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the microscopic states of macroscopic systems to such interactions with their
environments strongly indicates that simultaneously existing opposite arrows
of time in different regions of the Universe would be inconsistent with one an-
other. This universality of the arrow of time seems to be its most important
property. Time asymmetry has therefore been regarded as a global symmetry
breaking . However, such a conclusion would not exclude the far more probable
situation of thermal equilibrium.

Lawrence Schulman (1999) has challenged the usual assumption of a uni-
versal arrow of time by suggesting explicit counterexamples. Most of them are
indeed quite illustrative in emphasizing the role of initial of final conditions,
but they appear unrealistic in our Universe (see Zeh 2005b). The situation
is similar to the symmetric boundary conditions suggested by Wheeler and
Feynman in electrodynamics, and discussed in Sect. 2.4. Local final conditions
at the present stage of the Universe or in the near future can hardly be retro-
caused by a low entropy condition at the big crunch (see also Casati, Chirikov
and Zhirov 2000), but may be essential during a conceivable recontraction era
of the Universe (see Sect. 5.3).

In order to reverse the thermodynamical arrow of time in a bounded sys-
tem, it would not therefore suffice to “go ahead and reverse all momenta”
in the system itself, as ironically suggested by Boltzmann as an answer to
Loschmidt. In an interacting Laplacean universe, the Poincaré cycles of its
subsystems could in general only be those of the whole Universe, since their
exact Hamiltonians must always depend on their time-dependent environ-
ment.

Time reversal including thermodynamical aspects has been achieved even
in practice for very weakly interacting spin waves (Rhim, Pines and Waugh
1971). The latter can be regarded as isolated systems to a very good approx-
imation (similar to electromagnetic waves in the absence of absorbers), while
allowing a sudden sign reversal of their spinor Hamiltonian in order to sim-
ulate time reversal (dt → −dt). These spin wave experiments demonstrate
that a closed system in thermodynamical equilibrium may preserve an arrow
of time in the form of hidden correlations. When a closed system has reached
macroscopic equilibrium, it appears T -symmetric, although its fine-grained
information determines the distance and direction in time to its low-entropy
state in the past (see also the Appendix for a numerical example). In con-
trast to such rare almost-closed systems, generic ones are strongly affected by
Borel’s argument, and cannot be reversed by local manipulations.

3.2 Zwanzig’s General Formalism of Master Equations

Boltzmann’s Stoßzahlansatz (3.6) for µ-space distributions and the master
equation (3.31) for coarse-grained Γ -space distributions can thus be under-
stood in a similar way. They describe the transformation of special macro-
scopic states into more probable ones, whereby the higher information con-
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tent of the former is transformed into macroscopically irrelevant information.
There are many other master equations based on the same strategy, and de-
signed to suit various purposes. Zwanzig (1960) succeeded in formalizing them
in a general and instructive manner that also reveals their analogy with re-
tarded electrodynamics as another manifestation of the arrow of time – see
(3.40)–(3.49) below.

The basic concept of Zwanzig’s formalism is defined by idempotent map-
pings P̂ , acting on probability distributions ρ(p, q):

ρ → ρrel := P̂ ρ , with P̂ 2 = P̂ and ρirrel := (1 − P̂ )ρ . (3.32)

Their meaning will be illustrated by means of several examples below, before
explaining the dynamical formalism. If these mappings reduce the information
content of ρ to what is then called its ‘relevant’ part ρrel, they may be regarded
as a generalized coarse-graining . In order to interpret ρrel as a probability
density again, one has to require its non-negativity and, for convenience,∫

ρreldp dq =
∫

ρdp dq = 1 , (3.33)

that is, ∫
ρirreldp dq =

∫
(1 − P̂ )ρdp dq = 0 . (3.34)

Reduction of information means

SΓ [P̂ ρ] ≥ SΓ [ρ] (3.35)

(or similarly for any other measure of ensemble entropy).
Using this concept, Lewis’ master equation (3.31), for example, may be

written in the generalized form{
∂ρrel

∂t

}
master

:=
P̂ e−iL̂∆tρrel − ρrel

∆t
. (3.36)

It would then describe a monotonic increase in the corresponding entropy
S[ρrel]. In contrast to Zwanzig’s approach, to be described below, phenomeno-
logical master equations such as Lewis’s unifying principle have often been
meant to describe a fundamental indeterminism that would replace reversible
Laplacean determinism.

