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where {Pn} (no caret!), with PmPn = Pmδmn, is a complete set of projection
operators on mutually orthogonal subspaces of the Hilbert space of quantum
states. In quantum field theory, projections on ‘unitarily inequivalent’ separa-
ble subspaces of Hilbert space, sometimes even regarded as ‘distinct Hilbert
spaces’, are often chosen for this purpose. However, these decompositions of
non-separable Hilbert spaces are no less arbitrary than any other P̂semidiag

(though often useful in the case of large numbers of effective degrees of free-
dom). If imposed axiomatically, the relevance concept (4.11) may represent
a superselection rule (Wick, Wightman and Wigner 1952, Jauch 1968, Hepp
1972). This observation suggests that proposed superselection rules are simi-
larly based on some dynamical robustness like the ‘thermodynamically macro-
scopic’ variables of Chap. 3 that are usually assumed as ‘given’ – a possibility
that will be further investigated and confirmed in Sect. 4.3.

4.1.2 Master Equations and Quantum Indeterminism

The Hamiltonian of a quantum mechanical system is often written in the form
H = H0 + H1 in order to derive a master equation in terms of a perturba-
tion expansion with respect to H1. However, the main purpose of this split
Hamiltonian is to define a relevance concept of type (4.9) or (4.11) by means
of the eigenbasis of H0. It may then (but need not) be further used for a time-
dependent perturbation expansion with respect to the off-diagonal elements
of H in this representation.

The dynamics of the ‘relevant’ part P̂diagρ is the dynamics of the diagonal
elements of ρ. According to (4.1) one has in any representation (now writing
P̂diag = P̂ for short)

i
dρmm

dt
=

∑
n

(Hmnρnm − ρmnHnm)

≡
∑

n( �=m)

(Hmnρnm − ρmnHnm) =̂ P̂ L̂(1 − P̂ )ρ . (4.12)

Since the diagonal matrix elements of ρ do not contribute to the RHS, the first
term of Zwanzig’s pre-master equation (3.44), representing P̂ L̂P̂ , vanishes for
this relevance concept. The terms remaining in (4.12) describe the coupling
to the ‘irrelevant’ off-diagonal elements, and demonstrate that the diagonal
elements are dynamically autonomous only in the trivial case (see footnote 6
of Chap. 3 regarding the quantum Zeno effect). Because of the formal analogy,
the rest of Zwanzig’s method can then be applied, provided the required ap-
proximations are valid. The propagator exp

[
− i(1 − P̂ )L̂τ

]
, occurring in the

operator Ĝret of the Markovian approximation (3.48), defines here a closed
but highly non-trivial dynamics of the off-diagonal elements of ρmn.

Pauli’s master equation can now be obtained from (3.48) and (3.45) by
using a perturbation expansion in terms of the off-diagonal elements of the
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Hamiltonian for calculating Ĝret =
∫ T

0
Ĝ(τ)dτ . These off-diagonal elements

are thus assumed to be small, although the master equation would become
trivial if they vanished exactly (that is, for H = H0). This last remark em-
phasizes the dynamical role of the relevance concept.

Now consider the last three factors of the RHS of the integral kernel (3.45)
applied to ρ :

(1 − P̂ )L̂P̂ ρ = (1 − P̂ )
[
H, P̂ρ

]
=̂ Hmn(ρnn − ρmm) with m �= n . (4.13)

This expression depends only on the off-diagonal elements of H. The projec-
tion 1 − P̂ is ineffective, as P̂ L̂P̂ = 0. Similarly, one has for the first three
factors of the RHS of (3.45), when applied to any matrix X :

P̂ L̂(1 − P̂ )X =̂
∑

k( �=m)

(HmkXkm − XmkHkm) . (4.14)

Hence, Ĝret is of second and higher orders in the off-diagonal elements of
H. When neglecting higher orders according to Pauli, one has to express the
remaining propagator exp

[
− i(1− P̂ )L̂τ

]
in (3.45) solely in terms of diagonal

elements of H, Hmm =: E
(0)
m . This means

e−i(1−P̂ )L̂τX =̂ e−i
(
E(0)

m −E(0)
n

)
τXmn , (4.15)

and one obtains

P̂ L̂(1 − P̂ )e−i(1−P̂ )L̂τ (1 − P̂ )L̂P̂ ρ =̂ (4.16)∑
n

|Hmn|22 cos
[(

E(0)
m − E(0)

n

)
τ
]
(ρmm − ρnn) .

