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On the other hand, the entropy flux J is due to those changes of the internal 
energy E = tr{Hp} which result from dissipative effects. Thus we may define 
the entropy flux by means of 

1 d 
J --T —dt diss 

1  1 E E --
T tr{HD(p)} = --

T tr{Hr(p)}. (3.107) 

   

Using the explicit expression (3.103) for the thermal distribution we find 

1 
T H = kB ln  9th + kB In Z, 

so that the entropy flow can be written as 

(3.108) 

J = kB tr {,C(p)ln pth} ,  (3.109) 

where we have made use of the fact that the generator is trace-preserving, i.e. 
tr{ f(p)} =  0. Adding eqns (3.106) and (3.109) we see that the thermodynamic 
entropy production rate a defined by the balance equation (3.105) coincides with 
expression (3.100) for the negative rate of change of the relative entropy with 
respect to the thermal equilibrium state. In this context the inequality a(p) > 0 
expresses the second law of thermodynamics. Note also that cr(p th) = 0, that 
is the entropy production vanishes in the thermal equilibrium state. Thus we 
conclude that the entropy production rate a(p) is a convex functional on the 
space of density matrices which vanishes in the thermal equilibrium state. 

3.3 Microscopic derivations 

From a fundamental viewpoint it is desirable to derive the generator of a quan-
tum dynamical semigroup from the underlying Hamiltonian dynamics of the 
total system. The aim of this section is to show under which assumptions such 
derivations can be given on the grounds of various approximation schemes. 

3.3.1 Weak - coupling Limit 

We begin by considering a quantum mechanical system S weakly coupled to a 
reservoir B. The Hamiltonian of the total system is assumed to be of the form 

H = Hs+ HB + ( 3.110) 

where Hs and HB denote respectively the free Hamiltonian of the system and 
of the reservoir and H1 describes the interaction between the system and the 
reservoir. The derivation of a quantum Markovian master equation is most easily 
performed in the interaction picture. Our starting point is thus the interaction 
picture von Neumann equation (see Section 3.1.2) 

d 
— P(t) = — i[Ili(t),P(t)1 dt 
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for the total density matrix p(t) and its integral form 

t 
p(t) = p(0) –  if  ds[11 1  (s), p(s)]. 

o 
(3.112) 

Note that we omit here for ease of notation the index / which served to indicate 
the interaction picture in Section 3.1.2. Inserting the integral form into (3.111) 
and taking the trace over the reservoir we find 

I 

d 
—dt p s (t) = – f dstrB [H 1 (t),[11 1 (8), p(s)]]. 

o 

Here, we have assumed that 

(3.113) 

trB [HI (t), p(0)]  (3.114) 

Equation (3.113) still contains the density matrix of the total system p(t) on 
its right-hand side. In order to eliminate p(t) from the equation of motion we 
perform a first approximation, known as the Born approximation. This approxi-
mation assumes that the coupling between the system and the reservoir is weak, 
such that the influence of the system on the reservoir is small (weak-coupling 
approximation). Thus, the density matrix of the reservoir pB is only negligibly 
affected by the interaction and the state of the total system at time t may be 
approximately characterized by a tensor product 

p(t)Pz.,-' p s (0 0 pB.  (3.115) 

We emphasize that this does not imply that there are no excitations in the 
reservoir caused by the reduced system. The Markovian approximation to be 
derived below provides a description on a coarse-grained time scale and the 
assumption is that environmental excitations decay over times which are not 
resolved. Inserting the tensor product into the exact equation of motion (3.113) 
we obtain a closed integro-differential equation for the reduced density matrix 
Ps (0 

, 

d 
—dt P ( ) – – f dstrB [II 1 (t) , [II 1 (s), ps(s) 0 PB]l• 

. 

(3.116) 

In order to simplify the above equation further we perform the Markov ap-
proximation, in which the integrand ps(s) is first replaced by ps(t). In this way 
we obtain an equation of motion for the reduced system's density matrix in which 
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the time development of the state of the system at time t only depends on the 
present state Ps  (0, 

t 
d Ps(t) --r- - f dstrB [II 1 (t),[111 (s), Ps (t) 0  PBii. 

o 
(3.117) 

This equation is called the Redfield equation (Redfield, 1957; Blum, 1981). 
The Redfield equation is local in time, but it is not yet a Markovian master 

equation since the time evolution of the reduced density matrix still depends 
upon an explicit choice for the initial preparation at time t = O. This implies 
that the dynamics of the reduced system is not yet described by a dynamical 
semigroup. In order to achieve this we substitute s by t - s in the integral 
in eqn (3.117) and let the upper limit of the integral go to infinity. This is 
permissible provided the integrand disappears sufficiently fast for s > TB . The 
Markov approximation is therefore justified if the time scale TR over which the 
state of the system varies appreciably is large compared to the time scale TB 

over which the reservoir correlation functions decay. Thus, we finally obtain the 
Markovian quantum master equation 

cj ps (t) = - I dstrB [H 1 (t),[11 1 (t - s), PO) 0 Pa • dt 
o 

(3.118) 

It is important to realize that in a description of the reduced system dynamics 
on the basis of a Markovian quantum master equation the dynamical behaviour 
over times of the order of magnitude of the correlation time TB is not resolved. 
As mentioned before, the evolution is described in this sense on a coarse-grained 
time axis. 