In most applications, Zwanzig’s idempotent operations P̂ are linear and
Hermitean with respect to the inner product for probability distributions de-
fined above (3.27). In this case they are projection operators, which preserve
only some ‘relevant component’ of the original information. If such a projec-
tion obeys (3.33) for every ρ, it must leave the equipartition invariant, P̂1 = 1,
as can be shown by writing down the above-mentioned inner product of this
equation with an arbitrary distribution ρ and using the hermiticity of P̂ .
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Zwanzig’s dynamical formalism may also be useful for non-Hermitean or
even non-linear idempotent mappings P̂ (see Lewis 1967, Willis and Picard
1974). These mappings are then not projections any more: they may even
create new information. A trivial example for the creation of information
is the nonlinear mapping of all probability distributions onto a fixed one,
P̂ ρ := ρ0 for all ρ, regardless of whether or not they contain a component
proportional to ρ0. The physical meaning of such generalizations of Zwanzig’s
formalism will be discussed in Sects. 3.4 and 4.4. In the following we shall
consider information-reducing mappings.

Zwanzig’s ‘projection’ concept is deliberately kept general in order to per-
mit a wealth of applications. Examples introduced so far are coarse-graining,
P̂ cgρ := ρcg, as defined in (3.28), and the neglect of correlations between
particles by means of µ-space densities:

P̂µρ(p, q) :=
N∏

i=1

ρµ(pi, qi)
N

,

with

ρµ(p, q) :=
N∑

i=1

∫
ρ(p, q)δ3(p − pi)δ3(q − qi)dp dq . (3.37)

(As before, boldface letters represent three-dimensional vectors, while p, q
is a point in Γ -space.) The latter example defines a non-linear though
information-reducing ‘Zwanzig projection’. Most arguments applying to lin-
ear operators P̂ remain valid in this case when applied to the linearly re-
sulting µ-space distributions ρµ(p, q) (which do not live in Γ -space) rather
than to their products P̂µρ(p, q) (which do). In quantum theory, this ap-
proach is related to the Hartree or mean field approximation. Boltzmann’s
‘relevance concept’, which, when written as a Zwanzig projection, would map
real states onto products of smooth µ-space distributions, can then be written
as P̂Boltzmann = P̂µP̂cg. An obvious generalization of P̂Boltzmann can be defined
by a projection onto two-particle correlation functions. In this way, a complete
hierarchy of relevance concepts in terms of n-point functions (equivalent to a
cluster expansion) can be defined.

A particularly important concept of relevance, that is often not even no-
ticed, is locality (see, e.g., Penrose and Percival 1962). It is required in order to
define entropy as an extensive quantity – in accordance with the phenomeno-
logical equation (3.1) and with the concept of an entropy density s(r), such
that S =

∫
s(r)d3r. The corresponding Zwanzig projection of locality may be

symbolically written as
P̂localρ :=

∏
k

ρ∆Vk
. (3.38)

The RHS here is meant to describe the neglect of all statistical correlations
beyond a distance defined by the size of volume elements ∆Vk. The probabil-
ity distributions ρ∆V k

would here be defined by integrating over all external
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degrees of freedom. The volume elements have to be chosen large enough to
contain a sufficient number of particles in order to preserve dynamically rele-
vant short range correlations (as required for real gases, for example). In order
to allow volume elements ∆Vk with physically open boundaries, their prob-
ability distributions ρ∆V k

in (3.38) have to admit variable particle number
(density fluctuations) – as in a grand canonical ensemble.

Locality is presumed, in particular, when writing (3.1) in its differential
(local) form as a ‘continuity inequality’ for the entropy density s(r, t),

