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[P7] [The Deutsch-Josza Algorithm]

The Deutsch-Josza Algorithm is designed to exactly reveal the nature of a Boolean
function f with a single query. The function f : {0, 1}n → {0, 1} is assumed to be
unknown (a “black box”) that is either

• constant, i.e. f(x) = f(y) for all x, y ∈ {0, 1}n, or

• balanced, i.e. |{x : f(x) = 0}| = |{x : f(x) = 1}| = 2n−1.

Classically, determining with certainty whether f is constant or balanced may require
2n−1 queries (i.e. evaluations of the function f on a given input). So it may come as a
surprise that a quantum circuit that requires only a single query is able to answer this
question with certainty. This circuit is depicted in Figure 1 and implements the Boolean
function f as a reversible gate acting on (n+ 1) qubits via

Bf |x〉 ⊗ |y〉 = |x〉 ⊗ |y ⊕ f(x)〉, ∀x ∈ {0, 1}n ,∀y ∈ {0, 1} . (1)

Here ⊕ denotes addition modulo 2 and for x = (x1, . . . , xn) ∈ {0, 1}n ∈ {0, 1}n, |x〉 is a
short-hand notation of |x1〉 ⊗ · · · ⊗ |xn〉. In addition to that, the circuit makes heavy use
of Hadamard gates which amount to

H =
1√
2

(
1 1
1 −1

)
(2)

in the computational basis {|0〉, |1〉} of C2. The aim of this exercise is to show that this
circuit is indeed capable of deciding the nature of f in a single query (run).

(1) Suppose that the algorithm depicted in Figure 1 receives the n-qubit input

|Ψinput〉 = |0〉 ⊗ · · · ⊗ |0〉︸ ︷︷ ︸
n times

⊗ |1〉.

Determine the state |Ψt1〉 that is obtained after applying (n + 1) Hadamard gates in
parallel.

(2) Show that the state |Ψt2〉 = Bf |Ψt1〉 then amounts to

|Ψt2〉 =
1√
2n

∑
x∈{0,1}n

(−1)f(x)|x〉 ⊗
(

1√
2
|0〉 − 1√

2
|1〉
)
. (3)

Hint: Start by showing that |0⊕ z〉− |1⊕ z〉 = (−1)z (|0〉 − |1〉) is true for any z ∈ {0, 1}
and generalize this behavior to obtain (3).

(3) Determine the circuit’s final n-qubit state |Ψt3〉 that is obtained after discarding
(omitting) the final qubit and applying Hadamard transformations to the remaining n
qubits.

(4) The quantum circuit is concluded by performing n single qubit measurements in
the computational basis {|0〉, |1〉}. Show that the probability for obtaining only zero-
outcomes equals one, if the hidden Boolean function was constant, and is zero, if the f
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Figure 1: Circuit diagram of the Deutsch Josza Algorithm: (n + 1) parallel Hadamard
matrices are applied to the the (n + 1)-qubit product state |Ψinput〉 = |0〉⊗n ⊗ |1〉. The
resulting state |Ψt1〉 then serves as an input for the “black box circuit” Bf that encodes
the action of the unknown Boolean function in a reversible way – see Eq. (1). After-
wards, the final qubit is discarded, while the other ones once more undergo a Hadamard
transformation. Finally the remaining n qubits are measured in the computational basis
{|0〉, |1〉}.

was balanced. Note that this result assures, that such an experiment allows to reveal the
nature of f with certainty.
Hint: According to Born’s rule, the probability of measuring only zeros is given by

Pr (m1 = 0, . . . ,mn = 0) =
∣∣〈0| ⊗ · · · ⊗ 〈0|︸ ︷︷ ︸

n times

|Ψt3〉
∣∣2.

(5 P.)

[P8] (Approximating circuits). The definition of the quantum Fourier transform involves the
gates

Rk =

[
1 0

0 e2πi2
−k

]
which differ from the trivial time evolution (given by the identity matrix) only by an ex-
ponentially small quantity 1−e2πi2−k

. This might be a source of concern: does a quantum
algorithm require exponentially precise control? Here, we will show that this is not the
case: small errors in the gates will lead only to small differences in the success probability
of the algorithm. (And hence leaving out the Rk’s for large k does not significantly alter
the QFT circuit).

(1) Recall the operator norm of a matrix A is

‖A‖∞ = max
φ
‖A|φ〉‖ = max

φ,ψ
〈ψ|A|φ〉,

where the respective maximizations are over normalized vectors ‖φ‖ = ‖ψ‖ = 1. Show
that the operator norm satisfies the triangle inequlaity ‖A+B‖∞ ≤ ‖A‖∞+‖B‖∞. Show
that the operator norm is unitarily invariant : if U is a unitary, then ‖AU‖∞ = ‖UA‖∞ =
‖A‖∞.

(2) Let U1, U2 be two ideal quantum gates. Suppose we manage to engineer V1, V2, which
are close to the U ’s in the sense that ‖Ui−Vi‖∞ ≤ ε. Using the two properties established
above, show that

‖U2U1 − V2V1‖∞ ≤ 2ε.
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(Of course, by induction, this implies that if a circuit consists of n gates Ui realized to
within precision ε each, then the total error of the circuit will not exceed nε.)

(3) Lastly, let A be the observable used to read out the result of the computation.
We assume that ‖A‖∞ = 1 (optional problem: convince yourself that that’s true for all
examples we have looked at so far). If |ψ〉 is the initial state of the computation, U the
ideal unitary of the circuit, V our approximation to it, then the read-out error is∣∣∣trAU |ψ〉〈ψ|U † − trAV |ψ〉〈ψ|V †

∣∣∣.
Prove that this error is no larger than 2‖U − V ‖∞. (5 P.)


