Quantenmechanik

David Gross, Mateus Araújo

Sheet 12 Due: 02.07 um 12 Uhr

This is the last exercise sheet, and it is a bit smaller than normal. Please use the extra time to barbecue and prepare yourselves for the exam.

1 Perturbation theory and the Zeeman effect (for simplicity without spin) (10 P)

The Hamiltonian for a particle (charge -e, mass M) in an electromagnetic field given by a vector potential \vec{A} is

$$H = \frac{1}{2M} \left(\vec{P} + e\vec{A}(\vec{X}, t) \right)^2 - \frac{e^2}{r}.$$

A hydrogen atom is exposed to a homogeneous, time-independent magnetic field \vec{B} .

- a) (1,5 P) Show that the vector potential for this \vec{B} is given by $\vec{A} = \frac{1}{2}\vec{B} \times \vec{X}$. From now on we assume that the magnetic field is parallel to the e_z direction: $\vec{B} = Be_z$.
- **b)** (2,5 P) Show that the Hamiltonian can be written as $H = H_0 + H_1 + H_2$, where

$$H_0 = \frac{1}{2M}\vec{P}^2 - \frac{e^2}{r}, \qquad H_1 = \frac{e}{2M}\vec{B}.\vec{L}, \qquad H_2 = \frac{e^2}{8M}\vec{B}^2\vec{R}_{\perp}^2,$$

and $\vec{R}_{\perp}^2 = x^2 + y^2$.

c) (1,5 P) We ignore for now the term H_2 . Show that the eigenfunction $\psi_{n,l,m}$ of $H_0 + H_1$ is the same as the eigenfunction of the free hydrogen atom (known from the lecture), but that the energies are shifted as follows:

$$E_{n,l,m}' = E_n + m\mu_B B.$$

Here E_n are the energies of the unperturbed atom and $\mu_B = \frac{e\hbar}{2M}$.

Hint: Show that $[H_0, H_1] = 0$. What happens with the eigenvalues and eigenvectors of H_0 , when one adds a commuting term H_1 ? Do *not* use perturbation theory here.

d) (1,5 P) In a strong magnetic field B the term H_2 becomes relevant. Show that

$$H_2 = \frac{e^2 B^2}{8M} r^2 \sin^2 \vartheta.$$

e) (3 P) Compute the first order correction to the ground state $\psi_{1,0,0}$.

Hint: The correct normalised expression for the ground state wavefunction is $\psi_{1,0,0} = 2(a_0)^{-3/2}e^{-\frac{r}{2a_0}}$.