
Quantum Information Theory

David Gross, Mateus Araújo

Exercise sheet 6 Due: 2018.07.04 at 12:00

(sheets delivered before 2018.07.03 at 12:00 will be corrected before the exercise class)

1 Review

a) Calculate the effect of the circuits

X

|ψ〉 and
•|ψ〉

on an arbitrary two-qubit state |ψ〉 = α|00〉 + β|01〉 + γ|10〉 + δ|11〉, for α, β, γ, δ ∈ C. For
clarity, do not discard the measured qubit. (0.5 points)

b) Show that the circuits
•

and
X

are equivalent. This equality explains why one often gets the correct result if one applies a
CNOT instead of making a measurement and applying a classically controlled X gate.

(0.5 points)

2 A stupid code

a) One might consider using two qubits instead of three to correct against flips of single qubits.
The codewords would be

|0〉 7→ |0L〉 = |00〉
|1〉 7→ |1L〉 = |11〉

so that a flip of a single qubit does map it out of the codespace, and measuring the syndrome
Z1Z2 tells us if an error occurred (result −1), or we are still in the codespace (result +1).
Without doing any calculations, explain why this doesn’t actually work. (0.5 points)

Reminder: The notation AiBj is used a lot in error correction, and means that operator A acts
on qubit i, operator B acts on qubit j, and identity acts on the rest. In this case Z1Z2 = Z⊗ Z.

b) A more sophisticated attempt at a two-qubit code is the stabilizer code with stabilizer group
S = 〈X1X2, Z1Z2〉. Check that this is in fact a stabilizer code by checking that the generators
X1X2 and Z1Z2 are independent and commute, and that −1 6∈ S by computing the whole
group S. (0.5 points)

c) Characterize the three kinds of error for the stabilizer code S from item b). (1 points)

Reminder: The three kinds of error E ∈ Gn (where Gn is the Pauli group) that can occur are
1) E commutes with all elements of S and in fact belongs to S, so that it is not an error at all.
2) E anti-commutes with at least one element of S, so it can be corrected. 3) E commutes with
all elements of S and does not belong to S, so it cannot be corrected.
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d) Find out what the codespace is via computing the projector onto it PS =
1
|S| ∑s∈S

s. What is

going on? For a sanity check, remember that the dimension of the codespace is given by 2n−k,
where n is the number of qubits and k the number of generators. (1 points)

3 The toric code

The toric code is a stabilizer code defined on a two-dimensional lattice that has the topology of
a torus: the right edge (dashed) is identified with the left edge, and the lower edge (dashed) is
identified with the higher edge. The physical qubits are the disks on the lattice, and qubits with the
same number are again identified. For concreteness we are dealing here with a 3× 3 lattice, but the
toric code can be defined for a lattice as large as you want. The generators of its stabilizer group
T are the star operators AV = Πv∈V Xv, which are the product of Pauli X operators acting on the
qubits around a vertex V, and the plaquette operators BS = ∏s∈S ZV , which are the product of Pauli
Z operators acting on the qubits on the perimeter of a square S.
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Figure 1: A 18-qubit lattice implementing the toric code. The blue square represents the plaquette operator
Z1Z4Z5Z7 and the red edges represent the star operator X10X15X13X16.

a) Check that the generators in fact commute and that −1 is not in the stabilizer group T, so that
this is a valid stabilizer code.

Hint: You do not need to compute the whole stabilizer group T. (0.5 points)

b) The generators are not independent. To see that, compute the product of all 9 star operators,
and the product of all 9 plaquette operators. Using this result, show explicitly two different
ways of representing the plaquette operator Z1Z4Z5Z7 as a product of plaquette operators.
Since these are the only constraints that appear, now you can calculate the number of inde-
pendent generators. What is the dimension of the codespace? (1.5 points)
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(a) Closed loops
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(b) Open lines

17

8

11 12

1514

18

10

16

32

2 3

5 6

9

4

16

7

10

13

1

1

4

(c) Irreducible loop

Figure 2: Errors in the toric code

c) Consider the errors shown in figure 2(a), where red qubits have been hit with a X, blue qubits
have been hit with a Z, and purple qubits have been hit with both an X and a Z. Show that
these are errors of the first kind, by explicitly showing which product of plaquettes and stars
generates these “errors”. The red and blue lines are there as a hint. (In fact, all closed loops
on the toric code are errors of the first kind.) (1.5 points)

d) Consider now the errors shown in figure 2(b). Show that these are errors of the second kind,
correctable, by finding the outcome of the syndrome measurements that identity these errors,
and finding which operation must be applied to the physical qubits in order to map these
errors into an error of the first kind.

Hint: First look for all plaquettes and stars that anticommute with these errors, show that
there exists another error of the second kind that also anticommutes with the same plaquettes
and stars (there are several, but finding one is enough), and find the operation that will map
either of these errors into an error of the first kind. (In fact, all open lines on the toric code are
errors of the second kind.)

(1.5 points)

e) Consider now the errors shown in figure 2(c). Show that these are errors of the third kind, by
showing that they commute with all plaquettes and stars, but are not in the stabilizer group
T.

Hint: Argue using the key topological property of the torus, that loops that wrap around it
like this cannot be deformed into closed loops. Such loops might be easier to visualize in a
three-dimensional representation of the torus, as in figure 3. (1 points)

Figure 3: Two irreducible loops on a torus.
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