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The Time Arrow of Spacetime Geometry

In the framework of general relativity, gravity is a consequence of spacetime
curvature. Its dynamical laws (Einstein’s field equations) are again symmetric
under time reversal. However, if their actual global solution, that is, the ob-
served spacetime, is asymmetric (such as a forever expanding universe), this
must affect the dynamics of all matter. While this was well known, it came
as a surprise during the early 1970s that strongly gravitating systems possess
thermodynamical properties, thus indicating an intimate connection between
two seemingly very different fields of physics.

Gravitating systems are already thermodynamically peculiar in Newton’s
theory, since they possess negative heat capacity, resulting from the universal
attractivity of this force. In particular, attractive forces which depend homo-
geneously on the minus second power of distance, such as gravity and Coulomb
forces, lead according to the virial theorem to the relation

Ekin = −1
2
Epot = −E , (5.1)

between the mean values of kinetic and potential energies, and therefore be-
tween them and the total energy. This virial theorem is valid for mean values
over a (quasi-)period of the motion, or approximately (in the case of semi-
stable states) for mean values defined over sufficiently large intervals of time.
In quantum theory, mean values have to be replaced by expectation values
on proper (normalizable) energy eigenstates. The theorem can then be conve-
niently proved using Fock’s ansatz ψ(λr1, . . . , λrN ) and the homogeneity of
T and V in a variational procedure, δ

(
〈ψ|T + V |ψ〉/〈ψ|ψ〉

)
= 0, with respect

to λ. So it must also hold for expectation values on density matrices whose
non-diagonal elements can be neglected in the energy basis. (For relativistic
generalizations of the virial theorem see Gourgoulkon and Bonazzola 1994.)

The anti-intuitive negative sign relating kinetic and total energy in (5.1)
means, for example, that satellites are accelerated by friction when they enter
the earth’s atmosphere, and that stars heat up by radiating energy away. This
second example is valid only as far as the quantum mechanical zero-point
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energy does not dominate Ekin = Trace{ρT} – as it would in white dwarf
stars or solid bodies. Early astrophysicists believed instead that stars always
cool down in the course of time. The virial theorem also means that the heat
flow from hot to cold objects which are governed by gravity causes a thermal
inhomogeneity to grow.

To construct an example, first consider a monatomic ideal gas in two
vessels under different conditions, but under exchange of energy (heat),
δU1 = −δU2, and particles, δN1 = −δN2. Their partial entropies according
to (3.14) are given by

Si = kNi

(
3
2

lnTi − ln ρi + C

)
, (5.2)

with i = 1, 2 distinguishing the two vessels. Since the internal energy, U =
Ekin, is here U = (3/2)NkT , the total change of entropy becomes for fixed
volumes Vi, or for fixed densities ρi = Ni/Vi,

δStotal = δS1 + δS2 =
(

1
T1

− 1
T2

)
δU1 + k

(
3
2

ln
T1

T2
− ln

ρ1

ρ2

)
δN1 . (5.3)

This expression describes entropy changes δS1 and δS2 with opposite signs,
which cancel only in thermodynamical equilibrium (T1 = T2 and ρ1 = ρ2). In
this situation without gravity, an entropy increase in accordance with the Sec-
ond Law requires a reduction of thermal and density inhomogeneities (except
for the transient thermo-mechanical effect , that is, a thermally induced pres-
sure difference that is caused by the temperature dependence of the second
term).

However, the density of a gravitating star is not a free variable that can be
kept fixed (as in the laboratory). A typical star, assumed for simplicity to be
in thermal equilibrium, may to a very good approximation also be described
as an ideal gas. Its temperature and volume are then related by means of the
virial theorem according to

NT ∝ U = Ekin ∝ −Epot ∝
N2

R
∝ N2

V 1/3
, (5.4)

that is, V ∝ N3/T 3. The entropy (5.2) of a star is therefore

Sstar = kN

(
3
2

lnT − lnN + lnV + C

)
= kN

(
−3

2
lnT + 2 lnN + C ′

)
. (5.5)

