QUANTUM INFORMATION THEORY

David Gross, Mateus Araújo

Exercise sheet 7

(there will be no exercise class, the purpose of this sheet is to help you prepare for the exam. I will correct any sheets sent to me via email.)

1 Simon's algorithm

The following circuit implements Simon's algorithm for n = 2 bits for a concrete implementation of the oracle, highlighted by the dashed box:

X is the NOT gate, *H* is the Hadamard gate, and the gate - applies *X* to the second and the

third qubits if the state of the first qubit is $|1\rangle$.

- a) The oracle in the dashed box implements the unitary transformation $U|x\rangle|y\rangle = |x\rangle|y \oplus f(x)\rangle$, where $f : \mathbb{Z}_2 \times \mathbb{Z}_2 \to \mathbb{Z}_2 \times \mathbb{Z}_2$ is a function such that $f(x) = f(x \oplus s)$ for all bitstrings *x* and some secret bitstring *s*. Compute the value of *f* for all possible inputs, and the secret *s*.
- **b)** Compute the quantum state produced by this circuit just before the measurement, and which measurement outcomes can happen with which probabilities.
- c) Compute the unique nonzero bitstring *s* such that $s \cdot y = 0$ for all outcomes *y* found in item **b**), and check whether it matches with the answer from item **a**).

Reminder: The dot product is modulo 2.

d) Let $g: \mathbb{Z}_2^{\times 3} \to \mathbb{Z}_2^{\times 3}$ be a function such that $g(x) = g(x \oplus 010)$ with values given by the table

<i>x</i>	g(x)
000	000
001	011
010	000
011	011
100	101
101	110
110	101
111	110

Write a quantum circuit that implements the unitary $V|x\rangle|y\rangle = |x\rangle|y \oplus g(x)\rangle$.

e) Suppose you ran Simon's algorithm for n = 10 bits, and got outcomes

y_1	1100000000
<i>y</i> ₂	0010010000
<i>y</i> 3	1101100110
y_4	1001000000
y_5	0001000100
y_6	0001100000
<i>y</i> ₇	0110000100
<i>y</i> ₈	0101000000
y 9	0000100100
y_{10}	000000101
<i>y</i> ₁₁	1010000010
<i>y</i> ₁₂	0011101101

What is the unique bitstring *s* such that $s \cdot y_i = 0$ for all *i*? This can be done by hand, but I recommend using a computer.