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Hilbert Space Primer
(Evolving notes. Don’t print!)

Hilbert spaces in Dirac notation
Let’s recall some basic facts from linear algebra.

A Hilbert space H is a complex vector space with a sesquilinear inner product.
Sesquilinearity means that for all

α, β, γ ∈ H, z ∈ C

we have
〈α|β + zγ〉 = 〈α|β〉+ z〈α|γ〉,

as well as
〈α|β〉 = 〈β|α〉.

From this, it follows that

〈α+ zβ|γ〉 = 〈α|γ〉+ z̄〈β|γ〉,

i.e. the inner product is anti-linear w.r.t. the first entry and linear w.r.t. the second one.

Beware that mathematicians usually employ the opposite convention, where the
sesquilinear inner product is linear in the first entry!

The norm of a vector is the square root of its inner product with itself:

‖α‖2 = 〈α|α〉1/2.

Physicists often use notational aids to delinate vector-valued quantities from scalars.
For example, the notations x for a set of coordinates in classical mechanics, or ~E for
the electric field are common. In quantum mechanics, the suggestive Dirac notation
(or “bra-ket” notation) is usually employed. Here, a vector α ∈ H is written as |α〉.
This is called a ket, for reasons that will be obvious momentarily. With every ket |α〉,
we associate a bra 〈α|. Bras are dual vectors, i.e. linear functionsH → C defined by

〈α| : |β〉 7→ 〈α|β〉.

The genius of this notation is that one doesn’t need to expend any thoughts on concepts
like “dual vectors” or “linear functionals”. The formalism almost forces one to use
the mathematical object correctly: When a bra 〈α| meets a ket |β〉, they form a – you
guessed it – braket 〈α|β〉. We’ll see more examples of the Dirac notation in action
below.

Let {|ei〉}di=1 be an ortho-normal basis (ONB) ofH:

〈ei|ej〉 = δi,j .

Then any vector α ∈ H can be expanded as

|α〉 =

d∑
i=1

αi|ei〉,
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with coefficients
αi = 〈ei|α〉.

Once we have agreed on a basis, we can identify the Hilbert space H with Cd, the set
of complex column vectors of size d by mapping an element |α〉 ∈ H to the vector of
its expansion coefficients:

|α〉 7→

α1

...
αd

 .

Such column vectors are particularly useful for computer calculations, as we will see.
Bras, in turn, are mapped to row vectors with conjugate coefficients: If

|β〉 =

d∑
i=1

βi|ei〉,

then

〈β| =
d∑
i=1

β̄i〈ei| 7→ (β̄1, . . . , β̄d).

The usual rules of matrix multpiplication then give

(β̄1, . . . , β̄d)

α1

...
αd

 =

d∑
i=1

β̄iαi = 〈β|α〉,

so the two picture are compatible. In coordinates, the norm reads

‖|α〉‖ =

(∑
i

|αi|2
)1/2

.

The “ket”-notation allows one to save a bit of ink when working with one fixed
ONB. Say we have agreed to work with {|ei〉}i. Then quantum physicists (and no-one
else. . . ) commonly drop the symbol e and just put the index into the ket:

|i〉 := |ei〉.

This shorthand notation can sometimes lead to confusion, but is too common and con-
venient to ignore.

Having acquainted ourselves with vectors, let’s move to operators or linear maps
onH. An operator A is a linear functionH → H, i.e. it satisfies

A(|α〉+ z|β〉) = A|α〉+ zA|β〉.

An important class of operators are outer products or “ket-bra’s”. Indeed, if |α〉, |β〉
are vectors inH, then we define

|α〉〈β|

as the operator that sends |γ〉 ∈ H to

|α〉〈β|γ〉 = |α〉︸︷︷︸
∈H

(
〈β|γ〉

)︸ ︷︷ ︸
∈C

∈ H.
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The definition thus implies the “associativity” rule

(|α〉〈β|) |γ〉 = |α〉(〈β|γ〉).

This associativity will be used extensively when doing calculations in the brak-ket no-
tation. For example, it gives the following important completeness relation: If {|i〉}di=1

is an ONB, then
d∑
i=1

|i〉〈i| = 1,

the identity matrix. To prove it, calculate for an arbitrary |α〉 =
∑
i αi|i〉,(∑

i

|i〉〈i|

)
|α〉 =

(∑
i

|i〉〈i|

)∑
j

αj |j〉

 =
∑
i,j

aj |i〉 〈i|j〉︸︷︷︸
δi,j

=
∑
i

ai|i〉 = |α〉.