This result corresponds to a Born approximation in terms of the off-diagonal
elements of the Hamiltonian. The time integral required to obtain Ĝret ac-
cording to (3.49) leads to the resonance factor∫ T

0

cos
[(

E(0)
m − E(0)

n

)
τ
]
dτ =

sin
[(

E
(0)
m − E

(0)
n

)
T

](
E

(0)
m − E

(0)
n

) , (4.17)

familiar from time-dependent perturbation theory. In the limit T → ∞, this
quotient becomes a δ-function times π, and (3.48) can be written (Pauli 1928)

dρmm

dt
= 2π

∑
n

|Hmn|2δ
(
E(0)

m − E(0)
n

)
(ρnn − ρmm) =:

∑
n

Amn(ρnn − ρmm) .

(4.18)
This Pauli equation is similar to other master equations, such as (3.51), while
the coefficients Amn, defined on the RHS, are transition rates in analogy
to Boltzmann’s w(p1p2,p

′
1p

′
2) of Sect. 3.1.1. If H1 contains only two-particle
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interactions, the sum over n may indeed be written as a sum over particle
pairs. According to the above definition, the coefficients Amn conserve energy
and satisfy the symmetry under collision inversion, Amn = Anm [see (3.7)].
Therefore, the Pauli equation conserves total probability,

∑
n dρnn/dt = 0.

The explicit form of the Pauli equation (4.18) may be used to discuss its
range of validity, which must be limited by the approximations used when
deriving the general master equation (3.48). It depends here on the spectrum
of the Hamiltonian, which is often discrete for quantum systems. Nonetheless,
Poincaré recurrence times can be neglected in practice for macroscopic quan-
tum systems. Their energy spectra are usually so dense that they do not lead
to any observable differences compared to a continuous spectrum. Quantum
systems may even exhibit ‘classical chaos’ (Habib, Shizume and Zurek 1998).
On the other hand, even a continuous spectrum would not by itself justify
an arrow of time (as is often claimed). The negligibility of recurrences for all
times of interest – whether they exist in principle or not – applies in both
directions of time. The physical importance of the difference between discrete
and continuous spectra seems to be grossly overemphasized in mathematical
foundations of irreversibility.

However, the energy δ-function occurring in (4.18) is meaningful only in-
side an integral over energy E, or, as an approximation, under a sum over m.
Therefore, Pauli combined groups of states with almost equal energies to form
‘cells’ (subspaces) representing a coarse-graining in order to apply a random
phase approximation in the corresponding sums (see also van Kampen 1954).
Erich Joos (1984) was able to show that the off-diagonal elements ρmn between
states from such macroscopically different subspaces disappear by interaction
with the environment (‘decoherence’ – see Sect. 4.3). This dynamical argument
justifies Pauli’s conceptual cells and his random phase ‘approximation’.

When applied to a single initial state with ρ00(0) = 1, Pauli’s equation
(4.18) assumes the form of Fermi’s Golden Rule in the Born approxima-
tion. Replacing the sum over initial states n in (4.18) by an energy inte-
gral and a sum over all remaining quantum numbers β, that is,

∑
n · · · −→∑

β

∫
σβ(E) . . .dE with a partial density of states σβ(E), and similarly sub-

stituting m −→ E′, α for the final states, one obtains for the energy-integrated
diagonal elements of final states α �= 0, ραα :=

∫
ρE′α,E′ασα(E′)dE′:

dραα

dt
= 2π|Hα0(E)|2σα(E) . (4.19)