In the second line, the signs of lnT and lnN are reversed. The total entropy
change of a star embedded in an interstellar gas, δSstar +δSgas, becomes after
again using the virial theorem in the form Estar = −Ustar ,
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δStotal =
(

1
Tstar

− 1
Tgas

)
δEstar + k ln

[
C ′′N2

starρgas

(TstarTgas)3/2

]
δNstar . (5.6)

While heat must still flow from the hot star into cold interstellar space in
order to comply with the Second Law, this leads now to a further increase of
the star’s temperature, and the accretion of matter – provided the ‘star’ is
already sufficiently massive. Thermal and density inhomogeneities thus grow
in the generic astrophysical situation, although there are also ‘pathological’
objects with non-periodic motion, such as gravitationally collapsing spherical
matter shells or pressure-free dust spheres, for which the virial theorem does
not hold.

These arguments show that the evolution of normal stars is dynamically
controlled by thermodynamics rather than by gravity itself. If the thermo-
dynamical arrow of time did change direction in a recontracting universe (as
suggested by Gold 1962 – see Sect. 5.3), stars and other gravitating objects
would have to re-expand by means of advanced incoming radiation in spite of
their attractive forces.

A homogeneous universe must therefore describe an unstable state of very
low entropy (though a ‘simple’ state in the sense of Sect. 3.5). So one may
ask whether the evolution of matter into inhomogeneous clumps under grav-
itational forces represents an entropy capacity that is sufficient to explain
the observed global thermodynamical arrow of time. The apparently required
Kaltgeburt of the Universe might then be replaced by a homogeneous birth,
since inhomogeneous local contraction leads to the formation of strong tem-
perature and density gradients.

In order to estimate the improbability (negentropy) of a homogeneous
universe, one has to know the maximum entropy that can be gained by grav-
itational contraction. Conceivable limits of contraction are:

• Quantum degeneracy (primarily of electrons) is essential for the stability
of solid gravitating bodies and white dwarf stars. By emitting heat, these
objects cool down rather than further heating up.

• Repulsive short range forces are important in neutron stars, for example.
• Gravitation itself may lead to black holes even in Newton’s theory. Any

radiation with bounded velocity cannot escape from the surface of a suffi-
ciently dense and massive object. If this velocity bound is as universal as
gravity (as in the theory of relativity), the further fate of matter inside this
critical surface remains completely irrelevant to an external observer. This
surface defines an event horizon for him. Matter disappearing behind the
horizon is irreversibly lost except for its long range forces, such as gravity
itself. In particular, it can no longer participate in the thermodynamics of
the Universe.

Such non-relativistic black holes were discussed by Laplace as early as 1795,
and before him by J. Mitchel at Cambridge. In general relativity, black holes
are described by specific spacetime structures. This leads to the further con-
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sequence that neither of the first two mentioned limits to gravitational con-
traction may prevent an object of sufficiently large mass (that could always
be reached by further accretion of matter) from collapsing into a black hole.
Repulsive forces would give rise to a positive potential energy, that must even-
tually dominate as a source of gravity, while the increasing zero point pressure
of a degenerate Fermi gas would force the fermions into effective bosons that
may form a further contracting condensate.

Therefore, only black holes define a realistic upper limit for entropy pro-
duction by gravitational contraction of matter from the point of view of an
external observer. But what is the value of the entropy of a black hole? This
question cannot be answered by investigating relativistic stars, that is, equi-
librium systems, since the essential stages of the collapse proceed irreversibly.
However, a unique and finite answer is obtained from a quantum aspect of
black holes, viz., their Hawking radiation (Sect. 5.1).