Sandwiching an operator A between two completeness relation (and using associa-
tivity) gives the important decomposition(∑

i

|i〉〈i|

)
A

∑
j

|j〉〈j|

 =
∑
i,j

Ai,j |i〉〈j|

of an operator in terms of the matrix elements

Ai,j = 〈i|A|j〉.

The matrix elements link A to its representation in the column vector picutre. Indeed,
applying two completeness relations to

|β〉 = A|α〉 (1)

gives ∑
i

|i〉βi =
∑
i,j

|i〉Ai,jαj

which is equivalent to β1...
βd


A1,1 . . . A1,d

...
...

Ad,1 . . . Ad,d


α1

...
αd

 . (2)

Thus (1) and (2) link the brak-ket and the matrix picture of the action of operators.

The trace
The trace of an operator A is

trA =
∑
i

〈i|A|i〉 =
∑
i

Ai,i. (3)

Anyone should be able to prove the following elementary properties:
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Lemma 1. The following holds:

1. The trace is a linear map

tr(αA+ βB) = α trA+ β trB.

2. Cyclic invariance
trABC = trBCA,

and symmetry
trAB = trBA

3. Transpose and adjoint:

trAT = trA, trA† = ¯trA.

4. Trace of an outer product is the inner product

tr |α〉〈β| = 〈β|α〉.

5. The trace does not depend on the ONB chosen in (3). What is more, the trace
equals the sum of the eigenvalues (counted with algebraic multiplicity).

6. Hilbert-Schmidt inner product:

trA†B =
∑
i,j

Āi,jBi,j .

Tensor products
Let H1,H2 be two Hilbert spaces, with respective bases {|ei〉}d1i=1, {|fj〉}

d2
j=1. Their

tensor productH1⊗H2 is the space of linear combinations of the symbols |ei〉⊗ |fj〉,
where i ∈ {1, . . . , d1}, j ∈ {1, . . . , d2}.

At this points, these are purely formal expressions. There are various “basis-
free” definitions of the tensor product that are slightly more complicated to state,
but have the conceptual advantage that all elements that go into the construction
have clear geometric interpretations. We won’t touch on this here.

Thus,
H1 ⊗H2 =

{∑
i,j

ci,j |ei〉 ⊗ |fj〉
∣∣∣ ci,j ∈ C}.

As usual, there are various short-hand notations used in physics:

|ei〉 ⊗ |fj〉 = |ei〉|fj〉 = |ei, fj〉 = |i, j〉.

If |α〉 ∈ H1, |β〉 ∈ H2, then their tensor product is defined as

|α〉 ⊗ |β〉 =
∑
i,j

αiβj |i, j〉 ∈ H1 ⊗H2. (4)

Such elements of H1 ⊗ H2 are called product vectors. A quick parameter counting
argument shows that product vectors depend on d1 + d2− 1 complex parameters (why
the “−1”?), while the tensor product Hilbert space has dimension d1d2.

dimH1 ⊗H2 = d1d2.
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This suggests (correctly) that “most” elements of H1 ⊗ H2 are not of product form.
In QM, such vectors are called entangled, and we’ll have much more to say about
this. On the other hand, the tensor product space is (by definition) spanned by product
vectors. Thus, if we want to define an operator on it, it suffices to specify how it acts
on products. We will use this repeatedly, starting two paragraphs below.

Exercise: Work out the correspondence betweenH1 ⊗H2 and L(H1,H2).
The definition (4) implies the “distributive laws”

(|α〉+ |β〉)⊗ (|γ〉+ |δ〉) = |α〉 ⊗ |γ〉+ |α〉 ⊗ |δ〉+ |β〉 ⊗ |γ〉+ |β〉 ⊗ |δ〉 (5)

and

(c|α〉)⊗ |β〉 = |α〉 ⊗ (c|β〉) = c (|α〉 ⊗ |β〉). (6)

Now let A be an operator onH1, and B onH2. Then we define an operator A⊗B
onH1 ⊗H2 via its action on product vectors

(A⊗B)(|α〉 ⊗ |β〉) = (A|α〉)⊗ (B|β〉).

Frequently, we will want to have an operator “acto on just one of the factors, leaving
the other ones alone”. This is done by tensoring with the identity operator 1: A ⊗ 1
or 1 ⊗ B. The 1’s are often suppresed, and the factor on which a given operator acts
non-trivially is indicated by a sub- or a superscript:

A1 = A(1) = A⊗ 1.

To be continued. . .