Here, Hα0(E) := HαE,0E , while α represents a ‘decay channel’.
Although this Golden Rule (4.19) can thus be derived as an approximation

from the unitary dynamics (4.12), it is mainly used to calculate probabilities
for decay and other non-unitary ‘quantum events’ – conventionally described
by a collapse of the wave function – see Sect. 4.6. (Coherent exponential decay
according to the Schrödinger equation will be discussed in Sect. 4.5.) In con-
trast, Boltzmann’s probabilistic transition rates w(p1p2,p

′
1p

′
2) refer to ensem-

bles of individually deterministic collision trajectories (distinguished by their
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impact parameters). This different interpretation is facilitated by the fact that
the formal concept of a density operator is already based on a probability in-
terpretation (see Sect. 4.2). Nobody has ever been able to construct a model
that would consistently explain the wave function as representing an ensem-
ble of ‘hidden variables’. (Bohm’s theory, that presumes Schrödinger’s wave
function, will be discussed in Sect. 4.6.) In particular, the entropy (4.4) does
not contain any contribution that might represent the missing information
corresponding to such an ensemble (as in Fig. 3.5 for classical measurements).

Pauli’s equation does indeed resemble Born’s original formulation of the
probability interpretation (Born 1926). Born used it to describe ‘quantum
jumps’ between Schrödinger’s stationary eigenstates of Hamiltonians H0 that
characterize isolated microscopic systems (such as atoms).1 In quantum field
theory, a similar splitting of the Hamiltonian is used to define the interaction
picture. The special role attributed to the eigenstates of H0 as representing the
‘real’ physical states, dynamically connected by discrete jumps, was histori-
cally motivated by their correspondence with Bohr’s discrete atomic electron
orbits. Quantum jumps (or a ‘collapse of the wave function’) are, of course,
incompatible with deterministic trajectories in Hilbert space, that is, with
time-dependent wave functions evolving according to a Schrödinger equation.
The system Hamiltonians H0 are thus assumed not to contain any interaction
that would be responsible for stochastic transitions. This early attempt to
objectivize the probability interpretation (or the observables used therein) by
a dynamical process is therefore based on an essential approximation. (Recall
the trivial result obtained for the Pauli equation in the exact energy basis!)

The general structure of the Pauli equation is preserved even when the
perturbation expansion in terms of the off-diagonal elements of H (in a cer-
tain basis) is not used. This improved equation is known as Van Hove’s ‘exact’
master equation (Van Hove 1957). It represents the master equation for the
Zwanzig projection (4.9) without any further approximation. In particular, if
the chosen basis of relevance (the eigenbasis of H0) is the independent particle
basis, the matrix elements Hmn appearing in the Pauli equation have to be
replaced by the elements of a T -matrix, usually defined as T := (S − 1)/2πi,
where S is the exact two-particle scattering matrix. This procedure presumes
the negligibility of simultaneous many-particle collisions (just as Boltzmann’s
Stoßzahlansatz ). However, the adjective ‘exact’ for Van Hove’s equation is
misleading even for a dilute gas, as it refers only to the calculation of Ĝret,

1 While Born may not have been using his concepts quite consistently in these early
days of quantum mechanics, in his third (here quoted) paper on the probability
interpretation he discussed probabilities for jumps between stationary wave func-
tions – not probabilities for the occurrence of classical properties (such as particle
positions). In scattering or decay ‘events’ he referred to plane waves as stationary
states, which he then associated with particle momenta according to de Broglie’s
relation. One year before the formulation of the uncertainty relations this was
not recognized as being in conflict (in principle) with the position measurement
at the detector.
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but not to the derivation of the master equation (3.48) in its preferred basis
of relevance. Similarly to the choice of subspaces in (4.11), Born’s probabil-
ity interpretation, when applied to measurements, depends on the choice of
appropriate ‘observables’.

In analogy to the classical H-theorem (3.10), one may again show that the
entropy corresponding to the Zwanzig projection P̂ diag never decreases under
the Pauli or Van Hove equation:

dS[P̂diagρ]
dt

= −k
d
( ∑

ρmm ln ρmm

)
dt

≥ 0 . (4.20)

Evidently, this entropy depends crucially on the chosen basis for diagonaliza-
tion, that is, on the specific concept of relevance used in this master equation.