∂s

∂t
+ divjs ≥ 0 , (3.39)

with an entropy current density js(r, t). This form allows the definition of
phenomenological entropy-producing (hence positive) terms on the RHS in
order to replace the inequality by an equation (see Landau and Lifschitz 1959
or Glansdorff and Prigogine 1971). An example is the source term κ(∇T )2/T 2

in the case of heat conduction, where κ is the heat conductivity.
The general applicability of (3.39) demonstrates that the concept of physi-

cal entropy is always based on the neglect of nonlocal correlations. Therefore,
the production of entropy can be usually understood as the transformation
of local information into nonlocal correlations (as depicted in Fig. 3.1). This
description is in accordance with the conservation of ensemble entropy (deter-
minism) and with intuitive causality. The Second Law thus depends crucially
on the dynamical irrelevance of microscopic correlations for the future (as as-
sumed in the Stoßzahlansatz , for example). Since this ‘microscopic causality’
cannot be observed as easily and directly as the causal correlations which de-
fine retardation of macroscopic radiation, its validity under all circumstances
has been questioned (Price 1996). However, it is not only indirectly confirmed
by the success of the Stoßzahlansatz , but also (in its quantum mechanical
form – see Sect. 4.2) by the validity of a Sommerfeld radiation condition (see
Sect. 2.1) for microscopic scattering experiments, or by the validity of expo-
nential decay (Sect. 4.5).

The Zwanzig projection of locality is again ineffective on real states, which
are always local in the sense of defining the states of all their subsystems.
Therefore, applying P̂local to an individual state (a δ-function or sum of them)
would not lead to a non-singular entropy SΓ . This will drastically change in
quantum mechanics, because it is kinematically non-local (Chap. 4).

As already mentioned on p. 55, coarse-graining as a relevance concept may
also enter in a hidden form, corresponding to its nontrivial limit ∆VΓ → 0,
by considering only non-singular measures on phase space (thus excluding
δ-functions). This strong idealization may be mathematically signalled by the
‘unitary inequivalence’ of the original Liouville equation and the master equa-
tions resulting in this limit (see Misra 1978 or Mackey 1989).

Further examples of Zwanzig projections will be defined throughout the
book, in particular in Chap. 4 for quantum mechanical applications, where
the relevance of locality leads to the important concept of decoherence. Dif-
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ferent schools and methods of irreversible thermodynamics may even be dis-
tinguished according to the concepts of relevance which they are using, and
which they typically regard as ‘natural’ or ‘fundamental’ (see Grad 1961).

However, the mere conceptual foundation of a relevance concept (‘paying
attention’ only to certain aspects) is insufficient for justifying its dynamical
autonomy in the form of a master equation (3.36) – see the Appendix for an
explicit example. Locality is usually dynamically relevant in this sense because
of the locality of all interactions. This dynamical locality is essential even for
the very concept of physical systems, including those of local observers as the
ultimate referees for what is relevant.

Zwanzig reformulated the exact Hamiltonian dynamics for ρrel regardless
of any specific choice of P̂ instead of simply postulating a phenomenological
master equation (3.36) in analogy to Boltzmann or Lewis. It can then in
general not be autonomous5, that is, of the form ∂ρrel/∂t = f(ρrel), but has
to be written as

∂ρrel

∂t
= f(ρrel, ρirrel) (3.40)

in order to eliminate ρirrel by means of certain assumptions. The procedure
is analogous to the elimination of the electromagnetic degrees of freedom by
means of the condition Aµ

in = 0 when deriving a retarded action-at-a-distance
theory (Sect. 2.2). In both cases, empirically justified boundary conditions
which specify a time direction are assumed to hold for the degrees of freedom
that are to be eliminated.

To this end the Liouville equation i∂ρ/∂t = L̂ρ is decomposed into its
relevant and irrelevant parts by multiplying it by P̂ or 1− P̂ , respectively:

i
∂ρrel

∂t
= P̂ L̂ρrel + P̂ L̂ρirrel , (3.41a)

i
∂ρirrel

∂t
= (1 − P̂ )L̂ρrel + (1 − P̂ )L̂ρirrel . (3.41b)

This corresponds to representing the Liouville operator by a matrix of oper-
ators

L̂ =

(
P̂ L̂P̂ P̂ L̂(1 − P̂ )

(1 − P̂ )L̂P̂ (1 − P̂ )L̂(1 − P̂ )

)
. (3.42)

Equation (3.41b) for ρirrel, with (1 − P̂ )L̂ρrel regarded as an inhomogeneity,
may then be formally solved by the method of the variation of constants
(interaction representation). This leads to

