
Quantum Error Correction

Lecture notes of the Quantum Error Correction course by Prof. Kastoryano

at University of Cologne, Wintersemester 2018/2019.

Contents

1 Classical Error Correction 8
1.1 Physical error rate . 10
1.2 Linear codes . 11
1.3 Parity-check matrix . 13
1.4 Decoding . 14
1.5 Distance of a code . 16
1.6 Thresholds . 18

2 Quantum mechanics of one qubit 19
2.1 Classical information . 19
2.2 Quantum information with one qubit 20

3 The Shor code 26

4 Quantum error correction conditions 31

5 Physical noise 32

6 Continuous time errors 33

7 Stabilizer codes 34

8 Toric code 39
8.1 Connection to many-body theory (quantum statistical me-

chanics) . 43
8.2 Errors on the toric code . 44

8.2.1 Minimum weight perfect matching 47
8.2.2 Renormalisation . 47

8.3 Thresholds . 48

9 Lower bound on the threshold 49
9.1 Entropy and Energy . 49
9.2 Lower bound on the threshold 50
9.3 Estimating the optimal threshold 51

10 Topological order and QEC 53
10.1 Definition of topological order 55

10.1.1 Topological order I: Local indistinguishability 55
10.1.2 Topological order II: topological entanglement entropy 55
10.1.3 Topological order III 56

10.2 Theorems, lemmas and facts on CPC 57

11 Thermal noise (self-correction) 63
11.1 Phenomenology . 68

12 Surface codes 75
12.1 Planar codes . 75
12.2 Colour codes (2D) . 78

13 Fault tolerance 80
13.1 Transversal gates . 83
13.2 Braiding . 88
13.3 Clifford operations . 92
13.4 Magic state distillation . 96
13.5 Coupling of two surface codes without transversal operations . 99

14 Subsystem codes 101
14.1 Shor code . 103
14.2 Bacon-Shor code . 105

References 108

3

4

Introduction

At the beginning the theory of quantum error correction was a minor field in-
side quantum information and quantum computation. Physicists were mainly
interested in abstract ideas of entanglement and some connections to thermo-
dynamics. The development of quantum error correction was very slow and
it was a fringe topic until Schor came out with the factoring algorithm. The
factoring algorithm showed that a quantum computer can factor numbers in a
polynomial time, while a classical computer takes exponential time. However,
even with this result, physicists at that day did not believe that quantum
computation would ever be possible because coherent quantum states were
extremely fragile, and thus building a large scale, controllable, quantum sys-
tem with a small error rate was a chimera. At the beginning of 1995, there
were some proposals of codes that were able to correct quantum data. This
was one of the major development in the early days in quantum computation
and it was the starting point of convincing the physics community that quan-
tum computation was possible. The importance of quantum error correction
is easily understood by comparing classical and quantum error rates. In a
classical computer the average error rate is 10−18, while the best quantum
computers that exist nowadays have an error rate of 10−4. Actually, it is
almost inconceivable that they will go beyond 10−7. In other words, in quan-
tum computation we will not be able to perform any relevant computation
unless we can are able to perform error correction.

The first section of this lecture notes is about classical error correction. Con-
cepts such as physical and logical bits and error rates will be explained.
Then, we will focus on linear codes will and we will use the generator matrix
to represent them. Moreover, the parity-check matrix, which is an equiva-
lent representation for codes, will also be introduced. Afterwards, we will go
through the decoding process and we will review what the distance of a code
is. To finish the chapter, we will see a threshold that a code should fulfil in
order to be considered a good code.

The second section is another necessary review before delving into quan-
tum error correction (QEC). We go over the basics of classical and quantum
information. It starts characterising the state of a classical system and intro-
ducing the concept of a classical bit. We explain that there exists only one
single-bit operation, but that we can do computation with more than one
bit. In this context and to complete the review about classical information,
the concept of gate is introduced and some examples of gates and opera-
tions are given. The first element of quantum information that we introduce

5

is the qubit. We explain the possibility of representing it using the Bloch
sphere. Then, quantum operations are described with particular attention
to unitary operations and projective measurements. We introduce a useful
decomposition of quantum operations called Kraus decomposition. In quan-
tum information, the concepts of randomness and noise are different than
in classical information. We see them in detail in this chapter. Finally, the
potential issues that quantum information has to overcome are enumerated
and explained.

The third section of these notes is delved into the Shor code. We explain
how it can correct bit and phase errors and linear combinations of them. We
also comment why it is not used in practise.

The forth, fifth and sixth sections are shorter sections that delve into concrete
topics. We first review the Knill-Laflamme theorem, which gives conditions
for a subspace to be a code space. The physical noise is considered in the fifth
section, in particular under the assumption of independent and identically
distributed noise. Then, we study continuous time errors and see how they
can be discretised.

In section seven we explain the stabilizer formalism. The Pauli group is
defined as starting point and then its tensor product is considered to build
stabilizer codes. We explain several properties of them as well as we see them
in the concrete example of the Shor code on nine qubits.

The eighth section is devoted to the toric code. We explain this relevant code
introduced by Kitaev in 1998 presenting its stabilizers and logical operators.
The toric code has a connection with many-body physics, which is seen in
this section. Then, we consider errors in the toric code and three different
decoders. The corresponding thresholds are viewed at the end of the section.
In section nine, we estimate the maximal threshold of the toric code. This
threshold is obtained by analysing the decoding problem as a classical sta-
tistical model.

Section ten is devoted to the relation between topological order and quan-
tum error correction. For that, we consider and define commuting projector
codes (CPC), which are a slightly more general scenario than the scenarios
considered up to here. Then, topological order is defined from three different
approaches. The last part of this section considers erasure noise and guides
us on proving that local CPC cannot be ideal, in contrast to classical codes.

6

The eleventh section introduces thermal noise. It describes a model to char-
acterise thermal noise in a classical and a quantum scenario. Classical ther-
modynamics is studied using Glauber dynamics and quantum thermody-
namics is modelled by the Davies master equation. Then, thermodynamics
is related to error correction. We use the Ising model to explain phase tran-
sitions, which lead to an interesting property of thermal noise known as
self-correction. Self-correction is the ability of a code to create thermal noise
and, at the same time, correct against it. At the end of the section, the
no-go theorem is stated, which proves that a self-correcting quantum code
with dimension less or equal to three is not possible. We also enumerate
some strategies to avoid the no-go theorem.

7

In section twelve, we study the planar codes. Planar codes, as well as the toric
code, are in the class of surface codes, but they have non-periodic boundary
conditions. We remark the properties that the different boundary condition
give to the planar code in comparison of the toric code, which has periodic
boundary conditions. After that, a new quantum error correction code is
describe: the colour code.

Up to here, we have only corrected errors produced when storing information.
However, in quantum error correction errors can also appear when perform-
ing gates. Section thirteen addresses this issue introducing the field of fault
tolerance, which takes care of performing quantum errors in an efficient way.
We start approximating a general unitary operator by one- and two-qubit
unitaries in a finite set of gates. Then, some strategies of fault tolerance
are studied such as transversal gates, braiding, magic state distillation, kinks
and lattice surgery. In this section we also define the Clifford group and see
some properties and theorems about it.

1 Classical Error Correction

As the error rate in a classical computer is very small, it may seem that
classical error correction is not an important field. It is true that this field is
more fundamental in quantum error correction, but classical error correction
has nevertheless some interesting applications in fields such as wireless net-
works, deep space communication an optical storage1. In this chapter we will
see some basic concepts of the theory of error correction that will be useful
during all the lecture. We will first decompose an error correcting code in
four parts and study them. Then, the notion of physical and logical bits and
error rates will be defined as well as the Hamming distance and the distance
of a code. We will focus on linear codes and explain the generator matrix and
the parity-check matrix, which are two equivalent representations of linear
codes. We will close this chapter mentioning a threshold that every good
code satisfies.

Every error correcting code can be broken up into four steps (see Fig. 1):

1. Source

1For example, most of the improvement of the capacity of a CD to the capacity of a
DVD is mainly due to the introduction of a better error code.

8

The source, which can also be called logical information, is the infor-
mation that we want to say or transmit.

2. Encode
We want to encode the information that we want to transmit in a larger
system in order to protect it.

3. Noise
The noise, which is sometimes also called channel, will corrupt our
information. The noise can be of all sorts of different natures.

4. Decode

Figure 1: Every error correcting code can be broken up into four steps:
source, encode, noise and decode. The three-bit repetition code is the sim-
plest example of error correcting code.

In order to illustrate the decomposition of a code, let us consider the well-
known the repetition code as an example

Example 1.1. The four parts of the three-bit repetition code are (see Fig.
1):

1. Source
The simplest logical information consists of a single bit, {0, 1}.

2. Encode
The simplest encoding of one bit is to encode it into three bits, i.e.,
{0, 1} → {000, 111}. Note that a bit spans an entire space, C2, while
{000, 111} forms only a subspace.

9

3. Noise
We assume that the noise consists of a flip on the middle bit, i.e., it
corrupts our information and gives {010, 101}.

4. Decode
The decoding should map {010, 101} back to {000, 111}. In this case
we can do it by majority vote, i.e., 010 is interpreted as 000 because it
has more zeros than ones, and analogously for 101.

As we will see later on, this code is denoted as [3, 1].

One can naturally extend the three-bit repetition code to the n-bit repetition
code. We obtain a two-dimensional subspace spanned by

{0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

} ∈
(
C2
)⊗n

.

From these examples, we can see that the fundamental principle of error
correction is redundancy. Note that the concept of code, C refers to the sub-
space, i.e., in the example we have C = {000, 111}. Moreover, the strings
that span the code are called codewords.

Classical error correction is a broad field and the goal of this chapter is far
from being a complete review of classical error correction. In the following
sections we will only cover some elements of classical error correction that
will be useful for the chapters about quantum error correction, which is our
main focus.

1.1 Physical error rate

The theory of error correction analyses the errors at the level of samples,
i.e., individual codewords. In this section we will talk about specific type
of errors and codewords. However, we have to keep in mind that the error
process acts on the individual codeword in a certain probabilistic way. This
means that, when we want study global logical errors, the type of analysis
that we have to do is at the level of ensembles, instead of codewords.

Noise can occur in many different ways. For example, the errors caused by
the optical fibre through which the information is transmitted will not be
the same as the noise occurred while storing the information in a magnetic
device or a CD. In general, the noise will depend on the physical support
and the type of process we want to perform.

10

In classical computation there exists only the flip-error, i.e., the error that
exchanges 0 and 1. We will assume identically independent distributed (iid)
noise on each physical bit. In operational terms, this means that it each bit
can individually flip with probability p < 1

2
. Usually, the noise process is go-

ing to be a continuous process, but we will break it up into discrete chunks.
In every individual chunk, there is a certain probability that a bit is flipped.
Note, actually, that the probability p does not represent a single flip, but the
union of all odd number of flips because two flips in the same bit ends up in
no error.

Definition 1.1. A logical error is the probability that information is decoded
incorrectly.

Example 1.2. Consider again the 3-bit repetition code. If we have a proba-
bility p to flip every single bit, the probability to flip two bits of {000, 111} is
3p2. As soon as two bits are flipped, decoding by majority vote does not work
anymore because the state 000 with two errors (e.g., 110) will be mapped to
111, and vice-versa.

From the example above, we can see that, if there are too many flip-errors,
the decoding processes will be incorrect, i.e., it will give a global error. There-
fore, a logical error can be equivalently described as an error that happens
at the end of the process of Fig. 1. Note that the notion of logical error
completely depends on the description of the noise process and the choice of
decoder.

The numbers of logical and physical bits are denoted by k and n, respectively.
We will use the notation that a [n, k] code encodes k logical bits and in n
physical bits. For a code to be consider good, we would like to have k

n
→ cnt

when n→∞. In general, k will depend on n.

1.2 Linear codes

There exist different types of classical error codes, but the most useful codes
are inside the class of linear codes. In this section we will study this type of
codes and see a possible representation called generator matrix.

Consider an n-bit codeword of logical bits, {x1, x2, . . . , xn}2, where xj =
{0, 1} ∀ j. Our goal is to encode these logical bits, xj, into a code, i.e., we

2Note that {x1, x2, . . . , xn} is not the classical analogy of a vector in a Hilbert space,
but only a condensed representation of a specific codeword.

11

want to map {x1, x2, . . . , xn} into a larger space. For this, we will typically
use the so-called generator matrix, G. The generator matrix is an isometry
that maps the logical information, xj, onto the representation of the logical
information in the physical space, yj, i.e., yj = Gxj.

Example 1.3. The generator matrix of the [3, 1] repetition code is

G =

1
...
1

n.

Therefore, when we encode the information of a bit using G, we get

G[0] =

0
...
0

n and G[1] =

1
...
1

n.

Note that the arithmetic is mod 2.

Example 1.4. Consider now the [6, 2] repetition code. The generator matrix
has two map the following elements

{00} → {000000},

{01} → {000111},
{10} → {111000},
{11} → {111111}.

Therefore, we write G as

G =

1 0
1 0
1 0
0 1
0 1
0 1

in such a way that

G

[
0
0

]
=

0
0
0
0
0
0

 , G

[
0
1

]
=

0
0
0
1
1
1

 , G

[
1
0

]
=

1
1
1
0
0
0

 , G

[
1
1

]
=

1
1
1
1
1
1

 .

Note that the arithmetic is mod 2.

12

In general, the generator matrix has k columns and n rows, i.e.,

G =

︸ ︷︷ ︸

k

}
n. (1)

From the general form of the generator matrix (Eq. (1)), we can an interest-
ing property of the linear codes. If we have k logical bits, we can encode up
to 2k codewords. We may think that we would need nk bits that represents
the encoding, but the representation of linear codes are extremely efficient
because, instead of using nk bits to represent the codespace, we only use nk
bits. On top of that, the encoding procedure is efficient as it only consists
of matrix multiplication. Therefore, the generator matrix is extremely con-
venient to describe the encoding part of the process in Fig. 1. Nevertheless,
it does not tell anything about decoding. We will see later on that classical
linear codes have always a natural way of decoding3, but before we need to
introduce a different representation for linear codes.

