
CLASSIFYING TOPOLOGICAL PHASES WITH PROJECTIVE SYMMETRIES
Ulrich Michel1
1University of Cologne

Abstract: for a long time it was believed that all kind
of phase transitions could be described by Landau
Symmetry-Breaking. The properties of the system are
described by a local order parameter and in order to
change the phase, a symmetry has to break. The dis-
covery of the Quantum Hall Effect makes it necessary
to develop the new theory of topological phases. The
Classification turns out to be a hard task and can be
simplified by projective symmetries.

Topological Phases: Two HamiltoniansHsa,Hsb with sym-
metry group Gs belong to the same topological class
(phase) if ∃HSλ homotopy connecting both Hamiltonians
conserving the symmetry as well as the bulk gap.

Altland-Zirnbauer Classification: All phases of free
fermionic Hamiltonians with time reversal (T) - , sub-
lattice (S) -, particle-hole (C) - symmetries, are fully
classified by A. Altland and M. Zirnbauer.

These symmetries are the most robust against pertur-
bation an therefore are the most relevant in nature.

Interacting Hamiltonians: In presence of interactions
(=quartic terms in the Hamiltonian) one drops out of
AZ-Classification and going via Homotopies is a cruel
task. A better way in 1D is the commutation relation
of projective representations of the symmetry operators.
These are the same within a topological phase and are
called topological invariants.

Projective Symmetry Representation: We consider a
gapped 1D Chain with finite correlation length ξ, bi-
partitioned into system S and environment E.

When the Action of an operator on S ÔS is sufficiently
far away from its action on E ÔE, that the product ex-
pectation value decouples. Lets consider the ground
state in the Schmidt decomposition ‖ψ〉 =

∑
αi|φi〉⊗ |χi〉

and a projector onto one schmidtstate as ÔE = |χγ〉〈χγ′ |.

α2
γ〈Ôs〉φγ

= 〈ÔSÔE〉ψ ≈ 〈ÔS〉ψ〈ÔE〉ψ = α2
γ〈ÔS〉ψ , γ = γ

′

αγαγ′ 〈φγ |Ôs|φγ′ 〉 = 〈ÔSÔE〉ψ ≈ 〈ÔS〉ψ〈ÔE〉ψ = 0 , γ 6= γ
′

We see that different entanglement eigenstates are not
connected and behave all like the ground state. The
action of an arbitrary symmetry operator on the system
is then determined by its action near the edges A and
B. We name

ÔS = ÔAÔB (1)

a projective representation. The (global) topological in-
variant µ = 0, π, which determines the commutation
relation ÔAÔB = eiµÔBÔA can be used to classify the
occuring phases.

Example: As an example we consider an interacting 1D
fermionic chain in which 2 symmetries are maintained
by interactions: parity conservation (#fermions mod 2)
and time reversal. From the condition that the parity
operator Q̂ = αQ̂AQ̂B squares to identity

1 = Q̂2 = α2
(
Q̂A[Q̂B , Q̂A]∓Q̂B ± 1

)
, (2)

one obtains, that either Q̂A, Q̂B commute with α2 = 1
and therefore the first topological invariant is φ = π or
they anti commute with α2 = −1 and therefore φ = 0.
We would like to recall the Kitaev chain in a non trivial
topological phase in Majorana representation Hchain =
−i
∑
γj,1γj+1,2 [2]. Then we can set Q̂A = γ0,1, Q̂B = γN,2

and see that they act only near the edges of our system
and this phase corresponds to a φ = π phase.
The second symmetry, time reversal, is represented by
an anti unitary operator. Its projective representation
is given by T = ÛaÛBK, where K denotes the complex
conjugation operator. The second topological invariant
is defined by the commutation relation ÛAÛB = eiκÛBÛA.
Our third invariant follows from the condition that

1 = T 2 = eiκÛAÛ
∗
AÛBÛ

∗
B , (3)

which implies that

ÛAÛ
∗
A = ÛBÛ

∗
B = eiτ1 (4)

All in all, one has three binary topological invariants,
which implies that there are 8 different combinations.
A 1D interacting spin system maintaining these sym-
metries has therefore only 8 distinct topological phases.
When two such systems are combined together, their
phases follow an additive group structure isomorphic
to the Z8. If we additionally require translation sym-
metry to be maintained by the interactions the group
structure becomes isomorphic to the Z16.
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