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Excercise 1

Quantum error correcting codes can correct any errors on up to b(d− 1)/2c qubits when d is the distance of
the code. Thus, the minimum weight of an error configuration that makes a logical error is on b(d + 1)/2c
qubits. In the Toric code, the code is characterized by [[n, k, d]] = [[2L2, 2, L]] so the code distance is L. Then
when the optimal decoder fails in the Toric code with an error on b(d+ 1)/2c qubits? First, let us consider
X type of errors. When there is such an error, there exists a path P that connects the error syndromes and
crosses the erroneous qubits. The optimal decoder fails when there is another path P ′ that also connects the
error syndromes and satisfies 1) P +P ′ is a logical error operator and 2) the weight of P ′ is smaller than P .
Because of 2), the decoder will choose P ′ instead of P and this choice yields a logical error due to 1).

Then let us apply the conditions above to find such a path. The logical operator must have the weight ≥ L,
the first condition says that the weight of P ′ should be ≥ L − b(L + 1)/2c. At the same time, the second
condition gives the weight of P ′ should be ≤ b(L+ 1)/2c. When L is even, as b(L+ 1)/2c = L/2 the weight
of P ′ (w(P ′)) is also L/2. Moreover, as P + P ′ should make a connected path, all errors should lie on a
straight line. For odd L = 2k+ 1, we have w(P ) = k+ 1 and k ≤ w(P ′) ≤ k+ 1. However, a logical operator
must have the weight L+ (even number) or it cannot be connected. Thus we have w(P ) = k+ 1, w(P ′) = k
and also the errors should lie on a straight line. An example is given in the figure.

Figure 1: Left: There are b(L+ 1)/2c errors on a straight line. The path that connects the errors is depicted
as red lines. However, there exists a shorter path (blue one) that crosses only two qubits. Choosing the
blue path instead of the red path makes a logical error. Right: When errors do not lie on a straight line, a
shortest logical operator that contains erroneous qubits must have the length longer than L+ 2 (e.g. purple
line). As L+ 2−b(L+ 1)/2c is always larger than b(L+ 1)/2c, there is no other path than P (red path) that
the length is shorter but makes a logical error. For example, blue path has length 4 that is larger than P .

Then let us count the number of possible such error configurations. In the Toric code, we have 2L straight
lines consist of L qubits. Among L qubits in a straight line, any errors on b(L+ 1)/2c qubits makes a logical
error under the optimal decoder. So we have 2L×

(
L

b(L+1)/2c
)

such error configurations. The same argument
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also holds for Z errors.

Exercise 2

It is easy to check that for L = 3 Toric code, X or Z error produce a unique pair of syndromes. To be
precise, let Si be a set of X star (cross) operators and Z plaquette operators and Ei be all single X and Z
operators. Then for each Ei, we have exactly two Si1 and Si2 that anticommutes with Ei. Moreover, this
map is injective, i.e. if {i1, i2} = {i′1, i′2} then i = i′. This implies that the code can correct an arbitrary
single qubit error.

Exercise 3

In the anyon picture, each syndrome is considered as a particle. Because of the constraints in the Toric code,
syndromes only can be given as a pair. To braid anyons, we need two different excitations (X and Z types).
We now consider moving one of cross type (associated with X cross stablizers) particles that is excited by
an Z error around one of plaquette excitations. The situation is demonstrated in the figure.
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This moving corresponds to applying Z operators along the dahsed line. Because Z plaquette oprators are
within the stabilizer group, this operation does not change the state if there were no X error. But when
the path crosses X operator as in our case, the state obtain an overall phase −1. Consider a quantum state
|ψ〉 within a code space. After we applying X and Z error in a given location, we have XpZq |ψ〉 where p
and q are indices for the location of errors. After applying Z operators along the dahsed line Z(t) = Πi∈tZi,
the state becomes Z(t)XpZq |ψ〉 = −XpZ(t)Zq |ψ〉 as p ∈ t so Z(t) and Xp anticommute. As Zq and Z(t)
commute and Zt acts trivially for a ground state, we finally obtain −XpZq |ψ〉. In this discussion, the order
of Z operators within Z(t) does not matter. It means that the direction of braiding is not important.