1.3 Parity-check matrix

We have seen in the previous section that linear codes can be represented
using the generator matrix. This is not the only possible representation. In
this section we will introduce the parity-check matrix, which is an equivalent
representation that can be more useful in certain situations.

The parity-check matrix, H, is representation for linear codes that consists
of a (n− k)× n matrix such that

Hy = 0 ∀ y ∈ C, (2)

where C is the codespace, i.e., the n-bit space. Therefore, the codespace is
the kernel of H according to Eq. (2). The rows of H are linearly indepen-
dent, while columns are linearly dependent.

Example 1.5. The parity-check matrix of the [n, 1] repetition code is

H =

1 1 0 0 · · · 0
0 1 1 0 · · · 0
...

.

0 · · · 0 1 1 0
0 · · · 0 0 1 1

3This will not be true for quantum codes

13

Consider that we initially have the codeword y0 = {0, . . . , 0} and it occurs an
error on the third bit, e = {0, 0, 1, 0, . . . , 0}. Then, the parity-check matrix
will detect the error as

Hy0 = 0

He =

0
1
1
0
...
0

Note that the capacity of H to detect errors relies on the fact that it is
completely insensitive to the codewords by definition. Thus, it only picks up
where the errors are.

There exists an equivalent representation of the parity-check matrix which
is called the Tanner graph (see Fig. 2). The Tanner graph consists on lines
of boxes where the upper line represents the bits and the lower line shows
the parity of two neighbouring bits. If there is an error on the upper line,
the boxes of the lower line connected to the box that contains the error will
be activated. These “activations” are called error syndromes. They give
information about where the errors are in the code (see Fig. 2), and thus
they are crucial for decoding.

1.4 Decoding

Once the information we want to transmit has been encoded and corrupted,
the work of decoding is to “remove errors” in an intelligent way using the
syndrome information of the corrupted codeword. In this section we will see
that linear codes have a natural way of decoding.

The first fact that it is important to note is that, if all zeros are flipped to
ones and all ones are flipped to zeros, we get exactly the same syndrome
information. The syndromes do not care about the original codeword. Thus,
the decoding procedure should not depend on the codeword, but only on the
error syndromes.

Consider that {0000000} is the initial codeword and that the information has
been corrupted and we have six syndrome bits (see Fig. 3). We have abso-
lutely no way of knowing whether to correct in one direction or the opposite

14

Figure 2: Tanner graph of a) the n-bit codeword {0, . . . , 0}, and b) the five-
bit codeword {00000} with a flip error on the second bit.

because there are two possible parents of errors. The first one corresponds
to the situation that three bits of the initial codeword have been flipped.
However, an equivalent parent of errors is the one that hit the conjugate
bits, and thus there have been four flip-errors. For these two situations, we
would get exactly the same syndrome information. The decoder has to make
a choice to correct into one direction or the other. The typical solution is to
choose the most likely outcome. It is most probable to have three errors than
to have four errors if a bit has on average an error with probability p < 1

2
.

Obviously, every once on a while the decoder will make a mistake, and thus
the information we will get is not the same information that was sent.

Example 1.6. Consider the [3, 1] repetition code and an initial string {000}.
If the error probability of each individual bit is p < 1

2
, the probability of the

initial string, {000}, to become a different codeword is the follwoing

15

Figure 3: An error syndrome has two parents of errors. Given the initial
codeword {0000000}, a flip-error on the second, third and sixth bit gives the
same error syndrome than a flip-error on the first, forth, fifth and seventh
bit. However, the situation with only three errors is more likely.

Codeword Probability
{000} (1− p)3

{001} (1− p)2p
{010} (1− p)2p
{100} (1− p)2p
{011} (1− p)p2

{110} (1− p)p2

{101} (1− p)p2

{111} p3

As p < 1
2
, the probability of {000} having no error is much bigger than the

probability of having three errors, and thus becoming {111}.

As we are assuming iid errors, the decoder will always make the choice of the
situation with the fewest number of errors. Note that this does not work if
the errors are correlated.

1.5 Distance of a code

An important characteristic of an error correcting code is its robustness to-
wards noise. In this section we define the distance of a code, which will give
an idea of how robust a code is. For that, we first need the definition of the
Hamming distance.

16

Definition 1.2 (Hamming distance). Given two codewords, y1 and y2, the
Hamming distance, d(y1, y2) is the minimum number of bits that must be
flipped to transform y1 into y2.

Example 1.7. The distance between y1 = {1100} and y2 = {1010} is d = 2.

Once we know what the Hamming distance is, we can define the distance of
a code.

Definition 1.3 (Distance of a code). The distance of a code C is the minimal
Hamming distance between to different codewords yi and yj, i.e.,

d(C) ≡ inf
yi,yj
yi 6=yj

d(yi, yj).

The distance of a code gives an idea of how resilient the code is. However,
in order to get the full idea, we should consider distributions and entropic
factors. It is also worth noting that any bd−1

2
c errors of a linear code can be

corrected. Actually, the distance of a code is such an important quantity that
codes are usually identified with [n, k, d], where d is the distance of the code
and, as mentioned before, n and k are the number of physical and logical
bits, respectively.

The goal of information theory is to understand the limits on the amount of
information that can be transmitted through a channel. Information theory
was developed in 1950, but the first codes that achieved maximal transmis-
sion of information through a channel were proposed only fifteen years ago.
These codes are called constant-rate codes and they fulfil that

k

n
−−−→
n→∞

cnt,

d

n
−−−→
n→∞

cnt.

The fact that both limits go to a constant means that, as n becomes higher
and higher, we need to waste fewer and fewer physical bits in order to robustly
encode an amount of information proportional to the amount of physical in-
formation. These codes exist in classical error correction, but not in quantum
error correction.

The parameters n, k and d of a code are not completely free, i.e., there exist
constraints on them such as4

4In the exercise class we will prove the last constraint and show some more.

17

� n ≥ k

� n ≥ d

� n− k ≥ d− 1

1.6 Thresholds

In the last section we have weekly suggested the idea that, if the distance of
the code is large, the code is robust. Here we will see that, on top of that, a
code is considered a good code if it fulfils the threshold.

[Thereshold for a good code] Given a code, C, with n physical bits and a
physical error rate p, it is considered a good code if there exists a probability
threshold, pth ≤ 1

2
, such that the logical error rate, Plog, satisfies

Plog(n, p) ≤ ce−αd ∀ p ≤ pth. (3)

Here it is assumed that d scales with n.

As this threshold is a strong statement, the exponential decay is sometimes
relaxed by only requiring that Plog(n, p) decays as a function f(n) such that
f(n)→ 0 when n→∞. On the contrary, the threshold error rate decays even
faster for some codes. For example, the [n, 1] repetition code has an error
correction threshold of pth = 1

2
, which is the highest possible5. Obviously,

this is not the general case.

Example 1.8 (The Hamming code). The Hamming codes are a family of
linear codes with [2r, 2r − r, 3], where r is an integer such that r ≥ 1. They
are perfect codes, that is, they achieve the highest possible rate k

n
for codes

with minimum distance of three. The party-check matrix of the Hamming
code with r = 3 is

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 1 1 0 1

 .

Note that the rows are linearly independent, but not the columns. In this
case, we have n = 7, k = 4 and d = 3, i.e., it is a [7, 4, 3] code. In figure
4 we can see the Tanner graph of the Hamming code with r = 3. From this
figure it is obvious that many errors will have the same error syndrome, and
thus it will be difficult to know where the error is.

5We show that in the exercise class

18

Figure 4: Tanner graph of the codeword {0000000} of the Hamming code
with r = 3.

2 Quantum mechanics of one qubit

Instead of directly delving into quantum error correction (QEC), in the pre-
vious section we have seen some elements of classical error correction. This
section is also devoted to concepts that are needed before studying QED.
Here we review the basics of classical and quantum information. We start
explaining the concept of a classical bit and describing the two types of
states of a classical system. Then, single-bit operation as well as gates are
considered. Some examples are also given. When we move to quantum infor-
mation, we introduce the qubit and emphasise its representation on the Bloch
sphere. Operations in quantum mechanics are described. In particular, we
pay attention to unitary operations and projective measurements. The Kraus
decomposition is also introduced due to its interpretation in terms of error
correction. We then differentiate between the two types of randomness that
exist in quantum information, which is an important difference to classical
information. After that, noise is characterised using the concept of quantum
operations. The last explanation of this section is about the potential issues
that we need to overcome in quantum information.

2.1 Classical information

In classical information, the fundamental unit of information is the bit, i.e.,
{0, 1} ∈ Z2. The physical state of the system can be:

� a certain state, i.e., |0〉〈0| or |1〉〈1|

� an uncertain state, i.e., q|0〉〈0| + (1 − q)|1〉〈1| where q ∈ R with 0 <
q ≤ 1. The system being in an uncertain state means that there exists
a probability q to find the system in state |0〉〈0| and a probability
(1 − q) that it is in state |1〉〈1|. Therfore, the uncertainty reflects our
knowledge of the system.

19

The only single-bit operation6 in classical information is the bit-flip, which
consists in

0 → 1
1 → 0

Noise in classical information will typically take the system from a certain
state to an uncertain state.

Example 2.1. Consider a noise consisting of a flip with probability p < 1,
then the state of the system will undergo the following changes

|0〉〈0| → p|1〉〈1|+ (1− p)|0〉〈0|
|1〉〈1| → p|0〉〈0|+ (1− p)|1〉〈1|

Note that an operation can be interpreted as the limit case of a noise where
p = 1.

Computation is the process of taking several bits and mapping to them in
a certain way. In other words, computation consist of operations acting on
more than one bit. These operations are also known as gates

Example 2.2. An example of a two-bit gate in classical information is the
so-called NAND, which consists of

00 01
01 01
10 01
11 00

This gate is important in classical computation because it is a universal gate,
i.e, once we are able to perform it, we can perform any other gate.

It is worth mentioning that in the formulation of computation we always
represent operations going from a certain state to a certain state. However,
in practise, we will always have an uncertain state, which will be mapped to
another uncertain state.

2.2 Quantum information with one qubit

In this section, we introduce the basics of quantum information. The charac-
terisation of a quantum system is first explained as well as how to operate on

6When we talk about operations, we always think about their action on certain states.

20

it. Then, we will explain the concepts of noise and randomness in quantum
information emphasising the difference to classical information. Finally, the
potential issues that have to be overcome to do quantum error correction are
enumerated.

State of the quantum system

In quantum information the state of the system is a quantum state, i.e., a
normalised vector of a two-dimensional Hilbert space, H2. Thus, we write
|ϕ〉 ∈ H2 such that 〈ϕ|ϕ〉 = 1.

The typical physical basis of quantum information is the so-called computa-
tional basis, which consists of {|0〉, |1〉}. We can always write the state of the
system as a linear combination of the physical basis such that

|ϕ〉 = α|0〉+ β|1〉, where α, β ∈ C with |α|2 + |β|2 = 1.

As a global phase is not relevant in physics, we can choose α to be real and
non-negative. This fact, together with |α|2 + |β|2 = 1, allows to write the
two-qubit state as

|ϕ〉 = cos

(
θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉,

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The parameter θ and φ can be inter-
preted as spherical coordinates giving rise to a unit sphere in R3 known as
Bloch sphere (see Fig. 5). Each point of the Bloch sphere, which can be
characterised by the unit vector ~n ≡ (sin θ cosφ, sin θ cosφ, cos θ), specifies a
two-qubit state. Note that two antipodal points of the Bloch sphere corre-
spond to two orthogonal states.

Mixed states can also be represented using the Bloch sphere. Any two-
dimensional density operator, ρ, can be written as

ρ =
1

2
(I + ~a · ~σ) ,

where I is the identity matrix, ~a = (ax, ay, az) ∈ R3 and ~σ ≡ (σx, σy, σz) is a
vector made of the Pauli matrices with

X ≡ σx =

(
0 1
1 0

)
, Y ≡ iσy = i

(
0 −i
i 0

)
, Z ≡ σz =

(
1 0
0 −1

)
. (4)

21

Figure 5: Bloch sphere

Due to normalisation of the density matrix, it is easily proven that |~a|2 ≤ 1
and |~a|2 = 1 if and only if the density matrix is a pure state7. In other
words, pure states lie on the surface of the Bloch sphere, while mixed state
correspond to point in the interior.

Quantum operations

A system can undergo many different physical transformations. They are
known as operations and represented by a map E : B(HA) → B(HB) with
the following properties. The map must be

(i) Linear, i.e., E [
∑

i piρi] =
∑

i piE(ρi),

(ii) Positive semidefinite, i.e., E(ρ) ≥ 0 ∀ρ ≥ 0,

(iii) Completely positive, i.e., (EA⊗IC) [ρAC] ≥ 0 ∀ρAC ≥ 0 and any Hilbert
space HC , where ρAC ∈ B(HA ⊗HC).8

Note that (iii) implies (iii). The first two properties guarantee that the out-
put of a quantum operation on a physical state is a physical state as well,

7Recall the density matrix of a pure state, |ψ〉, is ρ = |ψ〉〈ψ|.
8In these notes we do not consider Hilbert spaces with infinite dimension.

22

while the third one ensures the state will still be physical even if the quantum
operation applies only on a subsystem. In summary, a quantum operation
is a completely positive (CP) map that describes the transformation of a
physical system.