Because of the formal analogy, the classical canonical distribution,
ρcan(p, q) = Z−1 exp

[
− H(p, q)/kT

]
, now becomes a canonical density op-

erator, ρcan = Z−1 exp(−H/kT ). It can be derived precisely as in (3.19) by
maximizing the entropy S[ρ] under the constraint of fixed mean energy and
probability norm. The so-called ‘new statistics’ (Bose or Fermi statistics) in
terms of apparent particles is obtained when evaluating this canonical den-
sity operator in terms of quantum states of free fields – conveniently in the
occupation number representation. Only when expressed in terms of particle
states does it appear as a new method for counting them. The success of
quantum statistics is indeed one of the strongest arguments against particles
(in their original sense of pointlike objects in space, distinguishable by their
trajectories) as a fundamental kinematical concept.

This conclusion, that fields rather than particles have to be quantized even
for fields that never appear classically (such as spinor fields – see Zeh 2003), is
also supported by the absence of Gibbs’ self-mixing entropy (see footnote 2 of
Chap. 3). The empirically correct measure on phase space, d3Np d3Nq/h3NN !,
may then be obtained, for example, in the partition function Z for a grand
canonical ensemble, pE,N (µ, T ) = exp

[
− (E − µN)/kT

]
. If this expression

is evaluated by means of the familiar textbook approximation in the occupa-
tion number representation |{nk}〉 for spatial wave modes (often incorrectly
regarded as ‘single-particle’ wave functions) with wave numbers k = p/� on
a large space volume V , one obtains for dilute gases – where N =

∑
k nk and

E =
∑

k εknk, with εk = p(k)2/2m and εk − µ � kT :

Z(µ, T ) =
∑
{nk}

exp

[
−

∑
k

(εk − µ)nk

kT

]

≈
∑
N

V N

h3NN !
exp

(
Nµ

kT

) ∫
exp

(
−

N∑
i=1

p2
i

2mkT

)
d3Np

≈
∑
N

[
V

h3N
exp

( µ

kT

) ∫
exp

(
− p2

2mkT

)
d3p

]N

. (4.21)
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The factorials N ! ≈ NN in the denominator are here required (as already
known to Planck in 1900) in order to compensate for the sum over all permu-
tations of the N momenta pi in this N -fold integral, since they all represent
the same oscillator quantum states for the various wave modes. The latter are
described by wave numbers k which formally correspond to momenta p. The
density matrix, and therefore the partition function, now factorize in terms of
wave modes k rather than in terms of particle numbers, while the factorials
do not have to be introduced ad hoc (as done by Satyendra Nath Bose in
order to justify his photon concept).

General Literature: Jancel 1963.

4.2 Ensembles Versus Entanglement

Quantum wholeness is analyzable.

In the previous section, we derived the von Neumann equation from the Li-
ouville equation by using the formal quantization rules. The dynamics of the
density matrix, obtained in this way, is unitary. Therefore, it conserves S[ρ],
while the Pauli (or Van Hove) equation, albeit apparently derived from the
von Neumann equation as an approximation, may seem to be superior, as it is
able to describe quantum indeterminism and an increase in ensemble entropy,
in particular in quantum measurements.

The Liouville equation itself was obtained in Sect. 3.1.2 by applying Hamil-
ton’s (that is, Newton’s) equations to ensembles that represent incomplete
knowledge about classical states. Since quantization of the Hamiltonian dy-
namics of mechanical systems leads to the Schrödinger equation, one may as
well first quantize and then consider ensembles of its solutions ψα(t) with cor-
responding probabilities pα, now describing incomplete knowledge about the
wave function (see Fig. 4.1). This procedure may offer deeper insight into the
meaning of the density matrix than its formal foundation of Sect. 4.1.1.

According to this ensemble interpretation, probabilities pα rather than the
density matrix ρ(q, q′) correspond conceptually to the probability distribution
ρΓ (p, q). The meaning of the density matrix can only be appreciated when
considering ensemble expectation values of observables A, that is, mean values
of expectation values with respect to different wave functions ψα :

〈A〉 :=
∑
α

pα〈ψα|A|ψα〉 = Trace{Aρ} =
∑

n

an〈φn|ρ|φn〉 , (4.22)

with
A :=

∑
n

|φn〉an〈φn| and ρ :=
∑
α

|ψα〉pα〈ψα| .