The approximations performed above are usually termed the Born-Markov 
approximation. In general they do not guarantee, however, that the resulting 
equation (3.118) defines the generator of a dynamical semigroup (Davies, 1974: 
Diimcke and Spohn, 1979). One therefore performs a further secular approxima-
tion which involves an averaging over the rapidly oscillating terms in the master 
equation and is known as the rotating wave approximation. To explain the pro-
cedure let us write the Schrödinger picture interaction Hamiltonian HI in the 
form 

HI -= E Aa 0 Ba7 
 (3.119) 

a 

where Atc, = A, and Bic; =  B a .  This is the most general form of the interaction. 
The secular approximation is easily carried out if one decomposes the interaction 
Hamiltonian H1  into eigenoperators of the system Hamiltonian Hs. Supposing 
the spectrum of Hs to be discrete this may be achieved as follows. Let us denote 



MICROSCOPIC DERIVATIONS  133 

the eigenvalues of Hs by E and the projection onto the eigenspace belonging to 
the eigenvalue E by 11(e). Then we can define the operators 

A0 (w)  E H(e)A,H(e).  (3.120) 
Er 

The sum in this expression is extended over all energy eigenvalues Ei  and E of Hs 
with a fixed energy difference of w. An immediate consequence of this definition 
is that the following relations are satisfied, 

[Hs, A c,(w)] =  (3.121) 
[Hs, A (w )]  = -FwAta (w).  (3.122) 

The operators A 0  (w) and Atc,(w) are therefore said to be eigenoperators of Hs 
belonging to the frequencies +w, respectively. It follows from relations (3.121) 
and (3.122) that the corresponding interaction picture operators take the form 

Finally, we note that 

e  i Hs t A a  ( w  ) e  Hs t 

e ifIst iqt p) e—ilist =ei-iwtAlt (w) .  

S, A ta (W) 43(W)] = 0 , 

Atc,(w) =  A0 (—w). 

(3.123) 
(3.124) 

and 

Summing (3.120) over all energy differences and employing the completeness 
relation we get 

E A0 (w) =>A(w) = A,.  (3.127) 

This enables us to cast the interaction Hamiltonian into the following form 

= E A 0 (w)®B 0  =  (w) Btc,.  (3.128) 
ct,u)  ce,w 

This is the desired decomposition of the interaction into eigenoperators of the 
system Hamiltonian. Note that the frequency spectrum {w} is, in general, degen-
erate: For a fixed w the index a labels the different operators A 0 (w) belonging 
to the same frequency. A specific example will be encountered in Section 3.4, 
where a labels the Cartesian components of the dipole operator. 
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The reason for introducing the eigenoperator decomposition (3.128) is that 
the interaction picture interaction Hamiltonian can now be written in the par-
ticularly simple form 

H1(t) . E e- iw t A a (co) 0 B a (t) = E e+iw t itta  (w) ® B(t),  (3.129) 

where 

Ba(t) = e iHB t Bae -iHB t  (3.130) 

are interaction picture operators of the environment. We also note that condition 
(3.114) becomes 

(B a (t)) E tr {B a(t)pB} = 0,  (3.131) 

which states that the reservoir averages of the B c,(t) vanish. 
Inserting now the form (3.129) into the master equation (3.118) we obtain 

after some algebra 

DO 

d 
—dt

Ps(t)= f d3trB fili(t- 8)ps(t)PB-111(t) - 111(tgli(t -  s)Ps(t)PB} + h.c. 
o 

= E Eeiw — w)trao(w) (Aompswitta(w') — Atc,(wi)itocuops(t)) 
w,w ,  ct,s 
+h.c.  (3.132) 

Here h.c. means the Hermitian conjugated expression and we have introduced 
the one-sided Fourier transforms 

00 

110P) E f dse'"(B1(t)Bo(t - s)) 
o 

of the reservoir correlation functions 

(Bta (t)B(t - s)) E trB {BI(t)B(t — s)PB 1 . 

