is imposed, one may write Aµ as a func-
tional of the sources jµ. For two well known boundary conditions one obtains
the retarded and the advanced potentials,

Aµ
ret(r, t) =

∫
jµ(r, t − |r − r′|)

|r − r′| d3r′ , (2.2a)

Aµ
adv(r, t) =

∫
jµ(r, t + |r − r′|)

|r − r′| d3r′ . (2.2b)
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These two functionals of jµ(r, t) are related to one another by a reversal of
retardation time |r − r′| – see also (2.5) and footnote 4 below. Their linear
combinations are again solutions of the wave equation (2.1).

At this point, many textbooks argue somewhat mysteriously that ‘for rea-
sons of causality’, or ‘for physical reasons’, only the retarded fields, derived
from the potential (2.2a) according to Fµν

ret := ∂µAν
ret − ∂νAµ

ret, occur in Na-
ture. This condition has therefore to be added to deterministic laws such
as (2.1), which historically did indeed emerge from the asymmetric concept
of causality. This example allows us to formulate in a preliminary way what
seems to be meant by this intuitive notion of causality : correlated effects (that
is, nonlocal regularities, such as coherent waves) must always possess a local
common cause in their past.1 However, this asymmetric notion of causality is
a major explanandum of the physics of time asymmetry. As pointed out in the
Introduction, it cannot be derived from the deterministic laws by themselves.

The popular argument that advanced fields are not found in Nature be-
cause they would require improbable initial correlations is known from statis-
tical mechanics, but totally insufficient (see Chap. 3). The observed retarded
phenomena are precisely as improbable among all possible ones, since they
describe equally improbable final correlations. So their ‘causal’ explanation
from an initial condition would beg the essential question.

Some authors take the view that retarded waves describe emission, ad-
vanced ones absorption. However, this claim ignores the fact that, for exam-
ple, moving absorbers give rise to retarded shadows, that is, retarded waves
which interfere destructively with incoming ones. In spite of the retardation,
energy may thus flow from the electromagnetic field into an antenna. When
incoming fields are present (as is generically the case), retardation does not
necessarily mean emission of energy (see Sect. 2.1).

At the beginning of the last century, Ritz – following simular ideas by
Planck and others – formulated a radical solution of the problem by postu-
lating the exclusive existence of retarded waves as a law . Such time-directed
action at a distance is equivalent to fixing the boundary conditions for the

1 In the case of a finite number of local effects resulting from one local cause in
the past, this situation is often viewed as a ‘fork’ in spacetime (see Horwich 1987,
Sect. 4.8). However, this fork of causality should not be confused with the fork
of indeterminism (in configuration space and time), which points to different (in
general global) potential states rather than to different events (see also footnote 7
of Chap. 3 and Fig. 3.8). The fork of causality (‘intuitive causality’) may also char-
acterize deterministic measurements and the documentation of their results, that
is, the formation and distribution of information. It is related to Reichenbach’s
(1956) concept of branch systems, and to Price’s (1996) principle of independence
of incoming influences (PI3). Insofar as it describes the cloning and spreading of
information, it represents an overdetermination of the past (Lewis 1986), or the
consistency of documents. It is these correlations which let the macroscopic past
appear ‘fixed’, while complete documents about microscopic history would be in
conflict with thermodynamics and quantum theory.
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electromagnetic field in a universal manner. The field would then not describe
any degrees of freedom on its own, but just describe retarded forces.

This proposal, a natural generalization of Newton’s gravitational force,
led to a famous controversy with Einstein, who favored the point of view that
retardation of radiation can be explained by thermodynamical arguments.
Einstein, too, argued here in terms of an action-at-a-distance theory (see
Sect. 2.4). At the end of their dispute, the two authors published a short let-
ter in order to state their different opinions. After an introductory sentence,
according to which retarded and advanced fields are equivalent “in some sit-
uations”, the letter reads as what appears to be also a verbal compromise
(Einstein and Ritz 1909 – my translation):2

While Einstein believes that one may restrict oneself to this case with-
out essentially restricting the generality of the consideration, Ritz re-
gards this restriction as not allowed in principle. If one accepts the
latter point of view, experience requires one to regard the represen-
tation by means of the retarded potentials as the only possible one,
provided one is inclined to assume that the fact of the irreversibil-
ity of radiation processes has to be present in the laws of Nature.
Ritz considers the restriction to the form of the retarded potentials as
one of the roots of the Second Law, while Einstein believes that the
irreversibility is exclusively based on reasons of probability.