The symbol 〈A〉 denotes here a twofold mean: with respect to the ensem-
ble of quantum states ψα with their probabilities pα, and with respect to
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Hamilton Liouville

Schrödinger von Neumann

incomplete knowledge

quanti-
zation

Fig. 4.1. Two routes from classical mechanics to the von Neumann equation

the quantum mechanical indeterminism of measurement results an with their
probabilities |〈φn|ψα〉|2, valid for given quantum states ψα. In this way, the
concept of a density matrix depends on the probability interpretation of the
wave function – though not yet on any specific form in terms of ensembles2

(see Sect. 4.6).
An ensemble interpretation of the density matrix according to ρ =∑

α |ψα〉pα〈ψα|, used in (4.22), does not require the members ψα of the en-
semble of wave functions to be mutually orthogonal; they may even form an
overcomplete set. The ensemble can therefore not be recovered from the den-
sity matrix. Von Neumann’s entropy (4.4) describes an ensemble entropy of
the form S[ρ] = −k

∑
pα ln pα only for the specific ensemble consisting of the

orthonormal eigenstates of ρ.
Just as for classical statistical mechanics, the conservation of entropy re-

flects dynamical determinism (now for wave functions) – provided the Hilbert
state norm is conserved, too. This requires not only determinism, but also
the unitarity of the Schrödinger equation (not just that of the von Neumann
equation). The reason is that the formal density matrix cannot distinguish
between the norm and probability pα of a wave function.

It should also be emphasized here that this formalism applies as well to
wave functionals characterizing quantum field theory (that is, wave functions
for a continuum of variables). ‘Backward running’ world lines in Feynman
graphs are mere symbols for certain terms which appear in a relativistic per-
turbation expansion that is used for calculating the unitary propagation of
wave functionals (general superpositions) with respect to an arbitrary but
given time coordinate. These terms represent integrals over field modes (usu-
ally plane waves) – not over particle variables. Feynman’s approach has turned
out to be useful even beyond S-matrix theory, which is restricted to describing
interactions between asymptotically free objects.

The mapping of general ensembles of wave functions onto those which diag-
onalize the density matrix is an information-reducing idempotent operation

2 If the elements of the probability interpretation are themselves wave functions (as
in Born’s original formulation, mentioned in footnote 1, or as in collapse theories),
the ensemble consisting of all possible outcomes of all conceivable measurements
would be quite different from the initial ensemble (which may consist of one pure
state, for example). Nonetheless, probabilities for all these outcomes are implicitly
postulated by the phenomenological rules used in (4.22).
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on these ensembles, similar to a Zwanzig projection. Nonetheless, one may
rederive the von Neumann equation (4.1) from the ensemble interpretation
under the further assumption that all wave functions defining the ensemble
satisfy the same Schrödinger equation i∂ψα/∂t = Hψα. However, presuming
the exact Hamiltonian to be ‘given’ is hardly consistent when regarding states
as incompletely known. Even in classical physics, the precise Hamiltonian
would depend on the (even less known) microscopic state of the environment
(see Borel’s argument in Sect. 3.1.2).

Instead of representing an ensemble of wave functions, the density matrix
may also describe the local (or ‘reduced’) perspective of entangled quantum
systems, which are generically of the form

ψ(x, y) =
∑
m,n

dmnφm(x)Φn(y) . (4.23)

For spatially separate subsystems, this entanglement defines quantum nonlo-
cality . For example, it is responsible for the violation of Bell’s inequality (Bell
1964) or its stronger variants (Greenberger, Horne, Shimony and Zeilinger
1990), and it explains so-called quantum teleportation in a way which demon-
strates that nothing has to be teleported: it must rather be prepared in advance
as a component of an entangled state (see Zeh 2005c or Timpson 2005).