A particular class of quantum operations are unitary transformations. A
unitary transformation is a map, U , such that U |ϕ〉 = |ψ〉, where UU † = I.
It is easily proven that any unitary map U can be written as eiH with H an
hermitian operator, i.e., H = H†.

In quantum information, measurements are another important class of quan-
tum operations. Measurements are observables, which implies that they are
represented by hermitian operators. The simplest kind of measurements are
the so-called projective measurements. A projective measurement, M , can
be written as

M =
∑
k

νkPk,

where Pk are projectors, i.e., P 2
k = Pk and νk = ±1. Given an initial state

|ϕ〉, the probability of obtaining the result m after the measurement M on
|ϕ〉 is pm = 〈ϕ|Pm|ϕ〉. The state of the system after the measurement is

|ϕ′〉 =
Pm|ϕ〉√
〈ϕ|Pm|ϕ〉

Example 2.3. In order to measure if the qubit is in the state |0〉〈0| or in
|1〉〈1|, we use the operaation M = Z = |0〉〈0| − |1〉〈1| = P0 + (−1)P1.

Example 2.4. Consider the measurement

M = X = |+〉〈+| − |−〉〈−|, where |±〉 =
1√
2

(|0〉 ± |1〉) .

The probability of obtaining the result ± after measuring M = X on a state
|ϕ〉 is p± = |〈±|ϕ〉|2.

Any quantum operation can be written as

T (ρ) =
∑
k

EkρE
†
k,

23

where Ek are maps such that
∑

k E
†
kEk = I. This decomposition is known as

Kraus decomposition and the operators Ek are called Kraus operators. Due
to linearity of the trace, it is easy to see that the Kraus decomposition guar-
antees the preservation of the trace. The Kraus decomposition can be easily
interpreted in terms of error correction. Consider a state ρ = |ϕ〉〈ϕ|, then
error operator Ek occurs with probability pk = ||Ek|ϕ〉||2. For this reason,
Kraus operators are also known as noise operators.

Another useful representation of operations in H2 consists in writing an op-
eration, Ω, in the basis {I, X, Y, Z}, i.e.,

Ω = a1I + axX + ayY + azZ. (5)

Randomness in quantum information

One of the most important difference between quantum and classical me-
chanics is the origin of randomness. Randomness in classical physics has to
do with the ignorance about the system, while in quantum mechanics it has
two forms:

1. Uncertainty
When our knowledge of the system is limited, it is described by a
mixed state because we do not know exactly the state of the system.
For example, if the system is in the state

ρ = λ0|0〉〈0|+ (1− λ0)|1〉〈1|,

we know that it is in state |0〉〈0| with probability p = λ0 and in state
|1〉〈1| with probability q = 1 − λ0. This uncertainty introduces ran-
domness which has its origin in lack of information. It is the same
randomness that exists in classical information.

2. Intrinsic
In quantum mechanics, even if we know exactly the state of the system,
there is room for randomness. Consider a system in the state |ϕ〉 =
α|0〉 + β|1〉, where |α|2 + |β|2 = 1. As we have said before, if we
measure |ϕ〉, there is a certain probability that we get the outcome 0
and a certain probability for outcome 1. This introduces randomness
in the system which comes from intrinsic properties of its state.

24

Note that if the state of a system is mixed, both kind of randomness can
appear. Wdescarhen we perform a measurement, it is not always obvious to
know which kind of randomness we are facing.

Noise in quantum information

In quantum information, noise is a general operation (i.e., anything that is
physically allowed) between two quantum states. On qubits, this means an
operation, T , that takes the system from a density matrix, ρ, to another
density matrix, σ, i.e., T (ρ) = σ. In order T to be a physical operation, it
must fulfil the following properties. Given a density matrix X, T has to be

� trace-preserving, i.e.,
tr [T (X)] = tr(X)

� complete-positivity preserving in such a way that the state modified by
the noise remains as a physical state.

Example 2.5. Consider a noise, T , consisting of a flip with probability
p ≥ 0. In other words, with probability (1 − p) the initial state, ρ, remains
unchanged an with probability p one of its bits is flipped. The resulting state
is

T (ρ) = (1− p)ρ+ pXρX,

where X|0〉 = |1〉 and X|1〉 = |0〉.

Potential issues of quantum information

Recall that the simplest classical EC code is the three-qubit repetition code,
where the correction is done by majority vote (see Example 1.1). In quantum
mechanics, we would like to have an analogous code, but there exist some
potential issues that we have to overcome. We have to face with

� The no-cloning principle
It is well-known that in quantum mechanics there cannot exist a general
operation that realises |ϕ〉 → |ϕ〉|ϕ〉|ϕ〉.

� The collapse of the state
In order to correct the errors of a state, we need to measure each qubit.
In quantum mechanics, however, measurements collapse the state of
the system, and thus they may change it.

25

� Continuous errors
We have previously seen that in classical information there exist only
flip-bit errors. Nevertheless, in quantum mechanics there are more
types of errors. Some of these errors are continuous, i.e., they are
described by a continuous parameter. For example, a state could suffer
a small rotation such that

|ϕ〉 = α|0〉+ β|1〉 → |ϕ′〉 = α|0〉+ eiφβ|1〉,

where 0 ≤ φ ≤ 2π.

3 The Shor code

The Shor code is a quantum error correction code that is able to protect
against phase and bit errors. In this section, we first learn to correct bit
errors and phase errors independently, and then we concatenate both codes
to built the Shor code. Here, the Shor code is studied on nine qubits, but
its generalisation to n qubits is straightforward. The Shor code can be in-
terpreted as two classical repetition codes in two different levels. As we see
below, the first level acts on individual qubits and corrects against bit errors,
while the second l evel considers groups of three qubits in order to correct
against phase errors.

The logical qubits of the Shor code are

|0̄〉 =
1√
23

(|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉) , (6)

|1̄〉 =
1√
23

(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) . (7)

It is easy to see that the structure of the logical qubits is three chunks of
three qubits. If we focus on a single chunk, we can interpret it as a logical
± of the classical repetition code, i.e.,

|±̄〉 =
1√
2

(|000〉 ± |111〉) , (8)

where the states |000〉 and |111〉 play the role of the logical bits of a classical
repetition code. This allows to write the logical operators of the Shor code
as

|0̄〉 =
1√
23

(|000〉+ |111〉)⊗3 = |+̄(1)〉⊗3

26

|1̄〉 =
1√
23

(|000〉 − |111〉)⊗3 = |−̄(1)〉⊗3

Note now that |0̄〉 can be interpreted at the same time as logical operators
of another classical repetition code. In this second level of correction, we are
able to against phase flips9. Therfore, the Shor code is the simplest example
of a concatenated code where at the first level it protects against bit errors
and at the second level it protects against phase errors.

How do we protect against bit errors and phase errors?

As we have seen in the classical repetition code, the decoding process uses
the majority vote. Nevertheless, in quantum error codes we cannot decode
using this strategy because the action of measuring the qubits to see which
state predominates collapses the system in a post-measurement state. In-
stead of the majority vote, we quantun error correction decodes using parity
measurements because they do not affect the logical information. Classicaly
we have already seen the parity measures with the parity-check matrix (see
Section 1.3) and the Tanner graph (see Section 1.4). A parity measurement
measures if two consecutive qubits are in the state. If they are in the same
state, we associate to the result of the measurement a “+” sign and say that
we have “even parity”. On contrary, if the state of the qubits is different,
we associate to the result of the measurement a “-” sign and say that we
have “odd parity”.

In order to understand the decoding based on parity measurments, let us
first consider a bit error and we assume that it happens in the first qubit.
The parity measurements for bit errors are Z1Z2 and Z2Z3. We can write
Z1Z2 in terms of projectors such that

Z1Z2 = (|00〉〈00|+ |11〉〈11|)− (|01〉〈01|+ |10〉〈10|)
= P+ − P−,

where P+ ≡ |00〉〈00|+|11〉〈11| and P− ≡ |01〉〈01|+|10〉〈10| are the projectors
on the even-parity space and odd-parity space, respectively. Consider that

9Recall that
X|0〉 = |1〉
X|1〉 = |0〉 and

Z|+〉 = |−〉
Z|−〉 = |+〉.

This means that, in order to perform the equivalence of the repetition code for phases, we
have to do it in the basis made of {|±〉}.

27

the initial state, |ψ〉, gets corrupted by X1, and thus we have

|ψX1〉 ≡ X1|ψ〉 =
1√
2
|100〉+ |011〉.

The outcomes of measuring Z1Z2 are

� Even parity with probability 〈ψX1|P+|ψX1〉 = 0,

� Odd parity with probability 〈ψX1|P−|ψX1〉 = 1.

The state of the system after the parity measurement is

P−|ψX1〉
〈ψX1|P−|ψX1〉

= P−|ψX1〉 = |ψX1〉

Thus, we have measured Z1Z2 on qubits one and two, we have obtained with
certainty that they have odd parity and, in particular, the measurement
has not changed the state. The next step is to measure the other parity
measurement, Z2Z3. It is easy to check that in this case we obtain that
qubits two and three are in strict even parity. The combination of both
results allows to localise the error without changing the state. Now, we can
simply apply X1 to the corrupted state, |ψX1〉, and we recover the initial
state, i.e.,

X1|ψX1〉 = X1X1|ψ〉 = |ψ〉.
Doing the same procedure for all bit errors, we obtain the following recipe,
which links the results of the parity measurements with the operation that
we have to do to restore the corrupted state. The recipe for bit errors is

Result of Z1Z2 Result of Z2Z3 Restoring operation
+ + I
- + X1

+ - X3

- - X2

Note that this recipe is only valid if there is only one bit error.

In order to correct phase errors, we can use the same method as for bit errors,
but we have to work on the basis made of {|±〉}. Consider that the initial
state is |φ〉 = | + ++〉 and that it has been corrupted by Z2, i.e., we have
|φZ2〉 = Z2|φ〉 = |+−+〉. The parity measurements of phase errors are X1X2

and X2X3. The operator X1X2 can be written as

X1X2 = (|+ +〉〈+ + |+ | − −〉〈− − |)− (|+−〉〈+− |+ | −+〉〈−+ |)
= Q+ −Q−,

28

where Q+ = |+ +〉〈+ + |+ |−−〉〈−− | and Q− = |+−〉〈+−|+ |−+〉〈−+ |
are the projectors on the even-parity space and odd-parity space of the X
operator, respectively. The outcomes of measuring X1X2 are

� Even parity with probability 〈φZ2|Q+|φZ2〉 = 0.

� Odd parity with probability 〈φZ2|Q−|φZ2〉 = 1.

If we now measure X2X3, we get that the qubits are in strictly odd parity.
Thus, we have localised the phase error on the second bit and we can corrected
applying a Z2 on |ϕZ2〉. As for bit errors, we can proceed analogously for all
phase-flips and construct the following recipe

Result of X1X2 Result of X2X3 Restoring operation
+ + I
- + Z1

+ - Z3

- - Z2

We have seen that with three qubits we are able to correct against bit or phase
errors, but we cannot correct both at the same time because the restoring
operations do not commute. The Shor code, however, solves this problem by
using two levels of correction instead of one. For this purpose, it considers a
total of nine qubits and, when correcting phase errors, it considers groups of
three qubits instead of individual qubits. In other words, the Shor code uses
the states |±̄〉, i.e., logical qubits made of three qubits in such a way that
we work at the second level of correction. The parity measurements become,
then, (X1X2X3)(X4X5X6) and (X4X5X6)(X7X8X9). Note that X1X2X3,

X4X5X6 and X7X8X9 play respectively the role of X
(1)
1 , X

(1)
2 and X

(1)
3 at the

first level. Note further that (X1X2X3)(X4X5X6) and (X4X5X6)(X7X8X9)
have eigenvalues ±1, and thus they measure parity, but in the X basis of
groups of three qubits. In order to see that, consider an initial state |ϕ〉 = |0̄〉.
The state is corrupted with a bit-flip and a phase-flip on qubit one, i.e., we
have

|ϕ′〉 ≡ Z1X1|ϕ〉 = (−|100〉+ |011〉) |+̄〉|+̄〉.
After measuring Z1Z2 and Z2Z3 and using the recipe, we detect that the
corrupted state has a bit-flip on the first qubit and we apply X1 to correct
it. We obtain

X1|ϕ′〉 = X1Z1X1|ϕ〉 = −Z1|ϕ〉 = (−|000〉+ |111〉)|+̄〉|+̄〉.

Now, we measure the parity operatorsX1X2X3X4X5X6 andX4X5X6X7X8X9

and the results show that there is a phase-flip on the first logical qubit. We

29

can correct it by simply applying Z1, Z2 or Z3 on the state. We apply, for
example, Z1 and obtain

Z1(−Z1|ϕ〉) = −|ϕ〉.

As global phases have no physical meaning, we have been able to correct both,
a bit and a phase error. Note that this analysis also shows that errors given
by Y can also be corrected due to Y = iZX. It is easy to see that the process
is valid independently of which qubit the error acts on. In conclusion, any
single-qubit phase or bit error can be corrected, i.e., there exists a correction
operation that takes

XiZj|ϕ〉 → eiα|ϕ〉 ∀i, j ∈ [1, 9] and ∀|ϕ〉 ∈ C.

So far we have only considered pure errors, i.e., errors given by X, Y or Z.
We now want to show that the Shor code can also correct linear combinations
of {Xi, Yj, Zk}9

i,j,k=1. Consider an error operator, E, given by

E = exX1 + ezZ1,

where for simplicity we do not consider a Y operator. The initial state is
|ϕ〉 = |0̄〉, and thus the corrupted state is E|ϕ〉. If we measure10 Z1Z2, we
obtain “even parity” with probability

〈ϕ|E†P+E|ϕ〉 = 〈0̄|(e∗xX1 + e∗zZ1)P+(exX1 + ezZ1)|0̄〉
= |ex|2〈0̄|X1P+X1|0̄〉+ e∗xez〈0̄|X1P+Z1|0̄〉+

+exe
∗
z〈0̄|Z1P+X1|0̄〉+ |ez|2〈0̄|Z1P+Z1|0̄〉

= |ez|2.