Ritz thus conjectured that the thermodynamical arrow of time might be ex-
plained by the retardation of electromagnetic forces because of the latter’s
universal importance for all matter. However, the retardation of hydrodynam-
ical waves (such as sound) would then have to be explained quite differently
– for example, by again referring to the thermodynamical time arrow.

A similar but less well known controversy had already occurred in the
nineteenth century between Max Planck and Ludwig Boltzmann. The former,
at that time still an opponent of statistical mechanics, understood radiation
as a genuine irreversible process, while the latter maintained that the problem
is not different from that in kinetic gas theory: a matter of improbable initial
conditions (Boltzmann 1897). These different interpretations became relevant,
in particular, in connection with the quantum hypothesis: are quanta caused

2 The original text reads: “Während Einstein glaubt, daß man sich auf diesen
Fall beschränken könne, ohne die Allgemeinheit der Betrachtung wesentlich zu
beschränken, betrachtet Ritz diese Beschränkung als eine prinzipiell nicht er-
laubte. Stellt man sich auf diesen Standpunkt, so nötigt die Erfahrung dazu, die
Darstellung mit Hilfe der retardierten Potentiale als die einzig mögliche zu betra-
chten, falls man der Ansicht zuneigt, daß die Tatsache der Nichtumkehrbarkeit
der Strahlungsvorgänge bereits in den Grundgesetzen ihren Ausdruck zu finden
habe. Ritz betrachtet die Einschränkung auf die Form der retardierten Potentiale
als eine der Wurzeln des Zweiten Hauptsatzes, während Einstein glaubt, daß die
Nichtumkehrbarkeit ausschließlich auf Wahrscheinlichkeitsgründen beruhe.”
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by the emission process (as Planck had believed – later called quantum jumps
– see Sects. 4.3.6 and 4.5), or inherent to light itself?

In Maxwell’s classical field theory , the problem does not appear as obvious
as in action-at-a-distance theories, since every bounded region of spacetime
may contain ‘free fields’, which possess neither past nor future sources in
this region. Therefore, one can consistently understand Ritz’s hypothesis only
cosmologically: all fields must possess advanced sources (‘causes’) somewhere
in the Universe. While the examples discussed above demonstrate that the
time arrow of radiation cannot merely reflect the way boundary conditions
are posed, the problem becomes even more pronounced with the time-reversed
question: “Do all fields also possess a retarded source (a sink in time-directed
terms) somewhere in the future Universe?” This assumption corresponds to
the absorber theory of radiation, a T -symmetric action-at-a-distance theory
to be discussed in Sect. 2.4. The observed asymmetries would then require an
unusual cosmic time asymmetry in the distribution of such sources.

2.1 Retarded and Advanced Form
of the Boundary Value Problem

In order to distinguish the indicated pseudo-problem that concerns only the
definition of ‘free’ fields from the physically meaningful question, one has
to investigate the general boundary value problem for hyperbolic differential
equations (such as the wave equation). This can be done by means of Green’s
functions, defined as the solutions of the specific inhomogeneous wave equation
with a point-like source:

−∂ν∂νG(r, t; r′, t′) = 4πδ3(r − r′)δ(t − t′) , (2.3)

and an appropriate boundary condition in space and time. Some of the con-
cepts and methods to be developed below will be applicable in a similar form
in Sect. 3.2 to the Liouville equations (Hamilton’s equations applied to ensem-
bles of states of mechanical systems). Using (2.3), a solution of the general
inhomogeneous wave equation (2.1) may then be written as a functional of its
sources:

Aµ(r, t) =
∫

G(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ , (2.4)

where the boundary condition for G(r, t; r′, t′) determines that for Aµ(r, t),
too. Retarded or advanced solutions are obtained from Green’s functions Gret

and Gadv, which are given by

G ret
adv

(r, t; r′, t′) :=
δ(t − t′ ± |r − r′|)

|r − r′| . (2.5)

The potentials Aµ
ret and Aµ

adv resulting from (2.4) are thus functionals of
sources only on the past or future light cones of their argument, respectively.
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Fig. 2.1. Kirchhoff’s boundary value problem, including initial, final and spatial
boundaries. Sources (thick world lines) within the considered region and boundaries
on both light cones (dashed lines) may in general contribute to the electromagnetic
potential Aµ at the spacetime point P

By contrast, Kirchhoff’s formulation of the boundary value problem allows
one to express every specific solution Aµ(r, t) of the wave equation by means
of any Green’s function G(r, t; r′, t′). This can be achieved by using the three-
dimensional Green theorem∫

V

[
G(r, t; r′, t′)∆′Aµ(r′, t′) − Aµ(r′, t′)∆′G(r, t; r′, t′)

]
d3r′ (2.6)

