QUANTUM INFORMATION THEORY

David Gross, Mateus Araújo

Exercise sheet 2 Due: 2018.05.02 at 12:00

1 Measurements

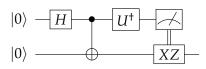
A von Neumann measurement of a qubit $|\psi\rangle$ with results \heartsuit and \blacklozenge is described by two projectors $\{\Pi_{\heartsuit}, \Pi_{\clubsuit}\}$ such that $\Pi_{\heartsuit} + \Pi_{\clubsuit} = \mathbb{1}$. Result \heartsuit happens with probability $p(\heartsuit) = \|\Pi_{\heartsuit}|\psi\rangle\|_{2}^{2}$, and leaves the qubit in the state $\Pi_{\heartsuit}|\psi\rangle/\|\Pi_{\heartsuit}|\psi\rangle\|_{2}$. Result \blacklozenge happens with probability $p(\clubsuit) = \|\Pi_{\heartsuit}|\psi\rangle\|_{2}^{2}$, and leaves the qubit in the state $\Pi_{\clubsuit}|\psi\rangle/\|\Pi_{\clubsuit}|\psi\rangle\|_{2}$. (In practice the measurement usually destroys the qubit, and often one can ignore the post-measurement state).

- a) Show that for any qubit $|\psi\rangle$, and any projectors such that $\Pi_{\heartsuit} + \Pi_{\clubsuit} = \mathbb{1}$ we have that $p(\heartsuit) \ge 0$, $p(\clubsuit) \ge 0$, and $p(\heartsuit) + p(\clubsuit) = 1$. (0.5 p)
- b) Let Π_♡ = |θ⟩⟨θ|, for a qubit |θ⟩ = γ|0⟩ + δ|1⟩. Find Π_♠ such that {Π_♡, Π_♠} is a measurement. Find a qubit |θ[⊥]⟩ such that Π_♠ = |θ[⊥]⟩⟨θ[⊥]| (the solution is not unique, it is enough to find one). (0.5 p)
- c) In quantum computation measurements are always done in the computational basis $\{|0\rangle, |1\rangle\}$, with results 0, 1, and projectors $\Pi_0 = |0\rangle\langle 0|$ and $\Pi_1 = |1\rangle\langle 1|$. They are represented by the measurement gate -[-]. Measurements in other bases are implemented by applying some unitary *U* to the state before measuring it in the computational basis, as shown in the following circuit:

$$|\psi\rangle$$
 — U —

Find a unitary *U* such that $p(0) = \|\Pi_0 U|\psi\rangle\|_2^2 = \|\Pi_{\heartsuit}|\psi\rangle\|_2^2$ and $p(1) = \|\Pi_1 U|\psi\rangle\|_2^2 = \|\Pi_{\clubsuit}|\psi\rangle\|_2^2$. What are the post-measurement states? (1 p)

- d) When a measurement is made on only one of a pair of qubits, say the first, the probabilities and post-measurement states are given by p(♡) = ||(Π_☉ ⊗ 1)|ψ⟩|φ⟩||²/₂ and (Π_☉ ⊗ 1)|ψ⟩|φ⟩||ψ⟩|φ⟩||2, with the analogous equation for ♠. Calculate the post-measurement states for any pair of qubits |ψ⟩|φ⟩, for the projectors {Π_☉, Π_♠} from item b). (0.5 p)
- e) Calculate what the following circuit does, with the unitary U from item c) (or an arbitrary one, if you couldn't find it), and remembering that the unitary XZ is only applied to the post-measurement state if the result of the measurement was 1.



(1 p)

Hint: It is known as lame teleportation.

(2 p)

2 Pure and mixed states

- a) Let ρ be a density matrix (positive semidefinite and trace one). Show that the following statements are equivalent:
 - (i) $\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|$ with $p_{i_0} = 1$ for some i_0 or $|\psi_i\rangle = |\psi_0\rangle$ for all *i*.
 - (ii) $\rho = |\psi\rangle\langle\psi|$, that is, ρ is a pure state.
 - (iii) ρ has rank 1

(iv)
$$\rho^2 = \rho$$

- (v) $tr(\rho^2) = 1$
- (vi) the spectrum of ρ is given by $\{1, 0, \dots, 0\}$

Hint: It suffices to show the implications in cyclic order, i.e. $(i) \Rightarrow (ii) \Rightarrow ... \Rightarrow (vi) \Rightarrow (i)$

b) Use a criterion of your choice to decide whether the following 1-qubit density matrices, given in the computational basis, are pure or mixed. In the latter case, write them as a convex combination of pure states (the solution is not unique).

$$\rho_{1} = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \qquad \rho_{2} = \frac{1}{2} \begin{pmatrix} 1 & \frac{3}{4} - \frac{i}{4} \\ \frac{3}{4} + \frac{i}{4} & 1 \end{pmatrix},$$

$$\rho_{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \rho_{4} = \frac{1}{2\sqrt{3}} \begin{pmatrix} \sqrt{3} + 1 & 1 - i \\ 1 + i & \sqrt{3} - 1 \end{pmatrix}.$$
(2 p)

3 Separable and entangled states

The reduced density matrix ρ of the first particle of a bipartite state $|\Psi\rangle = \sum_{ij} \alpha_{ij} |ij\rangle$ is given by the partial trace over the second particle, defined as

$$\rho = \operatorname{tr}_{2} |\Psi\rangle\langle\Psi| = (\mathbb{1} \otimes \operatorname{tr}) |\Psi\rangle\langle\Psi| = (\mathbb{1} \otimes \operatorname{tr}) \sum_{ij} \alpha_{ij} \bar{\alpha}_{kl} |i\rangle\langle k| \otimes |j\rangle\langle l| = \sum_{ij} \alpha_{ij} \bar{\alpha}_{kl} |i\rangle\langle k| \operatorname{tr}(|j\rangle\langle l|)$$

- **a)** Show that if $|\Psi\rangle = |\psi\rangle |\phi\rangle$ then $\rho = \text{tr}_2 |\Psi\rangle \langle \Psi|$ is a pure state.
- **b)** Therefore if $\rho = \text{tr}_2 |\Psi\rangle \langle \Psi|$ is not pure, then $|\Psi\rangle$ is entangled. Let

$$|\Phi\rangle = \sqrt{p}|00\rangle + \sqrt{1-p}|11\rangle.$$

Compute the reduced density matrix of the first particle of $|\Phi\rangle$, and check for which *p* it is not pure, and therefore $|\Phi\rangle$ is entangled. What is a different way to prepare the same density matrix? (1 p)

c) Check whether the following states are entangled or separable:

$$|H\rangle = \frac{1}{\sqrt{3}}(|00\rangle + |01\rangle + |10\rangle)$$
$$|G\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$
$$|CZ\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle - |11\rangle)$$

(1 p)

(0.5 p)