ρirrel(t) = e−i(1−P̂ )L̂(t−t0)ρirrel(t0) − i
∫ t−t0

0

e−i(1−P̂ )L̂τ (1 − P̂ )L̂ρrel(t − τ)dτ ,

(3.43)
5 In mathematical physics, ‘autonomous dynamics’ is often defined as the absence

of any explicit time dependence in the dynamics – regardless of whether it is
fundamental or caused by a time-dependent environment.
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as may be confirmed by differentiation.
If t > t0, (3.43) is analogous to the retarded form (2.9) of the boundary

value problem in electrodynamics. In this case, τ ≥ 0, and ρrel(t − τ) may be
interpreted as an advanced source for the ‘retarded’ ρirrel(t). Substituting this
formal solution (3.43) into (3.41a) leads to three terms on the RHS, viz.,

i
∂ρrel(t)

∂t
= I + II + III (3.44)

≡ P̂ L̂ρrel(t) + P̂ L̂e−i(1−P̂ )L̂(t−t0)ρirrel(t0) − i
∫ t−t0

0

Ĝ(τ)ρrel(t − τ)dτ .

The integral kernel of the last term,

Ĝ(τ) := P̂ L̂e−i(1−P̂ )L̂τ (1 − P̂ )L̂P̂ , (3.45)

corresponds to the retarded Green’s function of Sect. 2.1.
Equation (3.44) is exact and, therefore, cannot yet describe time asym-

metric dynamics. Since it forms the first step in this derivation of master
equations, it is known as a pre-master equation. The meanings of its three
terms are illustrated in Fig. 3.2. The first one describes the internal dynam-
ics of ρrel. In Boltzmann’s µ-space dynamics (3.3), it would correspond to
{∂ρµ/∂t}free+ext. It vanishes if P̂ L̂P̂ = 0 (as is often the case).6

The second term of (3.44) is usually omitted by presuming the absence of
irrelevant initial information: ρirrel(t0) = 0. If relevant information happens
to be present initially, it can then be dynamically transformed into irrelevant
information. (Because of the asymmetry between P̂ and 1 − P̂ , irrelevant
information would have to be measured by −SΓ [ρ] + SΓ [ρrel] rather than by
−SΓ [ρirrel].)

The vital third term is non-Markovian (non-local in time), as it depends
on the whole time interval between t0 and t. Its retarded form (valid for
t > t0) is compatible with the intuitive concept of causality. This term be-
comes approximately Markovian if ρrel(t − τ) varies slowly for a small ‘re-
laxation time’ τ0 during which Ĝ(τ) becomes negligible for reasons to be
discussed. In (3.44), Ĝ(τ) may then be regarded to lowest order as being
proportional to a δ-function in τ . This assumption is also contained in Boltz-
mann’s Stoßzahlansatz , where it means that correlations arising by scattering
6 Since the (indirectly acting) non-trivial terms contribute only in second and higher

orders of time, the time derivative defined by the master equation (3.36) would
then vanish in the limit ∆t → 0. This corresponds to what in quantum theory
is known as the quantum Zeno paradox (Misra and Sudarshan 1977), also called
watched pot behavior or the watchdog effect . It describes an immediate loss of
information from the irrelevant channel (or its dynamically relevant parts – see
later in the discussion), such that it has no chance of affecting its relevant coun-
terpart any more. Fast information loss may be caused by a strong coupling to
the environment, for example. Since this efficiency depends on the energy level
density (Joos 1984), the Zeno effect is relevant mainly in quantum theory.
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relevant channel

irrelevant channel

I

II
III

t0 t = t t

rirrel 0(t )

r trel( )

Fig. 3.2. Retarded form of the exact dynamics for the relevant information ac-
cording to Zwanzig’s pre-master equation (3.24). In addition to the instantaneous
direct interaction I, there is the contribution II arising from the ‘incoming’ irrele-
vant information, and the retarded term III in analogy to electromagnetic action at
a distance, resulting from ‘advanced sources’ in the whole time interval between t0
and t (cf. the left part of Fig. 2.2)

are irrelevant for the forward dynamics of ρrel. In analogy to retarded electro-
magnetic forces, this third term of the pre-master equation then assumes the
form of an effective direct interaction between the relevant degrees of freedom
(though instantaneous in this nonrelativistic treatment). In electrodynamics,
the charged sources would represent the ‘relevant’ variables, while their ef-
fective interactions act ‘at a distance’. In statistical physics, this ‘interaction’
describes the dynamics of ensembles.

