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1 Phase space flow around an unstable equilibrium

The solutions to the Hamilton equations form trajectories, i.e., curves in phase space. For each
point in phase space there is a unique curve passing through it (for time-independent Hamilton
functions). In other words, the trajectories never cross each other in phase space. In this exercise we
are going to investigate this for a specific example.

Consider a particle with mass m, moving along a straight line, in the potential V(x) = − α
2 x2,

where α > 01. The Hamilton function of the particle is

H(x, p) =
1

2m
p2 − α

2
x2. (1)

This system has only one equilibrium solution, namely that the particle is at rest at x = 0, which is
an unstable equilibrium. In terms of phase space, this corresponds to the ‘trajectory’

(
x(t), p(t)

)
=

(0, 0). In other words, the equilibrium solution corresponds to a single point in phase space.

a) Make a sketch of the flow in phase space around the equilibrium point by determining and drawing the
energy level sets (especially E = 0) and the direction of the flow on these curves. You do not have to
draw a very exact picture, a rough sketch is sufficient (alternatively you can plot it with some
software.)

Hint: The energy level set corresponding to energy E is the set of points (x, p) such that
H(x, p) = E. Since energy is conserved for time-independent Hamilton functions, it follows
that the flow in phase space moves along these energy level sets. In the present case, where
phase space is two-dimensional, the level set would typically consist of curves. Since (ẋ, ṗ)
gives the direction of the motion in phase space, it follows that we obtain the direction of the
flow along the energy level curves from the Hamilton equations2. (2 points)

b) In the second part of problem a) you will find curves of constant energy (with the same
energy as the equilibrium) on which the flow is directed towards as well as away from the
equilibrium. At first sight it may thus look like there is a lot of crossings of solutions going on
at the equilibrium point (0, 0). This is a bit worrying, so we need to take a closer look at what
is happening.

Find the complete solutions to the Hamilton equations corresponding to the Hamilton function (1).

(2 points)

c) Determine all solutions that have the same energy as the equilibrium solution. (2 points)

d) For the solutions in c) that correspond to motion towards the equilibrium (but not initially being at
equilibrium), would the particle ever reach the equilibrium in any finite time? With this insight,
explain why the findings in a) is not in contradiction with the statement that the solutions cannot cross
in phase space. (2 points)

1This is sometimes referred to as the inverted Harmonic oscillator. It is a quadratic potential just as the Harmonic
oscillator, but where the potential is, so to speak, turned upside down.

2In higher dimensions the energy level sets would typically consist of surfaces, and the flow would stay within these
surfaces.
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Comment: The analysis of phase space flows can be useful in order to get the general picture of
the behavior of a system even though we cannot solve the equations of motions analytically. This is
often used in chaos theory.

2 Poisson brackets

For two functions f (q1, . . . , qN , p1, . . . , pN , t) and g(q1, . . . , qN , p1, . . . , pN , t), the Poisson bracket is
defined as3

{ f , g} =
N

∑
n=1

(
∂ f
∂pn

∂g
∂qn
− ∂ f

∂qn

∂g
∂pn

)
. (2)

The Poisson brackets satisfy various convenient rules, such as

{qk, ql} = 0, {pk, pl} = 0, {pk, ql} = δkl ,

{ f , g} = −{g, f }, { f + g, h} = { f , h}+ {g, h}, { f g, h} = f {g, h}+ { f , h}g.

When calculating with Poisson brackets it is often enough to use of these relations, without having
to think about the definition (2), as we shall see in this exercise.

a) Show that
{qj, pn

k} = −npn−1
k δjk, {pj, qn

k} = nqn−1
k δjk, n = 1, 2, 3, . . .

Hint: This is efficiently shown via an induction proof. (2 points)

b) The angular momentum of a particle with position ~q and momentum ~p, is given by~L = ~q×~p.
For ~L = (L1, L2, L3), one can write Lj = ∑kl εjklqk pl , where εjkl is the Levi-Civita symbol4.

Show that
{qn, Lj} = −∑

k
εnjkqk, {pn, Lj} = −∑

l
εnjl pl , j, n = 1, 2, 3, (3)

and
{~q2, Lj} = 0, {~p2, Lj} = 0, j = 1, 2, 3. (4)

Hint: Note that (~a×~b)j = ∑kl εjklakbl and ~a×~a = 0. Note also that whenever you permute
two indices in εjkl , then it changes sign, e.g., εjkl = −εkjl = εklj.

(4 points)

Comment: In this exercise we familiarize ourselves with Poisson brackets and their algebra.
Calculations can become easier if one knows these algebraic rules.

3The definition of the Poisson bracket occurs in two variations that differ in the choice of the overall sign. This choice
affects the sign of the bracket {pk, ql}.

4The Levi-Civita symbol in three dimensions is εjkl =


1 (jkl) = (123), (312), (231)
−1 (jkl) = (213), (321), (132)
0 else

.
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3 Conserved quantities via Poisson brackets

Suppose that we have two particles of mass m that move in three-dimensional space, and interact
with each other via a quadratic potential. This can be described with the following Hamilton
function

H(~q1,~q2,~p1,~p2) =
1

2m
~p2

1 +
1

2m
~p2

2 − α‖~q1 −~q2‖2.

Let ~L(1) = ~q1 × ~p1 and ~L(2) = ~q2 × ~p2 be the angular momentum vectors of particle 1 and 2, respec-
tively.

a) Show that {
H, L(1)

j + L(2)
j

}
= 0, j = 1, 2, 3. (5)

Hint: There are various observations that make the derivation quicker. For example,
{ f (~q1,~p1) + f (~q2,~p2), g(~q1,~p1) + g(~q2,~p2)} = { f (~q1,~p1), g(~q1,~p1)}+ { f (~q2,~p2), g(~q2,~p2)}. The
relations (3) and (4) can be useful.

(4 points)

b) In more physical terms, what is it that you have proved with equation (5)? (2 points)

Comment: This exercise examplifies that Poisson brackets can be used in order to identify con-
served quantities. It turns out that this application of Poisson brackets also serves as starting point
for a general analysis of conserved quantities.
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