The probability of “odd parity” is 〈ϕ|E†P−E|ϕ〉 = |ex|2. Assume without
loss of generality that the measurement yields “even parity”, then we know
that the post-measurement state is

1

|ez|
P+E|ϕ〉 =

ez
|ez|

Z1|0̄〉,

where ez
|ez | is a phase. Thus, the parity measurement has removed the bit

error and we are left with a clean phase flip on |0̄〉. Doing this analysis for
all the parity measurements, we see that that the post-measurement state

10Here we know where the error is, and thus we only measure one parity measurement.
In practise, however, one must measure all and then use the recipe.

30

is always a state of the set {|ϕ〉, Xj|ϕ〉, Zj|ϕ〉, XjZj|ϕ〉}. Note that we know
how to correct all states of the set. Note further that the collapse of the state
after a measurement is crucial to be able to correct errors. In conclusion, if
the state has suffered an error which is a linear combination of errors that
we know how to correct, we are able to correct it exactly.

We have just observed that the Shor code can correct against error given by
any linear combination of {I, X, Y, Z}. Moreover, in the previous chapter,
we have seen that any operator can be written in the basis {I, X, Y, Z} (Eq.
(5)). This implies that Shor code is able to correct against any arbitrary
single-qubit error.

As we have mentioned at the beginning of the chapter, the Shor code on
n2 qubits is a concatenation of two [n2, 1, n2] classical repetition codes. The
error correction threshold is the same as in the classical case, and thus it
becomes interesting when n is big (see Section 1.6). In practise, however, the
Shor code is not use when n is large because of the following reason. The
parity measurement at first level of the Shor code on n2 are11

Z1Z2, Z2Z3, . . . , Zn−1Zn,
Zn+1Zn+2, . . . , Z2n−1Z2n,

...
Zn2−n+1Zn2−n+2, . . . , Zn2−1Zn2 ,
X1 · · ·Xn, . . . , Xn · · ·X2n.

Note that the parity measurements for phase errors imply to measure n qubits
at the same time. This is a problem because nowadays we are able to apply
at most three-qubit operations. Beyond this, measurements are too noisy.
Therefore, the Shor code is not practical.

4 Quantum error correction conditions

Knill and Laflamme gave conditions for a subspace to be a code space. In
this section, we want to review them and analyse an important consequence.

Given a Hilbert space12, H, a quantum error correcting code is is a subspace,
Cn ∈ H⊗n2 , that protects against a quantum channel, E(ρ) =

∑
k EkρE

†
k. In

11We will see in following chapters these operators are known as stabilizer operators.
12For convenience, we consider that the Hilbert space, H, is embedded in a Hilbert space

that characterises n qubits, H2 ⊗ · · · ⊗ H2 = H⊗n2 .

31

other words, if the error E happens on the system, there exists a recovery
channel, R, such that

R ◦ E(ρ) = ρ ∀ρ : C → C.

Theorem 4.1 (Knill-Laflame theorem). A subspace C is a quantum error
code against E(ρ) =

∑
k EkρE

†
k if and only if

PCE
†
iEjPC = αijPC,

where PC is the projector on the code space and αij are the matrix elements
of an hermitian matrix, i.e., α = α†.

Given a state |ϕ〉 ∈ C, the Knill-Laflame theorem says that an error might
take a state out of C, but then we are able to bring it back.

An important consequence of the Knill-Laflamme theorem is that any linear
combination of errors that can be corrected is also correctable. This can be
easily proven as follows. Suppose that we can correct against errors given by
X1 and Z1. Then, according to the Knill-Laflamme theorem, it is satisfied
that

PCX1Z1PC = α12PC.

If we now consider a linear combination such as E = αX1 + βZ1, it can be
corrected because

PCE
†EPC = PC(|α|2X1X1 + α∗βX1Z1 + αβ∗Z1X1 + |β|2Z1Z1)PC

= α11PC + α12PC + α21PC + α22PC

∝ PC.

5 Physical noise

In this section we want to consider cases where noise affects to more than one
qubit at the same time under the assumption of independent and identically
distributed (idd) noise. This assumption considers that noise acts individu-
ally on each bit, and thus there is no correlation between noise on individual
systems. This is not always a good assumption, but it is extensively used
because it is simple.

Generically, the noise on a single qubit can be modelled by E(ρ) =
∑

k EkρE
†
k.

Then, considering iid noise, the noise on n qubits is

E ⊗ · · · ⊗ E︸ ︷︷ ︸
n

(ρ).

32

Consider the Shor code on nine qubits and a single-qubit noise given by

E(ρ) = (1− p)ρ+
p

2
I = (1− p)ρ+

p

4
(ρ+XρX + Y ρY + ZρZ) ,

which does not change the state with probability 1 − p and erases any in-
formation with probability p. If the error happens on each qubit, the global
noise of the nine qubits is characterised by

E⊗9(ρ) = (1− p)9ρ+ (1− p)8p

3

(
9∑
i=1

∑
α=1,x,y,z

σαρσα

)
+O

(
(1− p)7p2

)
. (9)

The first term of Eq. (9) carries no error, and thus we do not need to correct
it. The second term of Eq. (9) contains single-qubit errors, which we have
seen in the previous chapter that the Shor code can correct. The rest of the
terms Eq. (9) correspond to errors on more than one qubit and we do not
know a general recovery map for them13. This means that the probability
with which we can protect against errors on every single-qubit is given by the
remaining terms (O ((1− p)7p2)) in Eq. (9). If we consider the Shor code on
n2, the term O ((1− p)7p2) is exponentially suppressed.

6 Continuous time errors

In this section we consider continuous time errors and we see that they can be
discretised. Continuous time errors can be modelled by quantum dynamical
semigroups. This means that we characterise the noise as a function of a
continuous variable, t, as

Et(ρ) = etL(ρ),

where L is generically given by

L(ρ) = i [H, ρ] +
∑
k

LkρL
†
k −

1

2

(
L†kLkρ+ L†kLkρ

)
,

with H a Hamiltonian and Lk jump operators.

Consider the situation of a bit error on the first qubit, X1, at rate γ. In this
case, the Hamiltonian is zero and there is only one jump operator such that

LX1(ρ) = X1ρX1 − ρ.
13The Shor code is able to correct against two-qubit errors such as X1Z2, but it fails for

errors of the form of X1X2.

33

We can expand the error operator as

Et(ρ) = etLX1 (ρ)

= ρ+ tLX1(ρ) +
t2

2!
L2
X1

(ρ) +
t3

3!
L3
X1

(ρ) + · · ·

= ρ+ t(X1ρX1 − ρ) +
t2

2!
LX1(X1ρX1 − ρ) +

t3

3!
L2
X1

(X1ρX1 − ρ) + · · ·

= ρ+ t(X1ρX1 − ρ) +
t2

2!
2(X1ρX1 − ρ) +

t3

3!
3(X1ρX1 − ρ) + · · ·

= ρ

(
1− t+ 2

t2

2!
− 3

t3

3
+ · · ·

)
+X1ρX1

(
t− 2t2

2!
+

3t3

3!
+ · · ·

)
= ρ

(
1− te−t

)
+X1ρX1te

−t.

Most errors on the physical world are continuous time errors, but they can
be discretised as follows. In a laboratory, the measurements are performed
at a certain speed. We can break the continuous time up into a bunch of
discrete steps (see Fig. 6), where each individual step is the time required to
apply all parity measurements. Then, in practise we can consider each step
as a discrete error processes, where the error occurs with probability

p = ∆te−∆t.

Figure 6: Discretisation of the time for continuous time errors.

7 Stabilizer codes

In the section devoted to the Shor code, we have seen that for a system of
three qubits we can detect bit errors using the parity measurements Z1Z2 and
Z2Z3. These two operators, Z1Z2 and Z2Z3, have the states |000〉 and |111〉 as
common eigenstates with eigenvalue +1 and they also satisfy {X1, Z1Z2} = 0
and [X1, Z2Z3] = 0. Actually, when we measure the parity measurements on
a code state, we are using these property since

Z1Z2X1|000〉 = −X1Z1Z2|000〉 = −X1|000〉.

34

In this section we want to make use of this properties to construct a more
general code on n qubits, the stabilizer code.

In order to develop the stabilizer formalism, we first need to define the Pauli
group.

Definition 7.1. The Pauli group, P1, is the group consisting of the 2 × 2
identity matrix, I, and the Pauli matrices together with the product of these
matrices with the factor −1, which are

P1 ≡ {±I,±X,±Y,±Z},

where X, Y and Z are defined in Eq. (4).

Note that the Pauli group has order eight, |P1| = 8, which means that the
group has eight elements. These elements are related by the commutation
properties of the Pauli matrices, i.e.,

[X, Y] = 2Z, [X,Z] = −2Y, [Y, Z] = 2X.

If we consider the n-fold tensor product of the Pauli group, the resulting set
of matrices is also a group. It is denoted by Pn and written as

Pn ≡ {±I,±X,±Y,±Z}⊗n

≡ {±G~α},
(10)

where for a compact notation we define G~α = σα1 ⊗ · · · ⊗ σαn with σα1 = I,
σα2 = X, σα3 = Y and σα4 = Z. Some interesting properties of the group
Pn are:

� It is a group of order |Pn| = 2 · 4n = 22n+1.

� Any element, G~α ∈ Pn, satisfies G2
~α = I and G†~αG~α = I.

� Given two different elements of the group, G~α, G~β ∈ Pn, they either
commute, [G~α, G~β] = 0, or anticommute, {G~α, G~β}. Note that, in the
case that the elements commute, they also share an eigenbasis.

Once we have seen the Pauli group and its generalisation to n qubits, we can
define the stabilizer code.

Definition 7.2. Let S be an abelian14 subgroup of Pn. Then, a stabilizer
code, C, is defined as C ≡ {|ψ〉 | S|ψ〉 = |ψ〉 ∀S ∈ S}.

14A group is abelian if all its elements commute, i.e., [S1, S2] = 0 ∀Si ∈ S.

35

We say that S is the stabilizer (group) of the code and that S ∈ S are sta-
bilizer operators of the code. The stabilizer group fully characterises the code.

Stabilizer operators are not linearly independent in general. Note that the
concept of linear independence is defined in a vector space, not in a group.
Here, when we talk about linear independence, we formally mean that we
map the elements of Pn to the vector space (Z2)2n using

ϕ :

(
Pn
Z2

; ·
)
−→ (Z2)2n

and, then, we consider the concept of linear independence in (Z2)2n. This
translates in a simple way to the elements of the group Pn, which is that
two elements of Pn are linear independent if their product is not in Pn. Note
that then any product of the elements are also in the group. For convenience,
we want to use the minimal number of elements that generate the stabilizer
group, which we call generators of the stabilizer group. In other words, the
generators of the stabilizer group are the operators {Sj}sj=1, where Sj ∈ S,
such that they are commuting and linearly independent. Then, there are
k = n− s logical qubits in the stabilizer code, i.e., C is 2k-dimensional.

Example 7.1. Consider the Shor code on nine qubits. Its stabilizer group
is generated by the eight operators, S =< {Sk}8

k=1 >, which can be written
as

S1 = Z1Z2, S2 = Z2Z3, S3 = Z4Z5,

S4 = Z5Z6, S5 = Z7Z8, S6 = Z8Z9, (11)

S7 = X1X2X3X4X5X6, S8 = X4X5X6X7X8X9.

We can easily find other stabilizer operators by multiplying any two generators
of the stabilizer group. For example,

S1S2|ϕ〉 = Z1Z3|ϕ〉
= Z1Z3(α|0̄〉+ β|1̄〉)
= Z1Z3(α|+ ++〉+ β| − −−〉)
= Z1(α| −++〉+ β|+−−〉)
= (α|+ ++〉+ β| − −−〉)
= |ϕ〉,

where |0̄〉, |1̄〉 and |±̄〉 are defined in Eq. (6), Eq. (7) and Eq. (8). Thus,
we have S1S2|ϕ〉 = |ϕ〉, which implies that S1S2 ∈ S.

36

Consider a state in the code space, |ϕ〉 ∈ C, and an operator T that commutes
with all stabilizer operators, i.e., [T, Sk] = 0 ∀ Sk ∈ S. Then, the state T |ϕ〉
is also in the code space because

T |ϕ〉 = TSk|ϕ〉 = SkT |ϕ〉 ⇒ SkT |ϕ〉 = T |ϕ〉 ⇒ T |ϕ〉 ∈ C.

Moreover, the operator T is called logical operator because it maps a state
in the code space, |ϕ〉 ∈ C, to another state in the code space, |ϕ′〉 ∈ C 15.
Note that this is not true in the case that T anticommutes with the stabilizer
operators.

Example 7.2. Consider the Shor code on nine qubits. Its logical operators
are

X̄ = X1 ·X9 =
9∏
j=1

Xj and Z̄ = Z1 · Z9 =
9∏
j=1

Zj, (12)

where [X̄, Z̄] = 2Ȳ . We are interested in the effect of these operators on the
logical qubits, which is

X̄|0̄〉 = |1̄〉 Z̄|0̄〉 = |0̄〉
X̄|1̄〉 = |0̄〉 Z̄|1̄〉 = −|1̄〉

where |0̄〉 and |1̄〉 are defined in Eq. (6) and Eq. (7). Thus, the operators X̄
and Z̄ are the logical Pauli operators X and Z.

Given |ϕ〉 ∈ C, any operator X̄Sk is also a logical operator since it maps
|ϕ〉 ∈ C to |ϕ′〉 ≡ X̄|ϕ〉 ∈ C, which we can easily see as follows

X̄Sk|ϕ〉 = X̄|ϕ〉 = |ϕ′〉 ∈ C.