=
∫

∂V

[
G(r, t; r′, t′)∇′Aµ(r′, t′) − Aµ(r′, t′)∇′G(r, t; r′, t′)

]
·dS′ ,

where ∆ = ∇2 is the Laplace operator, and ∂V is the boundary of the spatial
volume V . Multiplying (2.3) by Aµ(r′, t′), and integrating over r′ and t′ from
t1 to t2 – on the right-hand side (RHS) by means of the δ-functions, while
using the Green theorem and twice integrating by parts with respect to t′ on
the left-hand side (LHS), one obtains by further using (2.1):

Aµ(r, t) =
∫ t2

t1

∫
V

G(r, t; r′, t′)jµ(r′, t′) d3r′ dt′

− 1
4π

∫
V

[
G(r, t; r′, t′)∂t′A

µ(r′, t′) − Aµ(r′, t′)∂t′G(r, t; r′, t′)
]
d3r′

∣∣∣∣t2
t1

+
1
4π

∫ t2

t1

∫
∂V

[
G(r, t; r′, t′)∇′Aµ(r′, t′) − Aµ(r′, t′)∇′G(r, t; r′, t′)

]
·dS′ dt′

≡ ‘source term’ + ‘boundary terms’ . (2.7)

if the event P described by r and t lies within the spacetime boundaries.
Here, both (past and future) light cones may contribute to the three terms
occurring in (2.7), as indicated in Fig. 2.1.

The formal T -symmetry of this representation of the potential as a sum of
a source term and boundary terms in the past and future can be broken by
the choice of Green’s functions. When using one of the two forms (2.5), the
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Fig. 2.2. Two representations of the same electromagnetic potential at time t by
means of retarded or advanced Green’s functions. They require data on partial
boundaries (indicated by solid lines) corresponding to an initial or a final value
problem, respectively

spacetime boundary required for determining the potential at time t assumes
specific forms indicated in Fig. 2.2. Hence, the same potential can be written
according to one or the other RHS of

Aµ = source term + boundary terms = Aµ
ret + Aµ

in

= Aµ
adv + Aµ

out . (2.8)

For example, Aµ
in is here that solution of the homogeneous equations which

coincides with Aµ for t = t1. Aµ
ret and Aµ

adv vanish by definition for t = t1
or t = t2, respectively. Any field can therefore be described equivalently by
an initial or a final value problem – with arbitrary boundary conditions. This
result reflects the T -symmetry of the laws, while phenomenological causality
is often used as an ad hoc argument for choosing Gret rather than Gadv.

However, two free boundary conditions in the mixed form of Fig. 2.1 would
in general not be consistent with one another, even if individually incomplete
(see also Sects. 2.4 and 5.3). Retarded and advanced fields formally result-
ing from past and future sources, respectively, do not add independently (as
sometimes assumed to describe a conjectured retro-causation) – they just
contribute to different (or mixed) representations of the same field. In field
theory, no (part of the) field ‘belongs to’ a certain source (in contrast to
specific action-at-a-distance theories). Sources determine only the difference
Aµ

out −Aµ
in – similar to T/i = S−1 in the interaction picture of the S-matrix.

As can be seen from (2.8), this difference is identical to Aµ
ret −Aµ

adv. In causal
language, where Aµ

in is regarded as given, the source ‘creates’ precisely its re-
tarded field that has to be added to Aµ

in in the future of the source (where
Aµ

adv = 0).
Physically, spatial boundary conditions represent an interaction with the

(often uncontrollable) spatial environment. For infinite spatial volume (V =
R3), when the light cone cannot reach ∂V within finite time t − t1, or in a
closed universe, one loses this boundary term in (2.7), and thus obtains the
pure initial value problem (for t > t1),
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Aµ = Aµ
ret + Aµ

in ≡
∫ t

t1

∫
R3

Gret(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ (2.9)

+
1
4π

∫
R3

[
Gret(r, t; r′, t1)∂t1A

µ(r′, t1) − Aµ(r′, t1)∂t1Gret(r, t; r′, t1)
]
d3r′ ,

and correspondingly the pure final value problem (t < t2),

Aµ = Aµ
adv + Aµ

out ≡
∫ t2

t

∫
R3

Gadv(r, t; r′, t′)jµ(r′, t′) d3r′ dt′ (2.10)

− 1
4π

∫
R3

[
Gadv(r, t; r′, t2)∂t2A

µ(r′, t2) − Aµ(r′, t2)∂t2Gadv(r, t; r′, t2)
]
d3r′ .

The different signs at t1 and t2 are due to the fact that the gradient in the
direction of the outward-pointing normal vector has now been written as a
derivative with respect to t1 (inward) or t2 (outward).

