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1 Rocket equation
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Figure 1: At time t a rocket of weight m together with a bunch of fuel ∆m moves at velocity ~v relative to an
inertial observer. At time t + ∆t, the fuel ∆m has been ejected, and moves at speed ~w, relative to the same
inertial observer. At the same time the rocket moves at speed ~v + ∆~v. To obtain the rocket equation one can
consider the change of momentum of this system for small ∆t.

A rocket is propelled by the reaction forces from the burning fuel. As the fuel is burnt, the rocket
looses mass, which of course affects the acceleration. The rocket equation describes the evolution of
the velocity of the rocket.

~F = m
d~v
dt
− ~u

dm
dt

(1)

Here ~v is the velocity of the rocket relative to an inertial observer. ~u is the velocity of the expelled gas
relative to the rocket. m is the mass of the rocket (including the fuel that it carries). ~F is the external
force (e.g. gravity) affecting the rocket. For the derivations it can be useful to also introduce the
velocity ~w of the expelled gas relative to the inertial observer.

a) Initially, the weight of the rocket is m + ∆m and its velocity is ~v with respect to an inertial
observer. After a time-interval ∆t, the rocket has mass m and velocity ~v + ∆~v, while the
ejected fuel-mass ∆m has velocity ~w with respect to the inertial observer. What is the change of
momentum, of the combined system of the rocket and the ejected mass, during the time-interval ∆t?

(3 points)

b) Use the result in (a) to derive (1). (3 points)

Hint: Consider the limit ∆t→ 0. What is the relation between force and the time-derivative
of the momentum? You should obtain an equation similar (1), but which requires some further
manipulations. It is a good idea to figure out the relations between ~w, ~u, and ~v. In the limit of
small ∆t, what is the relation between ∆m

∆t and dm
dt ?

c) Assume that the rocket is in free space, and hence ~F = 0, and that the exhaust velocity ~u is
constant. Assume moreover that the rocket initially has zero velocity relative to the inertial
observer. Express the final velocity of the rocket in terms of the exhaust velocity ~u, as well as the initial
mass mi and final mass m f of the rocket. Does the final velocity depend on the time that it takes to reach
the final mass? (3 points)

d) Now assume that we send the rocket upwards in a constant gravitational field (directed down-
wards) and with a constant exhaust velocity (directed downwards), and where the initial ve-
locity of the rocket is zero. Again find an expression of the final velocity. Does the final speed depend
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on the time that it takes to reach the final mass? With your answer in mind, can you explain why there
is such a spectacular burning of fuel at rocket launches (apart from dictators thinking that it looks cool)?

(3 points)

Comment: The purpose of this exercise is to explore the consequences of conservation of momen-
tum.

2 Application of Kepler’s laws
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Figure 2: The semimajor axis a and the semimi-
nor axis b of the ellipse. The shortest distance
rper to the sun (perihelion), and the longest dis-
tance raph (aphelion).

Kepler’s first law states that the planets move
along ellipses around the sun1. One way to describe
the orbit is by using polar coordinates, where the ra-
dius r depends on the angle θ as

r(θ) =
p

1 + ε cos θ
, (2)

where ε is the eccentricity of the ellipse, and p gives
the size of the orbit. Kepler’s second law says that
the line joining the planet and the sun sweeps out
equal areas during equal intervals of time. Kepler’s
third law states the length a of the semimajor axis of
the ellipse relates to the period T of the orbit as

a3

T2 =
G(M + m)

(2π)2 ,

where M and m are the mass of the sun and the planet, respectively. Note that G ≈ 6.67 ∗
10−11Nm2/kg2.

a) Before landing, Apollo 11 was put in orbit around the moon. The mass of of Apollo 11 was
9979 kg and the period of the orbit was 119 min. The maximum and minimum distances from
the center of the moon were 1861 km and 1838 km. Use these data to estimate the mass of the
moon. (2 points)

b) Halley’s comet moves in an elliptic orbit around the sun, with a period of 76 years. The
eccentricity is ε = 0.97. The mass of the sun is about M = 2.0 ∗ 1030kg. Use these data to
determine the distance from the sun at perihelion (when the comet is the closest to the sun) and aphelion
(when it is the most far away).

Hint: We can ignore the mass of the comet compared to the mass of the sun. (3 points)

c) What is the ratio of the speed of Halley’s comet when it is in perihelion compared with when it is in
aphelion? It is useful to keep in mind that r2 dθ

dt = constant (which comes from the conservation
of angular momentum).

Hint: What is the radial speed at perihelion and aphelion? How does the tangential speed
relate to the angular speed and r?

(3 points)

Comment: The purpose of this exercise is to demonstrate some uses of Kepler’s laws.

1Kepler’s laws is not only applicable to things orbiting around the sun, but can also be applied also to other constella-
tions. Strictly speaking, Eq. (2) describes the motion around the center of mass of the two bodies. However, in our
case M� m and thus the center of mass is approximately the position of the heavier body.
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