This means that logical operators are not uniquely defined.

Example 7.3. Consider the Shor code on nine qubits. More logical operators
apart from X̄ and Z̄ (Eq. (12)) would be

X̄S8 = X1X2X3,

X̄S2 = X1Y2Y3X4X5X6X7X8X9,

X̄S82S8 = X1Y2Y3.

15Stabilizer operators are not logical operators because they map a state in the code,
|ϕ〉, to itself, not to another state.

37

It can be shown that the minimal length of all logical operators is the distance
of the code. This make sense because, as we have seen, a logical operator
maps a logical bit to another logical bit, and thus the minimal length of
the logical operator means the minimal number of qubit operations that are
necessary to map two different logical states. This is indeed the definition of
the distance of the code (see Section 1.5).

Consider a general error, E = exX + eyY + ezZ. As we have seen, we can
correct error X, Y , Z individually. If the error is in the group Pn, Eα ∈ Pn,
each error commutes or anticommutes with the stabilizer operators. Then,
if the error commutes, we have

SEα|ψ〉 = EαS|ψ〉 = Eα|ψ〉,

and, if the error anticommutes, we have

SEα|ψ〉 = −EαS|ψ〉 = −Eα|ψ〉.

In other words, given ψ ∈ C, the state Eα|ψ〉 is an eigenvector of the sta-
bilizer operators with eigevalue +1 if [Eα, S] = 0 and −1 if {Eα, S} = 0.
This means that the stabilizer can act as parity measurements to detect the
errors. Note that the stabilizer formalism is a generalisation of the parity
check matrices (see Section 1.3).

Let us remark that in the definition of the stabilizer code we have chosen
the subspace with +1 eigenvalue. Nevertheless, we could take another fixed
reference value (as it is done in the laboratory). For example, in the Shor
code we could have taken S2 = −Z2Z3, and then the logical state would have
been [

1√
2

(|001〉 ± |110〉)
]
|+〉|+〉.

Another way to represent the stabilizer codes consists in splitting the stabi-
lizers operators into two independent parity check matrices such thatHz 0

0 Hx

 (13)

Example 7.4. Consider the Schor code on nine qubits. The parity check

38

matrices are

Hz 0

0 Hx

 =

1 1 0

0 1 1

1 1 0 0
0 1 1

1 1 0

0 1 1

0 1 1 1 1 1 1 0 0 0

0 0 0 1 1 1 1 1 1

General CSS code, which is a method to go from two classical error correction
codes to one quantum code, is another code that can be characterised with
parity check matrices of the form of Eq. (13).

The minimal number of physical qubits that a code must have in order to
be able to correct against single-qubit errors is five physical qubits. For this
optimal code, the stabilizers and the logical operators are

S1 = X1Z2Z3X4I5

S2 = I1X2Z3Z4X5 X̄ = X1 · · ·X5

S3 = X1I2X3Z4Z5 Z̄ = Z1 · · ·Z5

S4 = Z1X2I3Z4X5

(14)

8 Toric code

In this section we use the stabilizer formalism from the last section to explain
the toric code, Ctoric. The toric code was introduced by Alexei Kitaev in 1998
and its relevance relies on the fact that it will probably be the code used on
the first generation of quantum computers.

The name of the toric code comes from the fact that it is defined on a lattice
with periodic boundary conditions, which form a torus. (see Fig. 7).
As we have already mentioned, the toric code is a stabilizer code and its
stabilizers are

AX ≡ Xu ⊗Xd ⊗Xl ⊗Xr,

BZ ≡ Zu ⊗ Zd ⊗ Zl ⊗ Zr,

39

Figure 7: The topology considered for the toric code is a lattice with periodic
boundary conditions, i.e., a torus.

where u, d, l, r stand for “up, down, left and right”, respectively. The opera-
tors AX and BZ are defined on every single cross and plaquette of the lattice
(see Fig. 8). We often call the operators AX and BZ themselves as cross and
plaquette, respectively. Note that the stabilizers of the toric code are local,
in contrast to the stabilizers of the Shor code (Eq. (11)). This property
makes the toric code much more practical.For an L×L lattice, the toric code
has n = 2L2 physical qubits. There are L2 plaquettes and L2 crosses.

Figure 8: All plaquettes and crosses are stabilizers of the toric code. When
a plaquette and a cross overlap, they do it always on two qubits.

We can easily verify that the stabilizers of the toric code commute. The case
[AX , AX′] = 0 and [BZ , BZ′] = 0 are trivial because Z2 = X2 = I. The case
[AX , BZ] = 0 is also trivial if AZ and BZ do not overlap. In the case that
they overlap, the operators AZ and BZ coincide in two qubits, and thus the
phase produced by XZ = −ZX cancels out (see Fig. 8).

The multiplication of two plaquettes can be easily understood via illustra-
tions (see Fig. 9). Consider two plaquettes, BZ1 and BZ2 that overlap on the
right qubit of the first plaquette, which is the left qubit of the second plaque-

40

tte. On this qubit two operators Z are applied, one from the first plaquette
and one from the second. However, recall that Z2 = I, and thus the identity
is actually applied on this qubit. This leads to a plaquette made of six Z op-
erators (see Fig. 9), which is also a stibilizer. Note that the multiplication of
plaquettes will always give open strings. Here we will mainly talk about the
plaquettes operators, but the discussion with crosses can be done analogously.

Figure 9: The multiplication of two plaquettes, BZ and BZ′ , gives a bigger
plaquette, which is also a stibilizer of the toric code.

In the section about stabilizer formalism, we have seen that the stabilizer
generators must be linearly independent. We can easily check that crosses
and plaquettes, AX and BZ , are not linearly independent since∏

all crosses

AX = I and
∏

all plaquettes

BZ = I. (15)

In order to have a set of independent stabilizers of the toric code, we sim-
ply need to remove one plaquette and one cross. Thus, the toric code has
s = 2L2 − 2 independent stabilizers. As we have also explained in the pre-
vious section, the number of encoded qubits (logical qubits) in a stabilizer
code is k = n− s. For the toric code, k = 2 logical qubits.

In order to complete the characterisation of the code space Ctoric, we need to
identify the logical operators. Recall that these operators must commute with
the stabilizers without being stabilizers themselves. The logical operators
can be either product of Z or product of X. We have seen that multiplying
plaquettes gives loops of different sizes, which are also stabilizers, but they
never are open strings. Consider a product of Z along a whole horizontal
string of the lattice, i.e., Z̄1 ≡ Z1⊗· · ·⊗ZL. It commutes with BZ and AX due
to the same reasons that have implied [AX , AX′] = [BZ , BZ′] = [AX , BZ] = 0
(see Fig. 10). Note that this is also true for a product of Z along a whole
vertical string, Z̄2, and for a product of X along a whole horizontal and
vertical string, X̄1 and X̄2 (see Fig. 10). Note further that {Z̄i, X̄i} = 0 and
[Z̄i, X̄j] = 0 for i 6= j and i, j = 1, 2. Defining {|0̄1〉, |1̄1〉} as the eigenvectors

41

of Z̄1, we can easily check that, as expected, the logical operators satisfy

X̄1|0̄1〉 = |1̄1〉, Z̄1|0̄1〉 = |0̄1〉,
X̄1|1̄1〉 = |0̄1〉 ,Z̄1|1̄1〉 = −|1̄1〉.

We find analogous equalities for X̄2 and Z̄2.

Figure 10: Logical operators of the toric code. When the logical operators
Z̄1 and Z̄2 (X̄1 and X̄2) overlap with a cross (plaquette), they do it on two
qubits.

Recall from the section 7 that logical operators do not have a unique rep-
resentation. Indeed, we can obtain a new logical operator multiplying any
operator X̄1, X̄2, Z̄1, Z̄2 by any stablizer operator, i.e., by any plaquette or
cross. In the toric code, this property translate to the fact that Z̄1, which
is a straight line, can be stretched several times and still represent the same
logical operator (see Fig. 11). Note that the same is true for X̄1, X̄2, Z̄1, Z̄2.
Therefore, the logical subspace is the subspace spanned by all strings with
“the same topology”.

The distance of a stabilizer code is the weight of the minimal representation
of logical operators, as we have seen in the previous section. For the toric
code we have dToric = L.

In summary, we can characterise the toric code as a [2L2, 2, L] code. Let us
remark that the toric code has a topologic flavour because its encoded infor-
mation is defined by objects that exists only on the topology of the space,

42

Figure 11: Multiplying a plaquette, BZ , by a logical operator, e.g. Z̄1, gives
new logical operator. Therefore any string around the torus is a logical
operator.

i.e., of the torus.

8.1 Connection to many-body theory (quantum statis-
tical mechanics)

In this section we see the connection between the toric code and the many-
body theory. In order to do that, let us define a Hamiltonian, H, such that

H = −
∑

crosses

AX −
∑

plaquettes

BZ .

Note that this Hamiltonian, H, is made of a sum of local terms on a lattice,
which are typical characteristics of Hamiltonians used in many-body theory.
Since AX and BZ can only have ±1 eigenvalues, the ground states of the
Hamiltonian, H, are the stabilizer states because they all have +1 eigen-
value. In other words, the ground state subspace is CToric and the ground
state energy is −2L2.

This connection is not a property only of the toric code, but of all topolog-
ical stabilizer codes. Topological stabilizer codes can always be defined as
the ground space of a local commuting Hamiltonian. The toric code is the
simplest example. This connects coding theory to many-body physics. In

43

particular, one of the most remarkable links is that error correction in the
code picture corresponds to topological order in the many-body picture.

8.2 Errors on the toric code

Errors on the toric code are detected and corrected using the stabilizer for-
malism. In this section we consider independent and identically distributed
(iid) noise produced by local Pauli matrices X and Z and explain how can
be corrected. As we have seen in section 7, we can identify the X-errors
with the Z stabilizers and the Z-errors with the X stabilizers and treat them
independently. For simplicity, here we do the error analysis only for Z er-
rors. Recall that the outcomes -1 of the stabilizer measurements are called
syndromes.

Consider an X-error on a qubit. In order to detect it, we measure all plaque-
tte stabilizers, and thus we obtain two syndromes on the plaquettes acting
on the corrupted qubit. If we now consider two or more X-errors on the
lattice forming a string, we see that we also get two syndromes and they are
at the ends of the string error (see Fig. 12).

Figure 12: Any string error gives always a pair of syndromes at the ends of
the string.

The relation between the error string and the syndrome is not unique, i.e.,

44

there exist differnt string errors with the same syndrome (see Fig. 13). Ac-
tually, whenever we have two syndromes, they can correspond to any string
connecting them and, when we perform the stabilizer measurements, we have
absolutely no way of knowing the correct string. As we have seen before, the
code space is the ground space of all trivial loops, i.e., all loops that do not
wrap around the torus. Therefore, even if we do not know the “real string”,
we simply need to assume that it is one of the shortest and correct it by
closing the loop. The only problem comes if we choose the correction that
extends the loop to a string around the torus since it creates a logical error
(see Fig. 14). In other words, if apply a recovery map, R, which closes the
string error creating a trivial loop, we recover the initial state as

RE|ψ〉 = |ψ〉.

However, if the recovery map applied, Rwrong, creates an string around the
torus, we will have

RwrongE|ψ〉 = Ological|ψ〉 6= |ψ〉,

where Ological is any logical operator, i.e., Ological ∈ {X̄1, Z̄1, X̄2, Z̄2}.

Figure 13: The correspondence between syndromes and string error is not
unique, i.e., two different string error can give the same syndromes.

The toric code allows to correct bd−1
2
c errors. We can see this as follows.

When we have more than bd−1
2
c errors along a line, which are the worst type

of errors, the natural choice for correction, i.e., the shortest path to close the
loop, gives a straight string. Thus, we get a logical error (see Fig. 15). In
a sense this is completely inefficient because on average we have p · n errors
for iid flip (phase) noise with qubit error rate p<1/2. Asymptotically, n ∼ L

45

Figure 14: The correction operation corresponds on closing the string error
to create a loop. Even if there exist several ways of closing the loop, we apply
the shortest for convenience.

and d ∼ L, thus even if we have asymptotically small p, but constant, we are
always going to have more than bd−1

2
c errors. Then, the decoding task is to

pair all syndromes such that we do not create a logical operator.

Consider the setting with iid noise with a fixed value of p<1/2. The proba-
bility to have n = 0, 1, 2, . . . errors is summarized in the following table

n 0 1 · · ·
probability (1− p)n np(1− p)n−2p2 · · ·

n d/2 d/2− 1 · · ·
probability (· · ·)(1− p)n−d/2pd/2 (· · ·)(1− p)n−d/2−1pd/2+1 · · ·

n n/2

probability ∼ cnt

n

where (· · ·) represent factors that are not relevant in this discussion. Let us
suppose that we have calculated all these probabilities and that we have a
computer that can calculate the minimal distance between two syndromes.
Then, it can be shown that there exists a function that gives the most prob-
able source of error for any given syndrome. Although this is the optimal
decoding process, it inefficient because we have to keep track of a factorial
number of iterations and calculate all the probabilities. Here efficient means

46

Figure 15: 7× 7 lattice. When the string error has more than bd−1
2
c, where

d = L for the toric code, the shortest way to close the loop creates a logical
error.

that the function that assigns a correction operator to each syndrome is a
efficient (i.e., linear or quadratic) function as a function of n; while opti-
mal means that the function never assigns a wrong correction operator. In
practise, we use non optimal, but efficient decoders.

8.2.1 Minimum weight perfect matching

The minimum weight perfect matching (MWPM), which is also called Ed-
monds algorithm, consists in pairing all syndromes. As we have seen, the
most likely source of errors gives syndromes which are close. Therefore, the
natural choice to bring syndromes together is minimising the total distance.
This decoding procedure runs in time n3.

