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Excercise 1

Solution to 1.1 Note that each column of G is a codeword. By the definition of H, HG = 0.

Solution to 1.2 For v = {v1, · · · , vn}, Hv can be written as

Hv =

N∑
i=1

hivi (1)

where hi is a i-th column of H. Suppose that there exists v 6= 0 that Hv = 0 and wt(v) ≤ d − 1. Let
A ⊂ {1, · · · , N} be a set of indices i such that vi 6= 0. Then

∑
i∈A h

ivi = 0 and |A| = wt(v). This is a
contradiction to the assumption that any d−1 columns of H are linearly independent. Thus, the distance of
the code is ≥ d. On the other hand, let B be a set of indices of d columns of H that are linearly dependent
so
∑
i∈B hi = 0. Consider a vector w = {w1, · · · , wn} that wi = 1 when i ∈ B and wi = 0 elsewhere then

Hw = 0 so w is a codeword and wt(w) = |B| = d. This shows that the distance of the code is d.

Solution to 1.3 Recall the theorem of the linear algebra that the row rank and the column rank of a matrix
are the same. Then n− k = (row-rank of H) = (column rank of H) ≥ (d− 1).

Solution to 1.4 We prove the Gilbert-Varshamov bound using a greedy construction. Let V = (Z2)n be the
whole vector space and C0 = {0n} be an initial codespace. At each step i, we find a vector v that is distance
≥ 2t + 1 from all Ci−1 and add it to a codespace. As we here consider a linear code, a new codespace is
given by Ci = Ci−1 ∪ {v + w|w ∈ Ci−1}. This procedure terminates when |{w|∃v ∈ V such that d(w, v) ≤
2t}| ≥ |V | = 2n because we can find another such v otherwise. The left hand side is upper bounded by
2kVol(2t) where |Ci| = 2k is the number of codewords and Vol(2t) = |{w|d(0, w) ≤ 2t}|. Then the proof is
straightforward by the following theorem.

Theorem 1 Vol(u) ≤ 2nH(u/n)
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Proof: First, note that Vol(u) =
∑u
i=0

(
n
i

)
. Then the following inequality is obtained:

1 =
(u
n

+ (1− u

n
)
)n

(2)

=

n∑
i=0

(
n

i

)(u
n

)i(
1− u

n

)n−i
(3)

≥
u∑
i=0

(
n

i

)(u
n

)i(
1− u

n

)n−i
(4)

=

u∑
i=0

(
n

i

)(
1− u

n

)n( u/n

1− u/n
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(5)

≥
u∑
i=0

(
n
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)n( u/n
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)u

(6)

= Vol(u)
(
1− u

n

)n−u(
u/n

)u
. (7)

Eq. 6 is from
( u/n
1−u/n

)
≤ 1 and u ≥ i in the summation. The remaining term can be arranged as

(
1− u

n

)n−u(
u/n

)u
= 2(n−u) log2(1−u/n)+u log2(u/n) = 2−nH(u/n)

where H(x) = −x log2 x− (1− x) log2(1− x). Thus,

1 ≥ Vol(u)2−nH(u/n) (8)

and the desired inequality is obtained.

Note The proof here is based on that by Gilbert and not restricted to a linear code. Varshamov’s proof
utilizes the linearity of a code and non-constructive. If you are interested, you may check the Wikipedia
page “GV-linear-code”.

Exercise 2

Solution The classical repetition code [n, 1, n] has the code distance n so an error up to bn/2c bits can
be corrected. This implies that an error e ∈ {0, 1}n yields a logical error when wt(e) ≥ bn/2c + 1. Let
wt(e) = l then there are

(
n
l

)
different configurations of error and the probability of each configuration is

given by pl(1− p)l. Thus the logical error probability is given as

Plogical =

n∑
l=bn/2c+1

(
n

l

)
pl(1− p)n−l. (9)

This is nothing but the tail distribution of the binomial distribution. To obtain an approximated expression,
let us define f(l/n) =

(
n
l

)
pl(1− p)n−l. Using the Stirling’s formula log(n!) ≈ n log n− n (note that we here

consider the asymptotic limit n� 1), we can approximate

log

(
n

l

)
≈ n

[
− l
n

log
l

n
−
(
1− l

n

)
log
(
1− l

n

)]
(10)

= nH(l/n). (11)
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where we have used H(x) = −x log(x)− (1− x) log(1− x) that is also used in the above problem. It is also
simple to show that

pl(1− p)n−l = exp
{
n
[ l
n

log p+
(
1− l

n

)
log
(
1− p

)]}
. (12)

To sum up,

f(l/n) ≈ exp
{
n
[
H(l/n) +

l

n
log p+

(
1− l

n

)
log
(
1− p

)]}
. (13)

Recall that f(l/n) is a binomial distribution centered at l/n = p, for l/n > p (which is true by the assumption
that p ≤ 1/2) the sum

∑
l≥bn/2c+1 f(l/n) is dominated by the value when l = bn/2c + 1 (one may use the

central limit theorem). Thus, we obtain∑
l>n/2

f(l/n) ≈ exp
{
n
[
H(1/2) +

1

2
log p+

1

2
log
(
1− p

)]}
. (14)

As H(1/2) + 1/2 log p+ 1/2 log(1− p) < 0 for 0 ≤ p < 1/2 , we obtain Plogical < e−αn for 0 ≤ p < 1/2. Thus
the error threshold is p = 1/2.

Note 1 In fact, the Stirling’s formula we have used is correct proportionally, i.e. log(n!)/(n log n− n) → 1
as n → ∞. And the summation also introduces another error term. When we trace all error terms in the
approximation, we obtain extra o(n) term in the exponent. Of course, this does not alter the final result.

Note 2 More simple proof is also possible using the Markov’s (or Chebyshev’s) inequality. Using this, we
obtain P (X ≥ an) = P (eβX ≥ eβan) ≤ E[eβX ]/eβan = [e−aβ(1 − p + peβ)]n for all β > 0. Letting β that
minimize the last equality and set a = 1/2 yield Eq. (14) in an inequality form.


