CLASSICAL MECHANICS

David Gross, Johan Åberg, Markus Heinrich

Exercise sheet 6 Due: November, 23 at 12:00

1 Bead on a rotating hoop

A bead of mass *m* slides without friction on a hoop of radius *R* that rotates around its vertical axis with a constant angular speed Ω .

- **a)** Derive the Lagrangian expressed in terms of the angle θ that the bead makes with the vertical downwards direction. (2 points)
- **b)** The Lagrangian that you obtain is equivalent to that of a particle of mass *M* that moves along the real line, and being affected by a (periodic) potential $V(\theta)$. *Determine M and* $V(\theta)$.

(1 points)

(2 points)

- c) Find the Euler-Lagrange equation of the bead.
- **d)** The equilibrium configurations of the bead depend on the angular speed Ω . As a function of Ω , determine the equilibrium configurations, and show whether they are stable or unstable.

Hint: You will find different regimes depending on Ω .

(4 points)

(3 points)

2 Pendulum on a sliding support

An object of mass M can slide without friction along a horizontal rail. From the object hangs a massless rod of length l with a mass m attached to the end. The rod can swing (without friction) in the plane along the rail and the vertical direction.

- a) Derive the Lagrangian in terms of the position X of the mass M, and the angle θ . (3 points)
- **b)** *Derive the Euler-Lagrange equations.*
- c) Find the approximate equation in the the small angle approximation. This means that we assume that θ is so small that we can make the approximation $\sin \theta \approx \theta$ and $\cos \theta \approx 1 \theta^2/2$, and that we in the resulting equations only keep terms up to first order in θ , $\dot{\theta}$, and $\ddot{\theta}$ (e.g. θ^2 and $\theta\dot{\theta}$ are second order terms, while $\theta\dot{\theta}^2$ is a third order term). (2 points)

d) Find the complete solution to the approximate equations of motion in c). What are the normal modes, and the corresponding frequencies? (3 points)

3 Generalized Euler-Lagrange equation

This problem gives no points, but a gold star. If you feel uncertain about the theory behind the Euler-Lagrange equations, then this is the exercise for you!

Consider the functional

$$\mathcal{S}[x] = \int_{t_i}^{t_f} f(t, x, \dot{x}, \ddot{x}) dt,$$

i.e., compared to the standard case, we have the additional dependence on \ddot{x} .

Show that if x(t) is a stationary point of S[x], then it satisfies

$$\frac{d^2}{dt^2} \left(\frac{\partial f}{\partial \ddot{x}} \right) - \frac{d}{dt} \left(\frac{\partial f}{\partial \dot{x}} \right) + \frac{\partial f}{\partial x} = 0.$$

This requires some boundary conditions. What are these boundary conditions?

Hint: The standard E-L equation can be obtained by using the boundary conditions that the values of $x(t_i)$ and $x(t_f)$ are fixed. How could this be generalized? Look up how the derivation of the standard Euler-Lagrange equations works, and generalize that derivation.

(o points, but a gold star!)