8.2.2 Renormalisation

Consider a system with a certain number of syndromes and label them. The
renormalisation decoder is an iterative processes consists in the following.
For each error, we pair up all syndromes in a ball of radius r = r0 with
center in the error. If there was an even number of syndromes in the ball of
radius r0, there are none left; and, if there was an odd number, there is one
syndrome left. Now we have a system with less syndromes and, in particular,

47

we now that all syndromes are in a distance bigger than r0. We repeat the
pairing using r1>r0. After repeating the pairing enough times, we will end
up either with no syndromes or two syndromes very far apart, which cannot
be corrected. It can be shown, however, that the probability that the latter
situation happens is exponentially suppressed.

8.3 Thresholds

As the distance of the toric code is d = L, one would expect that increasing
the size of the lattice leads to a more robust code. Nevertheless, the number
of errors also increase with L for a idd noise model. This implies that we
have to find a trade off between these two phenomena, which is called the
threshold.

In section 1.6, we have seen that a code C with decoder R have threshold,
pth<1/2, if for p<pth the probability to have a logical error is exponentially
small, i.e.,

Plogical(n, p)<ce
−dξ.

If you have a small physical error, p, the probability that the decoder cre-
ates a logical error is exponentially small. However, if the physical error, p, is
above the threshold, then the decoder will often apply a “wrong correction”,
i.e., it will create a logical error. Only in the first case with small values of
physical error rates, increasing the size of the lattice will imply an exponen-
tial decay of the logical error rate.

Each decoder has a different error rate depending on the algorithm that
it uses. In the case of the toric code, the theoretical optimal threshold is
poptimal

th = 0, 113. For the decoders we have seen before, the thresholds are
pMWPM

th = 0, 11 and prenormalisation
th = 0, 88.

For real error correction, we are interested not just in the error correction
threshold, but also in fault tolerant threshold, which is when measurement
error are also taken into account. The theoretical fault tolerant threshold is
pth, FT ≈ 0, 02. In practise, one has to perform measurements on two qubits,
which requires that all gates are accurate to rates of 0,005 roughly. Once
the fault tolerance threshold is achieved, the rest is making larger and larger
codes, which is mainly an engineer problem.

48

9 Lower bound on the threshold

In this chapter, we show how to estimate the threshold of maximal threshold
of the Toric code by analyzing the decoding problem as a classical statistical
mechanics model: the random bond Ising model. This mapping was first
identified by Dennis et al [?].
Before going into the exact mapping, we will examine why the decoding
problem might be related to (classical) statistical mechanics.

9.1 Entropy and Energy

Consider a CSS code on n qubits. Since the X and Z sectors decouple, we
can restrict our attention to the Z sector where errors are bit flips (X). We
assume that each qubit is flipped with probability p. Then the logical failure
rate is given by

P̄ (p, n) =
∑
E∈F

π(E), (16)

where

π(E) = (1− p)n
(

p

1− p

)ω
.

is the probability that error configuration E occurs, ω the weight of error E,
i.e., |E| = ω, and F is the set of error configurations leading to a failure for
the optimal decoder. Clearly, the difficulty in estimating Eqn. (16) is that
the set F is difficult to characterise exactly.

To make the connection to statistical mechanics more obvious, define an
effectiv temperature

β ≡ log

(
1− p
p

)
>0 for 1>p>0,

and rewrite P̄ (p, n) as

P̄ (p, n) = (1− p)n
n∑

ω=d/2

Nfail(ω)e−βω,

where the sum on failing configurations has been reorganised into errors of
a given weight w. Note that the minimal failing error configuration has
weight d/2, determining the lower index in the sum. Nfail(ω) accounts for
the multiplicity of error configurations with a fixed weight w. Hence we have

49

shifted. The expression can now be reinterpreted as a statistical mechanics
model with

P̄ (p, n) = (1− p)n
n∑

ω=d/2

e−βF (ω),

where F (ω) = ω − Sfail(ω)
β

is a free energy with Sfail(ω) = log(Nfail(ω)) the
entropic contribution. The weight w of the error string can be understood
as an energy.

9.2 Lower bound on the threshold

We now turn our attention back to the Toric code. We will provide an upper
bound on the logical failure probability (and hence a lower bound on the
threshold), by upper bounding the number of error configurations in F .
Given two complementary errors, E and E ′, a loop can be represented by
L = EE ′ (multiplication of Pauli operators). Instead of the optimal decoder,
we consider a decoder that for any specific error E chooses a correction E ′.
Then to each error E we can associate a loop L (note however that this
converse is not true; each loop L is associated with many errors E). We get
the following upper bound:

P̄ (p, n) ≤ (1− p)n
∑
L

|L|∑
u=
|L|
2

n−|L|∑
v=0

(
|L|
u

)(
n− |L|
v

)(
p

1− p

)u+v

. (17)

The upper bound can be understood as follows. The first sum runs over all
possible non-contractible loops L wrapping around the torus. The second
sum, together with the first binomial factor, account for all the ways the
errors can be distributed alone L leading to a failure. Any error E along L
with |E| ≥ |L|/2 will lead to a failing correction. The final sum accounts for
all of the errors that are not on L, and do not lead to a non-trivial correction.
The binomial factor accounts for all of the ways of distribution up to n− |L|
flip errors on the rest of the lattice. Again we will group the first sum into
loops of a fixed length l ≥ d to get

P̄ (p, n) ≤ (1− p)n
n∑
l=d

Ncon(l)
l∑

u=l/2

n−l∑
v=0

(
l

u

)(
n− l
v

)(
p

1− p

)k+v

, (18)

where Ncon(l) counts the number of non-intersecting loops of length l. Recall
that (

b

a

)
=

a!

(a− b)!b!
,

50

and note the following identities

n−l∑
v=0

Cn−l
v

(
p

1− p

)v
= (1− p)l−n ,

l∑
n=l/2

C l
n

(
p

1− p

)n
≤ 2l

(
p

1− p

)l/2
.

Thus, the expression can be upper bounded as

P̄ (p, n) ≤
n∑
l=d

Ncon(l)2lpl/2(1− p)l/2. (19)

This expression over-counts, primarily by associating certain failing error
configurations to many different failing paths. Asymptotically, the number
of non self-intersection paths is given by Ncon(l) ≤ N0c

l, where c ≈ 2.64 is
an expansion coefficient, allowing us to obtain the bound

P̄ ≤
n∑
l=d

N0

(
2c
√
p(1− p)

)l
.

The series will be convergent, wheneer 2c
√
p(1− p) ≤ 1. Hence we can

associate identify a lower bound on the threshold to any value of p satisfying
this bound. The maximal such value gives us our best lower bound on the
threshold: pth ≈ .037.

9.3 Estimating the optimal threshold

In order to compute the actual threshold, we need to resort to a different
statistical mechanics mapping. The probability of an error configuration E
can be written as

P (E) =

[∏
l

(1− p)

][∏
l

(
p

1− p

)nE(l)
]
,

where the products are over all of the edges of the lattice, and the function

nE(l) =

{
0 if there is no error on l
1 if there is an error on l

.

For a fixed E, we now seek to describe the probability distribution of errors
E ′ that have the same boundary as E. We assume that the (optimal) de-
coder chooses the operation that maximises the likelihood of correcting to

51

the original homology class. If each path had the same entropic weight, the
maximum likelyhood would be given by the minimum weight configuration,
which is what the MWPM decoder is based on.
Any correction E ′ can be written as

E ′ = E + C,

where C is a loop (see Figure 16). We assume that the distribution of loops
C is given by the natural distribution of loops on the lattice post-selected on
the loops containing the boundary points of E. The edges l of C are given
with probability (

p

1− p

)nC(l)

,

when {
nC(l) = 1
nE(l) = 0

when l is occupied by E ′.

and with probability (
p

1− p

)nC(l)

,

when {
nc(l) = 1
nE(l) = 1

when l is not occupied by E ′.

Thus, the chain E ′ = E + C occurs with probability

P (E ′|E) ∝
∏
l

eJlul ,

where ul = 1− 2nC(l) ∈ {−1, 1} and

Jl =

p

1−p if l /∈ E

1−p
p

if l ∈ E

Let us remark that the one-chain {l|ul = −1} is a cycle with a cycle condition
that reads ∏

l3s

ul = 1,

where s is a point in the dual lattice (see Fig. 17). There exists also a cycle
condition for the dual lattice, which is∏

l∗∈P ∗
ul∗ = 1.

52

(

Figure 16: A loop C can be represented by two complentary errors, E and
E ′ such that C = EE ′.

It is easy to see that we can write this constraint as uij = σiσj. Thus, the
fluctuation of the error chains E ′ that share a bound with E is described by

Z(J, η) =
∑
{σj}

exp

[
J
∑
<ij>

ηijσiσj

]
,

with

e−2J =
p

1− p
and ηl =

{
1 if l /∈ E∗
−1 if l ∈ E∗ .

Another important observation is that, if E and E ′ are generated by sampling
the same probability distribution, then the values of η′l are chosen randomly
subject to

ηl =

{
1 with probability (1− p)
−1 with probability p

.

The interpretation of this choice is

10 Topological order and QEC

In section 8, we have seen that the toric code has topological features, which
show up in the fact that the logical operators of the Toric code can be rep-
resented as strings wrapping around one direction of the torus (see Fig. 10).

53

Figure 17: A dual lattice (dashed lines) can be defined for the toric code.

This is a very specific property of the toric code. In this section, we want to
go to a more general system and explain how we can chacarterise topological
order in a lattice system.

The systems that we study in this section are called commuting projector
codes, which is defined as follows.

Definition 10.1. Given {Pj, Pk} such that [Pj, Pk] = 0, a commuting pro-
jector code (CPC) is defined as

C = {|ψ〉 such that Pj|ψ〉 = |ψ〉}.

Note that this definition looks like the stabilizer code (see Definition 7.2), but
here Pj are not required to be Pauli matrices. There exist plenty commuting
projector codes that are not stabilizer codes, but it is not easy to write them
down. If all projectors Pj are local, i.e., their support is a ball of finite radius,
the CPC is called local CPC. In this section we deal with local CPCs.

A commuting projector code, C, is the ground subspace of the Hamiltonian

H =
∑
j

Qj, where Qj =
1

2
(I− Pj) .

Note that Qj are also projectors, and thus they satisfy Q2
j = Qj. We can

easily see that C is the subspace of H because the projectors Qj annihilate
the states in C, i.e., Qj|ψ〉 = 0 ∀j and ∀|ψ〉 ∈ C. Moreover, the Hamiltonian,

54

H, is also frustration free16. The projector on the code space, i.e., on the
subspace of H, can be written as

PC =
∏
j

Pj. (20)

10.1 Definition of topological order

Topology is a concept that comes up in different contexts and its definitions
is different depending on the subfield of physics. In quantum information,
there exists three definitions of topological order defined on large lattices.
We explain them in the subsequent sections.

10.1.1 Topological order I: Local indistinguishability

Consider two states of the codespace, |ψ1〉, |ψ2〉 ∈ C, such that 〈ψ1|ψ2〉 = 0.
The topological order known as local indistinguishability says that, for any
local operator O defined on the lattice, it is satisfied that 〈ψ1|O|ψ1〉 =
〈ψ2|O|ψ2〉. In other words, the states in the code space have global proper-
ties, and thus they cannot be distinguished using local operators. We have
already seen local indistinguishability in the toric code with the fact that
their logical operators must be completely non-local.

Let us mention that that local indistinguishability can be also stated as

PCOPC = c(O)PC with c(O) =
tr(PO)

trP
, (21)

where O is a local operator, PC is the projector on the code space C and c(O)
is a constant that depends on the local operator O 17. Note that Eq. (21)
reminds to the error correcting condition (Eq. (3)).

10.1.2 Topological order II: topological entanglement entropy

In order to define topological order as topological entanglement entropy, we
first need some definitions.

Definition 10.2. The entropy of a density matrix, ρ, is given by

S(ρ) ≡ −tr (ρ log ρ) .

16A Hamiltonian, H, is a frustration free Hamiltonian if all its terms annihilate the
ground subspace

17We will show Eq. (21) in the exercise class.

55

Definition 10.3. For a pure state, |ϕ〉, defined on a lattice, the entropy of
a region, A, of the lattice is

Sϕ(A) = −tr (ρA log ρA) ,

where ρA = trB(|ϕ〉〈ϕ|).

Definition 10.4. Given A, B and C disconnected regions of a lattice, Λ,
and a state, |ϕ〉, defined on the lattice, the conditional mutual information is

Iϕ(A : C|B) = Sϕ(AB) + Sϕ(BC)− Sϕ(B)− Sϕ(ABC),

where AB ≡ A ∪B.

After these definitions, we are able to define topological order in the sense of
entanglement entropy. Consider a lattice, Λ, and regions A, B and C such
that B shields A from C and A∪B ∪C = Λ (see Fig. 18a). The system has
topological entanglement entropy if Iρ(A : C|B) = 0 ∀ρ ∈ C. For the case
where the regions are defined as in Figure 18b, the topological entanglement
entropy exists if Iρ(A : C|B) = ctop ∀ρ ∈ C, where ctop is a topological
constant.

Figure 18: Lattice partitions used to define topological entanglement entropy.

10.1.3 Topological order III

The third and last notion of topological order needs the definition of local
unitary.

Definition 10.5. A unitary operator is called local unitary if it can be written
as

U = U1 · · ·Ul,

where l is a constant and each factor Uj is local.

56

Now, we can state the third definition of topological order as follows. Given
a state |ϕ〉, it has topological order if there exists no local unitary circuit, U ,
and no product state |0〉⊗Λ such that ϕ = U |0〉⊗Λ.