Since in general relativity the spatial curvature represents a dynamical
state (see Sect. 5.4), it may itself carry entropy. Its dynamics is described by
Einstein’s field equations

Gµν = 8πTµν , (5.7)

in units with G = c = 1, where Tµν is the energy–momentum tensor of matter.
They define an initial (or final) value problem, since they are essentially of
hyperbolic type (see Sect. 2.1). The Einstein tensor Gµν is a linear combina-
tion of the components of the Ricci tensor Rµν := Rλ

µλν , that is, the trace
of the Riemann curvature tensor. Forming this trace is analogous to forming
the d’Alembertian in the wave equation (2.1) for the electromagnetic poten-
tial from its matrix of second derivatives ∂ν∂λAµ. Aside from nonlinearities
(that are responsible for the self-interaction of gravity), the Riemann curva-
ture tensor is similarly defined by the second derivatives of the metric gµν ,
which thus assumes the role of the gravitational potential (analogous to Aµ in
electrodynamics). In both cases, the trace of the tensor of derivatives is deter-
mined locally by the sources, while its trace-free parts represent the degrees
of freedom of the vector or tensor field, respectively, which can therefore be
freely chosen initially (as an incoming field).

Penrose (1969, 1981) used this freedom to conjecture that the trace-free
part of the curvature tensor (the Weyl tensor) vanished when the Universe
began. This situation describes a ‘vacuum state of gravity’, that is, a state of
minimum gravitational entropy, and a space as flat as is compatible with the
sources. It is analogous to the cosmic initial condition Aµ

in = 0 for the electro-
magnetic field discussed in Sect. 2.2 (with Gauss’s law as a similar constraint).
Gravity would then represent a retarded field, requiring ‘causes’ in the form
of advanced sources. Since Penrose intends to explain the thermodynamical
arrow, too, from this initial condition (see Sect. 5.3), his conjecture revives
Ritz’s position in his controversy with Einstein (see Chap. 2) by applying it
to gravity rather than to electrodynamics.
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In the big bang scenario, the beginning of the Universe is characterized
by a past time-like curvature singularity (where time itself began). Penrose
used this fact to postulate his Weyl tensor hypothesis on all past singularities,
since this would allow only one of them: a uniform big bang. In the absence
of an absolute direction of time, the past would then be distinguished from
the future precisely and solely by this asymmetric boundary condition and its
consequences (again introducing a ‘double standard’). If the Weyl tensor con-
dition could be derived from some other assumptions that did not arbitrarily
select a time direction, it would have to exclude inhomogeneous future singu-
larities as well. This may again lead to dynamical consistency problems, but
it would not rule out collapsing objects to appear as black holes to external
observers (see Sects. 5.1 and 6.2.3).

5.1 Thermodynamics of Black Holes

In order to discuss the spacetime geometry of black holes, it is convenient to
consider the static and spherically symmetric vacuum solution, discovered by
Schwarzschild and originally expected to represent a point mass. In terms of
spherical spatial coordinates, this solution is described by the metric

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2) . (5.8)

Here, r measures the size of a two-dimensional sphere – though not the dis-
tance from r = 0. This metric form is singular at r = 0 and r = 2M , but the
second singularity, at the Schwarzschild radius r = 2M , is merely the result of
an inappropriate choice of these coordinates. The condition r = 2M describes
a surface of fixed area A = 4π(2M)2 (using Planck units G = c = � = kB = 1)
in spite of moving outwards at speed of light. In its interior (that is, for
r < 2M) one has gtt = 2M/r−1 > 0 and grr = (1−2M/r)−1 < 0. Therefore,
r and t interchange their physical meaning as spatial and temporal coordi-
nates. This internal solution is not static, while the genuine singularity at
r = 0 represents a time-like singular boundary rather than the space point
expected by Schwarzschild.

Physical (time-like or light-like) world lines, that is, curves with ds2 ≤ 0,
hence with (dr/dt)2 ≤ (1 − 2M/r)2 → 0 for r → 2M , can only approach the
Schwarzschild radius parallel to the t-axis (see Fig. 5.1). Therefore, the interior
region r < 2M is physically accessible only via t → +∞ or t → −∞, albeit
within finite proper time. These world lines can be extended regularly into
the interior when t goes beyond ±∞. Their proper times continue into the
physically finite future (for t > +∞) or past (for t < −∞) with the new time
coordinate r < 2M . There are therefore two internal regions (II and IV in the
figure), with their own singularities at r = 0 (at a finite distance in proper
times). These internal regions must in turn each have access to a new external