So one finds precisely the retarded potential Aµ = Aµ
ret if Aµ

in = 0. (Only
the ‘Coulomb part’, required by Gauß’s law, must always be present by con-
straint. It can be regarded as the retarded or advanced consequence of the
conserved charge.) In scattering theory, an initial condition fixing the incom-
ing wave (usually described by a plane wave) is called a Sommerfeld radiation
condition. Both conditions are to determine the actual situation. Therefore,
the physical problem is not which of the two forms, (2.9) or (2.10), is correct
(both are), but:

1. Why does the Sommerfeld radiation condition Aµ
in = 0 (in contrast to

Aµ
out = 0) approximately apply in many situations?

2. Why are initial conditions more useful than final conditions?

The second question is related to the historical nature of the world. Answers
to these questions will be discussed in Sect. 2.2.

The form (2.7) of the four-dimensional boundary value problem, charac-
teristic of determinism in field theory, applies to partial differential equations
of hyperbolic type (that is, with a Lorentzian signature −+++). Elliptic type
equations would instead lead to the Dirichlet or von Neumann problems, which
require values of the field or its normal derivative, respectively, on a closed
boundary (which in spacetime would have to include past and future). Only
hyperbolic equations lead generally to ‘propagating’ solutions, which are com-
patible with free initial conditions. They are thus responsible for the concept
of a dynamical state of the field, which facilitates the familiar concept of time.

The wave equation (with its hyperbolic signature) is known to be derivable
from Newton’s equations as the continuum limit of a spatial lattice of mass
points, held at their positions by means of harmonic forces. For a linear chain,
md2qi/dt2 = −k

[
(qi − qi−1 − a)− (qi+1 − qi − a)

]
with k > 0, this is the limit

a → 0 for fixed ak and m/a. The crucial restriction to ‘attractive’ forces
(k > 0) may here appear surprising, since Newton’s equations are always
deterministic, and allow one to pose initial conditions regardless of the type
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or sign of the forces. However, only bound (here oscillating) systems possess
a stable position (here characterized by the lattice constant a). In the same
limit, an elliptic differential equation (with signature ++++) would result
for a lattice of variables qi with repulsive forces (k < 0). This repulsion,
though still representing deterministic dynamics, would cause the particle
distances qi − qi−1 to explode immediately in the limit k → ∞. The unstable
solution qi − qi−1 = a is in this case the only eigensolution of the Dirichlet
problem with eigenvalue 0 (derived from the condition of a bounded final
state). Mathematically, the dynamically diverging solutions simply do not
‘exist’ any more in the continuum limit.

For second order wave equations, a hyperbolic signature forms the basis for
all (exact or approximate) conservation laws, which give rise to the continuity
of ‘objects’ in time (including the ‘identity’ of observers). For example, the free
wave equation has solutions of a conserved form f(z ± ct), while the Klein–
Gordon equation with a positive and variable ‘squared mass’ m2 = V (r, t)
has unitary solutions i∂φ(r, t)/∂t = ±

√
−∆ + V φ(r, t). This dynamical con-

sequence of the spacetime metric, which leads to such ‘wave tubes’ (see also
Sect. 6.2.1), is crucial for what appears as the inevitable ‘progression of time’
(in contrast to our freedom to move in space). However, the direction of this
apparent flow of time requires additional conditions.

This section was restricted to the boundary value problem for fields in
the presence of given sources. In reality, the charged sources depend in turn
on the fields by means of the Lorentz force. The resulting coupled system
of differential equations is still T -symmetric, while all consequences of the
retardation regarding the actual electromagnetic fields, derived in this and
the following section, remain valid. New problems will arise, though, from
the self-interaction of point charges or elementary charged rigid objects (see
Sect. 2.3).

2.2 Thermodynamical and Cosmological Properties
of Absorbers

Wheeler and Feynman (1945, 1949) took up the Einstein–Ritz controversy
about the relation between the two time arrows of radiation and thermody-
namics. Their work essentially confirms Einstein’s point of view, provided his
‘reasons of probability’ are replaced by ‘thermodynamical reasons’. Statistical
reasons by themselves are insufficient for deriving a thermodynamical arrow
(see Chap. 3.) The major part of Wheeler and Feynman’s arguments were
again based on a T -symmetric action-at-a-distance theory, which is particu-
larly well suited for presenting them in an historical context. From the point
of view of local field theory (that is for good reasons preferred today), this pic-
ture may appear strange or even misleading. The description of their absorber
theory of radiation will therefore be postponed until Sect. 2.4.