All three definitions of topological order can be stated allowing for small
errors. Even in this scenario, it is not known how to connect the different
definitions. Some partial implications have been found, but not more. In this
notes, we mainly use the first definition of topological order, i.e., the local
indistinguishability, because it is related to quantum error correction as we
will see.

10.2 Theorems, lemmas and facts on CPC

Up to here we have used arbitrary Pauli matrices as error model. Now, we
change it and consider the erasure model18. Erasure noise is a process that,
at some discrete interval of time, some qubits are erased. Namely, the noise
channel that erases a single qubit is

Nj(ρ) = trj(ρ)⊗ 1

2
I =

1

4
(ρ+XjρXj + YjρYj + ZjρZj) ,

and the noise channel that erases a region A is

NA(ρ) = trA(ρ)⊗ 1

dA
I, (22)

where dA is the dimension of region A.

There exists an important theorem on the erasure channel, which states the
following.

Theorem 10.1. A quantum error correcting code, C, can protect against d
erasure errors if and only if it can also protect against d

2
arbitrary errors19.

Proof. The idea of the proof is the following. The error correction condition
requires that PCEiEjPC = cPC, where PC is the projector on the code space
(Eq. (20)), while the error detection condition is PCEPC = cPC. The dif-
ference on these conditions comes from the fact that detection only requires
access to a single Kraus operator, but correction involves many of them.

18Even if in this section we only consider erasure errors, the statements that we make
here reduce to general errors.

19Here, an arbitrary error means that we ignore where it has occurred, while we do know
where the erasure errors are.

57

Clearly, if we have d
2

errors and we can take any two-combination of the er-
rors, the E can be represented as having support on a maximum of d sites,
and viceversa.

Once we have defined and established the noise channel, we define the no-
tion of error correction under the assumption of erasure noise, which is the
following.

Definition 10.6. Assume the erasure channel (Eq. (22)) and consider a
code space, C, defined on a lattice, Λ, and a region of the lattice, A ⊂ Λ. An
erasure error is recoverable if there exists a recovery map, R, such that

R(trAρ) = ρ ∀ρ ∈ C and ∀A ⊂ Λ.

Definition 10.7 (Decoupling). Given a lattice, Λ, and three regions, A, B
and C, such that B shields A from C and ABC = Λ (see Fig. 18a), then
there exists decoupling if for any state ρ ∈ C it is fulfilled that

trAρ = ρA ⊗ ρC .

Note that decoupling is a non-trivial property since, in general, regions A
and C are entangled.
In section 1.1, we have mentioned that the ideal situation for error correction
is a code with k(n) = αn and d(n) = βn in such a way that

k

n
= α and

d

n
= β, (23)

where α, β are constants. This kind of codes exist in classical error correc-
tion, but nowadays no quantum code satisfying Eq.(23) is known. Indeed, a
theorem for local commuting projector codes (see Theorem 10.1) states that
the ideal scenario is not possible. In order to see and prove this theorem, we
need some lemmas and facts about local commuting projector codes.

Lemma 10.1. Consider a local commuting projector code and two discon-
nected regions, A and B, i.e., they are separated by a distance bigger than
l∗, where l∗ is the radius of the support of any commuting projector (see Fig.
19)20. Then, it is satisfied that

ρA ⊗ ρB = ρAB ∀ρ ∈ C. (24)

20Note that the required separation in Lemma 10.1 can be stated in other words saying
that there exists no stabilizer operator that acts on both regions A and B.

58

Figure 19: Lemma 10.1 requires two disconnected regions, A and B, that are
separated by a distance bigger than l∗, where l∗ is the radius of the support
of any commuting projector.

Proof. Given a state ρ, the definition of the covariance between regions dis-
connected regions A and B is

Cov(A : B) ≡ sup{ |tr [XA ⊗XB (ρAB − ρA ⊗ ρB)]|
such that ||XA|| = 1, ||XB|| = 1, XA = X†A, XB = X†B},

where for operators it is used the infinite norm, i.e., ||X|| equals to the largest
eigenvalue of X. A very well-known result21 bounds the covariance as

1

min{dA, dB}
||ρAB − ρA ⊗ ρB||1 ≤ Cov(A,B) ≤ ||ρAB − ρA ⊗ ρB||1,

where for states it is used the trace norm, i.e., || · ||1 = tr(·). We will prove
Eq. (24) by showing that the covariance between two regions of a locla CPC
code is zero, and so its bounds.

Consider a state ρ ∈ C such that C is a local CPC and ρ = trR(|ψ〉〈ψ|), where

21The upper bound on the covariance is obvious since we only need to replace the
supremum over tensor operators by the supremum over operators that exist on AB. The
lower bound would requires more work, which will not be done here.

59

R is a purification system. Then, we can write

tr [(XA ⊗XB)ρAB] = 〈ψ|XA ⊗XB|ψ〉
= 〈ψ|PCXA ⊗XBPC|ψ〉
= 〈ψ|PAPACXAXBPBCPB|ψ〉
= 〈ψ|PAP 2

ACXAXBP
2
BCPB|ψ〉

= 〈ψ|PCXAPACPBCXBPC|ψ〉
= 〈ψ|PCXAPXBPC|ψ〉
= 〈ψ|PCXAPCPCXBPC|ψ〉
= 〈ψ|PC|ψ〉c(XA)c(XB)

= c(XA)c(XB)

= tr [XAρA] tr [XBρB]

= tr [XA ⊗XB(ρA ⊗ ρB)],

where we have used that C is a local CPC, and thus we can split PC in
local terms; that for any projector, P , it is satisfied that P 2 = P ; and Eq.
(21) with c(X) = 〈ψ|X|ψ〉. This result implies that the convariance and its
bounds are zero. Therefore, we have obtained that ||ρAB − ρA ⊗ ρB||1 = 0,
which is only possible if Eq. (24) is satisfied.

Lemma 10.2 (Union lemma). Consider a local commuting projector code
and two disconnected regions, A and B, i.e., they are separated by a dis-
tance bigger than l∗, where l∗ is the radius of the support of any commuting
projector (see Fig. 19). If A and B are correctable, then A∪B is correctable.

Proof. This proof will be given in an exercise class.

Lemma 10.3 (Holographic lemma). Consider a local commuting projector
code, C, where l∗ is the radius of the support of any commuting projector.
Given A, B and C regions of C such that B shield A from C (see Fig.
20a) and the width of B is at least l∗, if A and B are correctable, A ∪ B is
correctable.

Proof. As regions A and B are correctable, by definition there exist recovery
maps RA and RB such that

RA [trA(ρ)] = ρ and RB [trB(ρ)] = ρ.

Given these maps, we want to show that there exists the map RAB that
corrects A ∪B, i.e., that satisfies

RAB [trAB(ρ)] = ρ.

60

In order to do this, we define the channel, TA, acting only on C such that
TA(ρC) = ρA ⊗ ρC . We can write

ρ = RB [trB(ρ)] = RB(ρAC) = RB (ρA ⊗ ρC) = RB [TA(ρ)] = RB ◦ TA(ρ),

where we have used that A and C are disconnected by assumption, and thus
ρA⊗ρC = ρAC according to Lemma 10.1. We have obtained the mapRB◦TA,
that acts on AB and recovers the state ρ.

By definition of distance, we are able to correct any error configuration as
long as it has at most d errors. However, it might exist specific error config-
urations that have many more errors and we are still able to correct them.
For example, in the case of the toric code, the critic situation is when er-
rors occur along a string, but, if they are distributed, it is not a problem.
As a follow-up of lemma 10.3, we can wonder about the size of the largest
correctable square. This is answered with the following fact.

Fact 10.1. Given a local commuting projector code, C, with distance d, the
largest correctable square region is d× d.

Proof. The idea of the proof consists in constructing the largest correctable
square. Let us start with a region A such that |A| = d, which implies that A
is correctable by definition of the distance. Now, we add a region B (see Fig.
20b) around A with |B| ≤ d. Lemma 10.3 says that AB is correctable. We
iterate this as many times as possible until we will reach a situation where
|B| saturates to d. Then, we cannot continue increasing B because it will not
be correctable anymore. Therefore, we conclude that squares of side length
proportional to d are the largest correctable squares.

Fact 10.2. Given a local commuting projector code, C, and a correctable
region A, it is satisfied that

Sρ(AA
c) + Sρ(A) = Sρ(A

c) ∀ρ ∈ C. (25)

Proof. Consider a state of the code space, ρAAc ∈ C, and its purification,
ΨAAcR = |ψ〉〈ψ|. We denote the erasure channel as

T [·] ≡ trA(·).

As A is correctable by assumption, there exists a correctable operation, R,
such that R ◦ T (ρAAc) = ρAAc . This can be easily transformed to the same
statement, but for the purification, i.e.,

R ◦ T (ΨAAcR) = ΨAAcR. (26)

61

Figure 20: The largest correctable square region is d × d. In order to prove
it, we apply Lemma 10.3 iteratively until B is no longer correctable, i.e.,
|B| ∼ d.

Recalling that entropy decreases under the action of any map and using Eq.
(26), we get the following two inequalities

S (ΨAAcR||ρAAc ⊗ ρR) ≥ S [T (ΨAAcR)||T (ρAAc ⊗ ρR)] = S (ρAcR||ρAc ⊗ ρR) ,

S (ΨAAcR||ρAAc ⊗ ρR) = S [R(ρAcR)||R(ρAc ⊗ ρR)] ≤ S (ρAcR||ρAc ⊗ ρR) .

Thus,
S (ΨAAcR||ρAAc ⊗ ρR) = S (ρAcR||ρAc ⊗ ρR) .

Introducing the definition of conditional entropy, we can write

−S(AAcR) + S(AAc) + S(R) = −S(AcR) + S(Ac) + S(R).

This implies Eq. (25) since ΨAAcR is a pure state, and thus S(AAcR) = 0
and S(AcR) = S(A).

At this point of the section, we have all ingredients to prove a theorem that
does not allow local commuting projector codes to be ideal, i.e., to satisfy
Eq. (23). The theorem is stated as follows.

Theorem 10.2. For a local commuting projector code [n, k, d] on a two-
dimensional lattice, it is satisfied that

kd2 ≤ αn, (27)

where α is a constant.

Proof. Consider the state ρ ∈ C such that

ρ =
IC

tr(IC)
=

IC
2k
,

62

where k = S(ABC). Consider also the partition of the lattice in Figure 10.2
with regions A and B taken as large as possible. Fact 10.1 says that |A| and
|B| can be at most proportional to d2, and thus R ∼ d. The union lemma
(Lemma 10.2) states that the union of all regions A is correctable as well as
the union of all regions B. Fact 10.2 says that Eq. (25) is fulfilled for regions
A and for regions B individually. Thus, we have

Sρ(ABC) + Sρ(A) = Sρ(BC),

Sρ(ABC) + Sρ(B) = Sρ(AC).

Using the subadditivity of the entropy, these equations can also be written
as

Sρ(ABC) = Sρ(BC)− Sρ(A) ≤ Sρ(B) + Sρ(C)− Sρ(A),

Sρ(ABC) = Sρ(AC)− Sρ(B) ≤ Sρ(A) + Sρ(C)− Sρ(B).

Adding both equations, we get

Sρ(ABC) ≤ Sρ(C) ≤ |C|.

Recall that k = S(ABC) ∝ |C|. Now, we want to relate the |C| with the
size of the lattice. It is easy to see that

|C| ∼
√
n

R

√
n

R
=

n

d2
≥ ck,

where c the constant of proportionality. This implies Eq. (27).

From Theorem 10.1, we conclude that, if we increase the code size, i.e., n,
the ratio kd2

n
is always upper bounded by a constant. In other word, the ideal

scenario cannot happen since kd2 = (cnt)n3 ≥ (cnt)n. Note that the toric
code (see Section 8) saturates the bound of Eq. (27). There exists similar
bounds for three-dimensional codes.

Theorem 10.1 not only give a bound, but also restricts the form of the logical
operators. It might not be straightforward, but logical operators must live
either in regions A or regions B and must go through regions C.

11 Thermal noise (self-correction)

In this section we want to introduce a new type of noise called thermal noise.
A physical system can never be completely isolated, but the system is in con-
tact with an environment. The environment and the system interact in such

63

Figure 21: Partition of the lattice used to prove Theorem 10.1. Regions A
and B are taken as large as possible and radius of C is at least l∗

2
.

a way that the system increases its temperature. The gain of this tempera-
ture is known as thermal noise since it can cause loss of logical information.
In this section, we review a model to describe thermal noise and we relate it
to error correction.

In order to study thermal noise, we consider a scenario made of a system,
S, and an environment, E (see Fig. 22). Initially the system is out of equi-
librium and the environment is at equilibrium at temperature T . At long
times, the system reaches thermal equilibrium at temperature T due to the
interaction with the environment. For simplicity, we make two assumptions.
First, we assume that the interaction between the system and the environ-
ment is local. In addition, we consider the limit of large environment, which
says that the environment keeps no memory of the system for an infinitesimal
amount of time.

As we have seen in previous sections, classical error correction consider a
system composed of bits. The code space is defined as the ground space of a
(classical) Hamiltonian. Since the system is classical, the eigenstates of the
Hamiltonian are the canonical basis states. In other words, for a system of
N spins, any state |σ1, . . . , σN〉, where σj ∈ {0, 1}, is an eigenstate of the
(classical) Hamiltonian, H. We want to describe a dynamical process such
that at long time system converges to a classical probability of distribution

64

Figure 22: The scenario considered to model thermal noise consists of a
system, S, that interacts with an environment, E, which is at equilibrium at
temperature, β = 1

T
.

of the form
p ∼ e−βH ,

where β = 1
T

.22. In order to model the thermal dynamics we use the so-
called Glauber dynamics. The Glauber dynamics can be understood as an
algorithm which works with the following steps:

1. Pick a site at random.

2. Flip the bit at this site.

3. Evaluate the energy difference, i.e., the difference between the energy
of the configuration after and before the flip, ∆E.

