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1 The Laplace-Runge-Lenz vector

You have heard about conserved quantities such as energy, momentum, and angular momentum,
but sometimes a system can also possess more ‘exotic´ types of conserved quantities. An example
turns out to be the Kepler problem, i.e., the motion of a particle in a potential of the form V(~r) =
−α/r, for r = ‖~r‖, and for some constant α. Like for any central symmetric potential, the Kepler
problem conserves the total energy and the angular momentum with respect to the center of the
potential. However, it turns out that it also possesses an additional ‘accidental’ conserved quantity,
namely the Laplace-Runge-Lenz vector, which is defined as

~A = ~p×~L−mα
~r
r

.

Show that ~A is conserved, i.e., show that d~A
dt = 0.

Hint: Keep in mind that ~L is conserved. Make use of the general relation ~a× (~b×~c) =~b(~a ·~c)−
~c(~a ·~b). Show that~r · d~r

dt = r dr
dt . (6 points)

Comment: In the lecture it was claimed that the Laplace-Runge-Lenz vector is conserved. Here
we confirm that this indeed is true.

.

2 Rotating reference frame

Consider the following everyday situation (as shown in the figure). After having studied hard
long into the night before your lecture in theoretical physics, you fall asleep on the merry-go-round
in Klettenbergpark. When you wake up next morning, the turntable is still spinning with constant
angular velocity ω.
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Figure 1: You are lying on a Merry-go-round that rotates with constant angular velocity ω. To the Merry-
go-round you have fixed a coordinate system with unit vectors x̂′, ŷ′ that thus rotates with respect to a
coordinate system x̂, ŷ fixed to the ground. With respect to x̂, ŷ a ball has the coordinates r0 = (x0, y0)

T =
(s, 0)T .
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a) Fixed to the merry-go-round, your coordinate system x̂′, ŷ′ rotates with constant angular veloc-
ity ω with respect to x̂, ŷ (see the figure). We will denote the coordinates in the two coordinate
systems by r = (x, y)T and r′ = (x′, y′)T, respectively, such that1

~r = xx̂ + yŷ = x′ x̂′ + y′ŷ′.

Derive the transformation between the vectors x̂, ŷ and x̂′, ŷ′. What is the transformation law between
the corresponding coordinates? (4 points)

b) A bit away from the merry-go-round lies a ball that is at rest with respect to the inertial
coordinate system (with unit vectors x̂, ŷ). The coordinates of the ball with respect to this
coordinate system are r0 = (x0, y0)T = (s, 0)T for s > 0. What are the coordinates r′0 = (x′0, y′0)

T

of the ball with respect to your rotating coordinate system?

Suddenly a child comes running and kicks the ball such that it moves (without friction) with
constant speed v in the ŷ-direction (i.e., the velocity is vŷ). Determine the coordinates r′1 =

(x′1, y′1)
T of the moving ball with respect to your rotating coordinate system. (3 points)

c) Draw the curves that the coordinates r′0 and r′1 trace out in the plane. A qualitative sketch is enough,
but indicate the direction of the motion with some arrows. (2 points)

d) Suppose that when you wake up you have forgotten that you are lying on a merry-go-round,
and believe that you are in an inertial coordinate system. What forces F ′0 and F ′0 would you need
to assume, such that Newton’s law F ′j = m d2

dt2 r′j would be satisfied for j = 0, 1? (5 points)

Comment: This exercise highlights the difference between inertial and non-inertial coordi-
nate systems.

1Here, T denotes transposition.
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