(3.133) 

(3.134) 

Let us suppose that pB is a stationary state of the reservoir, that is [HB, pB].--  0. 
The reservoir correlation functions are then homogeneous in time which yields 

(B(t)B0(t - s)) = (B'cr, (s)Bs (0)),  (3.135) 

showing that the quantities Fo(w) do not depend on time. We remark that 
there are interesting cases in which the reservoir correlation functions do depend 
on the time argument t. This happens, for example, if the reservoir represents a 
squeezed vacuum state (see Section 3.4.3). 
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As mentioned before, the basic condition underlying the Markov approxima-
tion is that the reservoir correlation functions (3.135) decay sufficiently fast over 
a time TB which is small compared to the relaxation time TR. Typical exam-
ples for the behaviour of these correlation functions will be discussed in Sections 
3.6.2.1 and 12.1.1.3. It is important to note that a decay of the correlations can 
only be strictly valid for an environment which is infinitely large and involves a 
continuum of frequencies. In the typical situation the reservoir is provided by a 
collection of harmonic oscillator modes bn  with frequencies co n  and the B a  are 
given by linear combinations of the modes bn . If the frequency spectrum {co„} 
of the reservoir modes is discrete, it is easy to see that, in general, correlation 
functions of the type (3.135) are quasi-periodic functions of s. A rapid decay of 
the reservoir correlations therefore requires a continuum of frequencies: For an 
infinitely small frequency spacing Poincaré recurrence times become infinite and 
irreversible dynamics can emerge. 

We denote by Ts the typical time scale of the intrinsic evolution of the system 
S. This time scale Ts is defined by a typical value for lw' — w , w' co, that 
is by a typical value for the inverse of the frequency differences involved. If Ts 
is large compared to the relaxation time TR of the open system the non-secular 
terms in (3.132), i.e. the terms for which co' co, may be neglected, since they 
oscillate very rapidly during the time TR over which ps varies appreciably. This 
condition is typically satisfied for quantum optical systems where it is known as 
the rotating wave approximation. Thus we have 

cips(t )  . E E row (43 (w)p s (t)4(w) - AtŒ mAo mps (0) + h.c. 
dt 

It is convenient to decompose the Fourier transforms of the reservoir correlation 
functions as follows 

1 
Pas(w) ---, —

2
-y„s(w) + iS,o (w), 

where for fixed w the coefficients 

(3.137) 

w a 03 
(3.136) 

1 So (w) =---- Ti. (Fao (co ) — (w )) 
(3.138) 

form a Hermitian matrix and the matrix defined by 

+00 

70(w) = Fa (w) + F a(w) = f dse" (Bta (s)Bs(0))  (3.139) 
--co 

is positive (see below). With these definitions we finally arrive at the interaction 
picture master equation 
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ci Ps(t)  Ps(t)] +D(Ps(t)). dt 

The Hermitian operator 

Ihs = EESco (w) Ato,(‘.4_,) Ao (w) 
c , /3  

provides a Hamiltonian contribution to the dynamics. This term is often called 
the Lamb shift Hamiltonian since it leads to a Lamb-type renormalization of the 
unperturbed energy levels induced by the system-reservoir coupling. Note that 
the Lamb shift Hamiltonian commutes with the unperturbed system Hamilto-
nian, 

[Hs, Ihs]  =0,  (3.142) 

by virtue of eqn (3.125). Finally, the dissipator of the master equation takes the 
form 

E'Ycto((-0 )(AsP)PsA tc,(w) --1- {Ata(w)A0(w),Ps1). (3.143) 2 
cto3 

We note that the master equation (3.140) is of the first standard form (3.63). 
It can be brought into Lindblad form (3.66) by diagonalization of the matrices 
ey(w) defined in eqn (3.139). In order to prove that these matrices are pos-
itive one uses Bochner's theorem according to which the Fourier transform of 
a function f(s) is positive provided f(s) has the property of being of positive 
type. The latter property means that for arbitrary t 1 , t -2, • • •  ,t,  and all n the 
(n x n) matrix aki = f (tk - t1) must be positive. Since all homogeneous cor-
relation functions f (s) = (Bt (s)B (0)) are of positive type the positivity of the 
matrices 70(w) follows immediately. Finally, we remark that the Schrödinger 
picture master equation is obtained from (3.140) simply by adding the free sys-
tem Hamiltonian Hs to His, as is easily verified with the help of the properties 
(3.121), (3.122) and (3.125) of the eigenoperators. 