The Markovian approximation may be understood by means of assump-
tions which simultaneously explain the applicability of the initial condition
ρirrel ≈ 0 at all times – provided it holds in an appropriate form in the very
distant past. This is again analogous to the condition in electrodynamics that
Aµ

in either vanishes or can be well understood in terms of a limited number of
known or at least plausible sources at all times.

Consider the action of the operator (1 − P̂ )L̂P̂ appearing on the RHS
of the kernel (3.45). Because of the structure of a typical Liouville operator,
it transforms information from ρrel only into specific parts of ρirrel. In the
scattering theory of complex objects, similar formal parts are called doorway
states (Feshbach 1962). For example, if the Hamiltonian contains no more
than two-particle interactions, L̂P̂µ creates two-particle correlations. Only the
subsequent application of the propagator exp[−i(1 − P̂ )L̂τ ] is then able to
produce states ‘deeper’ in the irrelevant channel (many-particle correlations
in this case) – see Fig. 3.3. Recurrence from the depth of the irrelevant channel
is related to Poincaré recurrence times, and may in general be neglected (as
exemplified by the success of Boltzmann’s collision equation). If the relaxation
time, now defined as the time required for the transfer of information from
the doorway ‘states’ into deeper parts of the irrelevant channel, is of the order
τ0, say, one may assume Ĝ(τ) ≈ 0 for τ � τ0, as required for the Markovian
δ-function approximation Ĝ(τ) ≈ Ĝ0δ(τ).

Essential for the validity of this approximation is the large information
capacity of the irrelevant channel (similar to that of the electromagnetic field



64 3 The Thermodynamical Arrow of Time

relevant channel

t0 t = t t

doorway channel

deep states

Fig. 3.3. The large information capacity of the irrelevant channel and the specific
structure of the interaction together enforce the disappearance of information into
the depth of the irrelevant channel if an appropriate initial condition holds

in Chap. 2, but far exceeding it). For example, correlations between particles
may describe far more information than the single-particle distribution ρµ. A
fundamental cosmological assumption,

ρirrel(t0) = 0 , (3.46)

at a time t0 in the finite past (similar to the cosmological Aµ
in = 0 at the big

bang) is therefore quite powerful – even though it is a probable condition. Any
irrelevant information formed later from the initial ‘information’ contained in
ρrel(t0) (that is, from any specification of the initial state) may be expected
to remain dynamically negligible in (3.44) for a very long time. It would be
essential, however, for calculating backwards in time under these conditions.

The assumption ρirrel ≈ 0 has thus to be understood in a dynamical sense:
any newly formed contribution to ρirrel must remain irrelevant in the ‘forward’
direction of time. The dynamics for ρrel may then appear autonomous (while
it cannot be exact). For example, all correlations between subsystems seem
to require advanced local causes, but no similar (retarded) effects. Otherwise
they would be interpreted as a conspiracy , the deterministic version of causae
finales.

Under these assumptions, one obtains from (3.44), as a first step, the non-
Markovian dynamics

∂ρrel(t)
∂t

= −
∫ t−t0

0

Ĝ(τ)ρrel(t − τ)dτ . (3.47)

The upper boundary of the integral can here be replaced by a constant T that
is large compared to τ0, but small compared to any (theoretical) recurrence
time for Ĝ(τ). If ρrel(t) is now assumed to remain constant over time intervals
of the order of the relaxation time τ0, corresponding to an already prevailing
partial (e.g., local) equilibrium, one obtains the time-asymmetric Markovian
limit:

∂ρrel(t)
∂t

≈ −Ĝretρrel(t) , (3.48)

with
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relevant channel

D t

doorway channel

deep states

Fig. 3.4. The master equation represents ‘alternating dynamics’, usually describing
a monotonic loss of relevant information

Ĝret :=
∫ T

0

Ĝ(τ)dτ . (3.49)

A similar nontrivial limit of vanishing retardation (τ0 → +0) led to the LAD
equation with its asymmetric radiation reaction in Sect. 2.3. The integral
(3.49) could be formally evaluated when inserting (3.45), but it is usually
more conveniently computed after this operator has been applied to a specific
ρ(t). (See the explicit evaluation for discrete quantum mechanical states in
Sect. 4.1.2.)

The autonomous master equation (3.48) again describes alternating dy-
namics of the type (3.36) (see Fig. 3.4). Irrelevant information is disregarded
after short time intervals ∆t (now representing the relaxation time τ0). If
P̂ only destroys information, the master equation describes never-decreasing
entropy:

dSΓ [ρrel]
dt

≥ 0 . (3.50)

This corresponds to a positive operator Ĝret (as can most easily be shown by
means of the linear measure of entropy).