All measurements performed on a subsystem – corresponding to the states
φ(x), say – of an entangled system can be characterized by the expectation
values for all its subsystem observables Aφ :

〈Aφ〉 := Trace{Aφρtotal} = Traceφ{Aφρφ} . (4.24)

Here, the ‘reduced density matrix’ ρφ is defined as a partial trace,

ρφ := TraceΦ{ρtotal} . (4.25)

The total density matrix ρtotal may well be a pure state, ρtotal := |ψ〉〈ψ|.
The new density matrix ρφ would then be explicitly given in terms of the
expansion coefficients dmn of the total state (4.23) as

(ρφ)mm′ := 〈φm|ρφ|φm′〉 =
∑

n

dmnd∗m′n , (4.26)

rather than in terms of probabilities pα, which would instead lead to (4.8).
Both types of density matrices are Hermitean and positive by construc-

tion. They can therefore be diagonalized in the form ρφ =
∑

n |φ̃n〉pn〈φ̃n|,
with non-negative eigenvalues pα, in their eigenbasis {φ̃n}. This diagonal form
defines a formal (or apparent) ensemble of orthonormal states. Although the
LHS of (4.26) is thus identical with a density matrix describing an ensem-
ble of (orthogonal or other) states, it is evident from the RHS that it does
not represent one. Therefore, the ‘apparent ensemble’ or ‘improper mixture’
(d’Espagnat 1966) must not be used in an attempt to explain the probability
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interpretation (4.24) on which it is based. The density matrix formalism is
blind to the measurement problem (see below and Sect. 4.6).

For an entangled state such as (4.23), the eigenbases of the subsystem
density matrices define the Schmidt canonical form,

ψ(x, y) =
∑

k

√
pkφ̃k(x)Φ̃k(y) . (4.27)

In contrast to the general representation (4.23) this is a single sum (Schmidt
1907, Schrödinger 1935). Phase factors for the coefficients

√
pk have here been

absorbed into the phase-ambiguity in the definition of the orthonormal states
φ̃k or Φ̃k. For given subsystems, this representation (and hence its time de-
pendence – see Kübler and Zeh 1973) is determined by the state ψ(t) of the
total system – except for accidental degeneracy of the pk’s.

The neglect of all correlations between two subsystems describes a specific
loss of information, and so defines a new (nonlinear) Zwanzig projection,

P̂sepρ := ρφ ⊗ ρΦ . (4.28)

A stronger Zwanzig projection of locality, P̂ localρ =
∏

k ρ∆Vk
, where the vol-

ume elements ∆Vk form a complete set of local subsystems, would lead to
a density matrix that factorizes, as in (3.38), in terms of these volume ele-
ments. It is again required in order to obtain the approximate concept of an
entropy density s(r). In contrast to this local picture, indistinguishable parti-
cles cannot be used to define subsystems that might give rise to a ‘substantial
picture’. Therefore, the formal correlations between particles which describe
symmetrization or antisymmetrization of the wave function does not repre-
sent any entanglement. These pseudo-correlations are merely an artifact from
the use of classical particle concepts – see (4.21).

As a consequence of the nonlocality of quantum states, and in funda-
mental contrast to classical physics, the entropies S[P̂sepρ] or S[P̂localρ] of a
completely defined (pure) quantum state are nontrivial: generically they do
not vanish, since states of subsystems are not defined (rather than merely be-
ing unknown). Apparent ensembles, which are defined for them, may even be
regarded as the representative ensembles used in statistical thermodynamics
(see Chap. 3). However, one may now wonder (1) why microscopic systems
are often found in pure states (such as eigenstates of their Hamiltonians H0),
and (2) why the macroscopic world is successfully described by means of given
classical concepts rather than in terms of their superpositions.

A local concept of relevance that, in contrast to P̂ sep, preserves all ‘statis-
tical’ correlations (those based on incomplete information), while removing all
quantum correlations (entanglement), may be defined by using the Schmidt
canonical representation in the form

P̂classical(|ψ〉〈ψ|) :=
∑

k

pk|φ̃k〉〈φ̃k| ⊗ |Φ̃k〉〈Φ̃k| . (4.29)