Let us summarize the different approximations used in the above deriva-
tion. The first approximation is a consequence of the weak-coupling assumption 
which allows us to expand the exact equation of motion for the density matrix 
to second order. Together with the condition p(t) ps(t) 0 pB this leads to the 
Born approximation to the master equation. The second approximation is the 
Markov approximation in which the quantum master equation is made local in 
time by replacing the density matrix ps(s) at the retarded time s with that at 
the present time ps(t). Furthermore, the integration limit is pushed to infinity 
to get the Born-Markov approximation of the master equation. The relevant 
physical condition for the Born-Markov approximation is that the bath corre-
lation time TB is small compared to the relaxation time of the system, that is 
TB < TR. Finally, in the rotating wave approximation rapidly oscillating terms 
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proportional to exp[i(Lo' — co)t] for co' co are neglected, ensuring that the quan-
tum master equation is in Lindblad form. The corresponding condition is that 
the inverse frequency differences involved in the problem are small compared to 
the relaxation time of the system, that is Ts — — w < TR. 

3.3.2 Relaxation to equilibrium 
In the previous section we have assumed that the environment is in a stationary 
state pB which is invariant with respect to the dynamics of the reservoir. Now 
we want to consider a situation in which the environment is a heat bath at 
the inverse temperature O. In the absence of external time-dependent fields one 
expects the Gibbs state 

Pth trs exp(-01/s) 

to be a stationary solution of the quantum master equation (3.140). It can be 
shown then that for any initial state the system returns to equilibrium, 

Ps(t)  pth, for t  +cc,  (3.145) 

provided the quantum dynamical semigroup has the property of being ergodic. 
This means that the relations 

[X, Atc,(w)] = [X, A,(co)] = 0 for all a, CO  (3.146) 

imply that X is proportional to the identity. 
In order to show that (3.144) is indeed a stationary solution of the master 

equation (3.140) we make use of the KMS condition according to which the bath 
correlation functions are related through 

(B(t)B(0)) = (B,3(0)Bta (t + 0)).  (3.147) 

The KMS condition can easily be verified if the reservoir is a heat bath with 
canonical equilibrium distribution 

exp( — OHB) 
PB trB exp(—OHB) -  

It can also be shown to hold for thermal equilibrium systems in the thermody-
namic limit. Equation (3.147) leads to the following relations between the Fourier 
transforms (3.139) of the bath correlation functions, 

70 ( — A)) = exP( - 0w)'yoc, (w).  (3.149) 

We further have by virtue of eqns (3.121) and (3.122), 

PthA cE (L0-7) 7--  e 43w AcEMPth, 
PthA ta (w) = e — d3w Ata (w)Pth. 

exp(— /3Hs) (3.144) 

(3.148) 

(3.150) 
(3.151) 

The proof of the stationarity of p th  is now easily carried out with the help of the 
relations (3.142), (3.149), (3.150) and (3.151). 
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We mention a further important property of the quantum master equation 
(3.140). Namely, if the spectrum of the system Hamiltonian Hs = EnEn In)(n 
is non-degenerate it gives rise to a closed equation of motion for the populations 

P(n,t) = (rips(t)In)  (3.152) 

of the eigenstates In). Thus, the equation for the diagonals of the density matrix 
in the eigenbasis of Hs decouples from the off-diagonal elements. As is easily 
checked using the quantum master equation the populations are governed by the 
equation 

d 
—dt P(n,t) = E [w(on)P(7n, t) - w(illn)P(n, t)] . 

In 
(3.153) 

This equation is of the form of the classical discrete master equation (1.89) with 
time-independent transition rates given by 

W(n n) =E'Yas(Eln — En)(7n1Actln)( 71 1Aolm). 
 (3.154) 

oe,3 

Equation (3.153) is also known as the Pauli master equation. The rates (3.154) 
are real and non-negative as a consequence of the positivity of the matrices 
'To (w). They are just those obtained with the help of Fermi's golden rule. 

The relations (3.149) give 

W(mln)exP(--Oen) = W(nlm) exp(-- /km )  (3.155) 

which is known as the condition of detailed balance and which leads to the con- 
clusion that the equilibrium populations Ps  (n) follow the Boltzmann distribution 

P8 (n) = const x exp(-- /3E72 )  (3.156) 

over the energy eigenvalues en. 

3.3.3 Singular- coupling limit 
In the weak-coupling limit the perturbation caused by the interaction between 
the system and the environment is assumed to be small. As a result the degrees 
of freedom of the environment are the fast variable and can be effectively elimi-
nated. With an appropriate scaling of the time parameter it is possible to derive 
under certain conditions a linear quantum master equation also for the case of 
strong coupling. In this so-called singular-coupling limit one considers a total 
Hamiltonian of the form 

H = Hs +e-2 HB  +6-1  HI ,  (3.157) 

where the interaction Hamiltonian is again written as 

E Act Ba 
 (3.158) 

a 

with Ata  = Ac, and  B =  B.  The aim is to derive an equation of motion for 
the reduced density matrix in the limit c  0. To motivate the form of the 