A phenomenological probability-conserving Markovian master equation for
a system with ‘macroscopic states’ described by a (set of) ‘relevant’ variable(s)
α, that is, ρrel(t) ≡ ρ(α, t) (see also Sects. 3.3 and 3.4) can be written in the
general form

∂ρ(α, t)
∂t

=
∫ [

w(α, α′)ρ(α′, t) − w(α′, α)ρ(α, t)
]
dα′ . (3.51)

The transition rates w(α, α′) here define the phenomenological operator Ĝret

by means of its integral kernel Ĝret(α, α′) =−w(α, α′)+δ(α, α′)
∫

w(α, α′′)dα′′.
They often satisfy a generalized time inversion symmetry,

w(α, α′)
σ(α)

=
w(α′, α)
σ(α′)

, (3.52)

where σ(α) may represent the density of the (‘irrelevant’) microscopic states
with respect to the variable α – that is, σ := dn/dα, where n is the number
of microscopic states as a function of α. In this case one may again derive an
H-theorem, in analogy to (3.12), for the generalized H-functional
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Hgen[ρ(α)] :=
∫

ρ(α) ln
ρ(α)
σ(α)

dα = ln p . (3.53)

The final form on the RHS is appropriate, since the mean probability p(α)
for individual microscopic states and for given ρ(α) is then p(α) = ρ(α)/σ(α).
The entropy defined by −kHgen is also known as the relative entropy of ρ(α)
with respect to the measure σ(α). The latter is often introduced ad hoc as
part of a phenomenological description.

Under the approximation w(α′, α) = f(α)δ′(α − α′) one now obtains the
deterministic ‘drift’ limit of the master equation (3.51) – usually representing
the first term of (3.44). It defines the first order of the Kramers–Moyal expan-
sion for w(α, α′), equivalent to an expansion of ρ(α′, t) in terms of powers of
α′−α at α′ = α. The second order, w(α′, α) = f(α)δ′(α−α′)+g(α)δ′′(α−α′),
leads to the Fokker–Planck equation as the lowest non-trivial approximation
that leads to an irreversible equation (see de Groot and Mazur 1962, Röpke
1987). In this respect, it is analogous to the LAD equation as the lowest non-
trivial order in the Taylor expansion of the Caldirola equation (2.31). A master
equation is generally equivalent to a (stochastic) Langevin equation for indi-
vidual macroscopic trajectories α(t) which may form a dynamical ensemble
represented by ρ(α, t).

In contrast to the Liouville equation (3.26), the master equation (3.48) or
(3.36) cannot be unitary with respect to the inner product for probability dis-
tributions defined above (3.27). While total probability must be conserved by
these equations, that of the individual trajectories cannot (see also Sect. 3.4).
Information-reducing master equations describe an indeterministic evolution,
which in general only determines an ever-increasing ensemble of different po-
tential successors for each macroscopic state (such as a point in α-space).7

As discussed above, this macroscopic indeterminism is compatible with mi-
croscopic determinism if that information which is transformed from relevant

7 The frequently used picture of a ‘fork’ in configuration space, characterizing a
dynamical indeterminism, may be misleading, since it seems to imply unique
predecessors. This would be wrong, as can be recognized, for example, in an
equilibrium situation. In the case of a stochastic dynamical law that is defined on a
finite set of states, a state must in general also have different possible predecessors,
corresponding to an inverse fork. Inverse forks by themselves would represent
a pure forward determinism (a ‘semigroup’, that may describe attractors). All
these structures are meant to characterize the dynamical law . They are neither
properties of the (f)actual history (which is assumed to evolve along a definite
trajectory regardless of the nature of the dynamical law), nor of an evolving
ensemble that represents a specific state of knowledge.

However, only dynamically unique predecessors may give rise to recordable
histories (consisting of ‘facts’ that are redundantly documented). The historical
nature of our world is thus based on a uniquely determined or even overdeter-
mined macroscopic past – see also footnote 1 of Chap. 2, Fig. 3.8, and Sect. 3.5.
A macroscopic history that was completely determined from its macroscopic past
would be in conflict with the notion of an (apparent) free will.