4. Keep the flip with probability

pflip =
1

e−2β∆E + 1
.

Theoretically, we consider that these four steps happen in an infinitesimal
time, but, when we simulate the process in the computer, we take a discrete
time. Note that the energy difference produced by a flip is local, i.e., it only
depends on a small region around this site. This locality comes from the

22As an example we can consider the Hamiltonian of the Ising model, which is

H = −J
∑
〈i,j〉

σiσj + h
∑
j

σj ,

where 〈i, j〉 denote a sum over nearest neighbours and J and h are constants.

65

assumption of a local interaction between the system and the environment,
which leads to a local Hamiltonian.

Completely generalising the classical scenario to quantum systems is diffi-
cult. A flip on a classical system implies that the system changes from one
eigenstate to another. Therefore, the thermal dynamics of a classical sys-
tem simply describes a random walk along a graph made of the eigenstates
of the classical Hamiltonian. When we want to extend this dynamics to
quantum systems, we have to deal with the eigenstates of a quantum Hamil-
tonian, which are in general non commuting23. These eigenstates can be
large entangled objects, and thus they are often complicated to write down
and computationally inefficient. There exist ways to overcome these difficul-
ties and, actually, one of the most sophisticated algorithm is based on the
Glauber dynamics. However, this field is still on research.

In the setting of error correction we have mainly seen stabilizers codes. We
have also studied a slightly more general scenario, but restricting ourselves
to commuting projector codes. The purpose of this restriction was to keep
the ability of correcting X errors and Z errors independently. In fact, con-
structing non commuting codes is very demanding and only few ways are
known24. In this section, we also consider the commuting scenario, i.e., we
assume that the quantum Hamiltonian is commuting.

The thermal dynamics of a quantum system can be described using the so-
called Davies master equation. Consider a system described by a Hamiltonian
such that

HSE = HE +HS + εHint, where Hint =
∑
α

Sα ⊗ Eα.

Here, HE, HS and Hint respectively characterise the environment, the system
and the interaction between them; Sα spans the operator algebra of the

23A Hamiltonian is said to be commuting if it can be expressed as a sum of local terms
such that all these terms commute. Mathematically, given a lattice, Λ, and a subset of
the lattice, A, a commuting Hamiltonian can be written as

H =
∑
A⊂Λ

hA,

where hA = 0 for A larger than some ball and [hA, hA′] = 0 ∀A,A′ ⊂ Λ.
24We will see some in further sections.

66

system25; Eα acts on the environment26; and ε is a constant. We consider
the following assumptions on the scenario:

1. The interaction between the system and the environment is weak, i.e.,
ε→ 0 27.

2. The environment is Markovian, i.e., it has no memory about the system.

3. The initial state is uncorralated, i.e., the initial state can be written as
ρS0⊗ρEβ , where the system is in a random state, ρS0 , and the environment

is in any Gibbs state, ρβ = 1
Z
e−βHE .

The unitary evolution of the quantum system, which is initially in ρS0 ⊗ ρEβ ,
is given by

Ut = e−itHSE .

Note that the system, S, and the environment, E, evolve together. If we
trace the environment out, we get a quantum process, T , which only depends
on the system, S, due to the markovian environment. Mathematically, the
quantum process T is

Tt
(
ρS
)

= trE

[
Utρ

S
0 ⊗ ρEβ U

†
t

]
.

Using the strong assumptions 1-3, it can be shown that the quantum process,
T , can also be expressed as

Tt
(
ρS
)

= etL
0(ρS), (28)

with

L0 (ρ) = −i [Hs, ρ] +
∑
ω,α(k)

χα(k)(ω)

[
Sα(k)(ω)ρS†α(k)(ω)− 1

2

{
S†α(k)Sα(k), ρ

}]
,

25For example, if we are dealing with a stabilizer code, the operator Sα can be Sα =
σα1 ⊗ σα2 ⊗ · · · ⊗ σαn , where σαi are Pauli matrices and αi denote the spin on which σαi

acts.
26The operators Eα can be any operator acting on the environment different to the

identity.
27Formally speaking, this assumption restricts ε to be smaller than the smallest eigen-

value difference in the spectrum of the system Hamiltonian. Note that this assumption is
not reasonable for many-body Hamiltonians that are not commuting due to the following.
If the Hamiltonian is a many-body and commuting Hamiltonian, its spectrum has constant
energy differences. Nevertheless, if the many-body Hamiltonian is a non-commuting, it has
2N eigenvalues and they are exponentially close, where N is the number of particles of the
system. This implies that ε must be exponentially small for a many-body non-commuting
Hamiltonian, which makes the assumption unreasonable. If the quantum system is small,
i.e., N is small, the assumption is also valid.

67

where the summation runs over all ω and over all sites k in S, χα(k) are
scalar functions related to the two-point correlations of the environment,
and Sα(k)(ω) are the Fourier coefficients of the time evolved Sα(k) operator,
i.e.,

e−itHSSα(k)e
itHS =

∞∑
ω=−∞

eitωSα(k)(ω).

If the Hamiltonian HS is composed by local commuting terms, then e±itHS

break up as a product of terms. The terms that do not intersect with the
given α(k) commute with Sα(k), and thus cancel out. This implies that each
Sα(k)(ω) is local around α(k). Moreover, the operators Sα(k)(ω) are bounded
because e−itHSSα(k)e

itHS is bounded.

In previous sections we have seen noise models consisting on flipping or eras-
ing bits/qubits with certain probability. Imagine a situation where we can
correct in the lab all flip and erase errors. As laboratories cannot get zero
temperature, and thus experiments happen at a few kelvin, some thermal
noise is always left. Assuming that the thermal noise is well characterised by
Eq. (28), in the rest of this section we try to understand whether error cor-
rection procedures are good against thermal noise. We will see that thermal
noise can be corrected and that, in addition, it has a special property called
self-correction.

11.1 Phenomenology

In a course of statistical (classical) mechanics, one studies statical properties
of the system. A typical problem consists on considering a Gibbs state of a
certain system and asking if the system has a phase transition, i.e., whether
there exists a critical temperature under which there is no trivial magnetisa-
tion. In other words, we consider a system under an external magnetic field
that forces the state to a certain magnetisation. If we take the magnetic field
to zero adiabatically, does the system preserve the magnetisation induced by
the magnetic field or does it converge to an equilibrium state without mag-
netisation? At low temperatures, the system keeps the magnetisation and
we say that the system is in a bistable phase. However, if the system is at
high temperature, the system converges to an equilibrium state that has no
magnetisation. The Ising model explains these physical processes as phase
transitions.

In the Ising model for one dimensional systems, there are no phase transi-
tions, i.e., for any temperature arbitrary close to zero the system does not

68

have any residual magnetisation. In order to understand this lack of phase
transition, let us study the dynamical picture. Consider a system made of
spins in a lattice with a certain configuration. The system is in contact
with an environment at temperature β, which can be arbitrary small. We
use the Metropolis algorithm to describe the dynamics of this scenario. The
Metropolis algorithm consists of the following steps:

1. Pick a site randomly.

2. Flip the bit in this site.

3. If the energy of the new configuration decreases, keep the flip. If the
energy of the new configuration increases, keep the flip with probability

pflip ∼ e−2β∆E. (29)

The energy of the system is proportional to the number of times that a spin
in state zero is next to a spin in state one. Therefore, if the initial config-
uration of the system is all spins at state |0〉, the initial energy is zero (see
Fig. 23). When we flip a bit, the energy increases ∆E = 2J , i.e., one sin-
gle flip costs energy. If the temperature of the environment, T , is arbitrary
small, the probability that the flip remains is exponentially suppressed, but
not zero (Eq. (29)). When a flip happens, i.e., the system has already one
spin in state |1〉, flipping a neighbouring spin does not increase the energy of
the system. In other words, the configuration with only one spin at state |1〉
has the same energy as the configuration with several spins at |1〉 as long as
they are next to each other. These accumulations of states |1〉 are known as
islands or droplets. We can conclude that, in the 1D Ising model, droplets
take energy to create, but not to extend. This explains why there is no phase
transition in the 1D Ising model. If we start with a system that has a well
defined magnetisation, such as all spins at |0〉, the system can flip to a con-
figuration made of all |1〉 in a constant amount of time no matter how low
the temperature of the environment is.

Consider now the 2D Ising model with an initial configuration made of all
spins in |0〉. Figure 24 explains that a single flip costs ∆E = 4J and one
and two neighbouring flips increase the energy of the system to 6J and 8J ,
respectively. When the system has a droplet of three |1〉, it does not cost
any energy to extend the droplet to four spins at |1〉. In other words, the
transformation from a non convex droplet into a convex droplet does not
require energy. However, and in contrast to the 1D Ising model, extending a
droplet does cost energy in the 2D Ising model. In particular, the probability

69

Figure 23: In the 1D Ising model, droplets take energy to create, but not to
extend.

to create a droplet with area B is proportional to e−β|∂B|. This implies that
the probability that the configuration of a system changes from all spins in
|0〉 to all spins in |1〉 is exponentially small. In short, droplets in the 2D Ising
model cost energy to create and also to extend, except when a non-convex
droplet transform to a convex droplet.

At high temperatures the argument we have followed above still holds, i.e.,
creating each flip has still a probability smaller than one. Nevertheless, it
is known that at high temperatures the 2D Ising model has a single grounf
state. This is explained due to the entropy. If the environment is at high
enough temperature, an exponential number of different types of droplets
can be created. In other words, the entropic contribution beats the energy
contribution and takes the system to a single state. Unfortunately, an ana-
lytic treatment of the entropy is very difficult.

Thermodynamics has an interesting property when it is though in terms of
error correction. Magnets were one of the first forms of error correction for
digital computing. We usually do not think about a magnet as error correct-
ing systems because we do not apply any error correction, but, in fact, they
use self-correction. Each magnetic domain is made of many spins pointing
on average in one direction which encode a redundancy of the spin informa-
tion. When the magnets are magnetised, they stay magnetised and this is
exactly what self-correction means. Self-correction is a remarkable property
of thermal noise that creates errors by flipping spins at a certain rate, but its
dynamics also forces the system to keep the initial information. Otherwise
speaking, thermodynamics allow to create droplets, but also prevent droplets
of growing and spreading. This can be viewed as a dual effect of creating
noise and correcting against noise at the same time.

70

Figure 24: Droplets in the 2D Ising model cost energy to create and also to
extend, except when a non-convex droplet transform to a convex droplet.

At low temperature (i.e., temperature below the phase-transition tempera-
ture) the system has two metastable states, ρ0

β and ρ1
β (see Fig. 25). Due to

thermodynamics, jumps from one metastable state to the other are possible.
In order a jump to happen, a droplet has to be created and it has to extend
across the whole system. In particular, the energy barrier that a system has
to overcome to go from one metastable state to the other is ∆E ∼ L, where
L is the size of the lattice. The Arrhenius law says that this flip from ρ0

β to
ρ1
β occurs in a time

τ ∼ eβ∆E ∼ eβL/ξ. (30)

The Arrhenius law works for many different systems, but it is not the proper
behaviour of a phase transition. The proper behaviour is

τ ∼ eβF/ξ,

where F is the free energy.

In the beginning of these notes, we argued the importance of error correction.
We said that it adds an enormous overhead on to the physical necessities of
doing quantum computation. If we had a self-correcting code, then we would

71

Figure 25: In the 2D Ising model at low temperature, there exist two
metastable states, ρ0

β and ρ1
β. Jumps from ρ0

β and ρ1
β (or viceversa) require

to overcome the energy barrier, which is ∆E ∼ L, where L is the size of the
lattice. The two metastable states are populated according a Gibbs distri-
bution.

not need to implement any error correction because the system would do it
for itself. As we have said in previous section, in quantum error correction
the 2D toric code correspond to two copies of the 1D Ising model. The above
discussion about the 1D Ising model has conclude that, even at very low
temperature, creating a string on the toric code can happen with a certain
probability. Then, the string takes no energy to extend, i.e., its extension
happen in constant time. This argument implies that the 2D toric code does
not have the self-correction property. Stated differently, if we do not actively
correct thermal noise when using the 2D toric code, the logical information
is lost in a constant28 amount of time.

We can look for the self-correction property in higher dimensions. Two copies
of the 2D Ising model correspond to the 4D toric code. Figure 26 depicts
the stabilizer operators of the 3D and the 4D toric code. The logical oper-
ators of the 3D toric code are one string and one plane29 which intersect in
a single point (see Fig. 27). The logical operators of the 4D toric code are
two planes that intersect in a single point. The 4D toric code would have the
self-correction property because the 2D Ising model has it, but a 4D error
correcting code is not a realistic approach.

The lack of self-correction in the 2D and 3D toric code is not specific prop-

28According to the system size.
29Either the Z logical operator is a plane and the X a string, or vice versa.

72

Figure 26: Stabilizer operators of the 3D and the 4D toric code. Note that
a cube of Z operators cannot be a stabilizer operator because it does not
commute with the X stabilizer operator.

erty of this code unfortunately. The following theorem proves that for any
commuting projector code on three dimensions self-correction is not possible.
Even more, this theorem has also been shown for some non-commuting codes.

Theorem 11.1 (No-go theorem). Consider a commuting projector code in
D dimensions. If the X logical operator has dimension d1, then the Z logical
operator must have dimension d2 = D − d1. This implies that the energy
barrier is ∆E = min{(c1(d1 − 1), c2(d2 − 1)}, where c1 and c2 are constants.

For three dimensions, D = 3, the no-go theorem shows that there can be
no quantum error correcting code that is self-correcting. When D = 3, the
theorem implies that the Z logical operators are a plane and the X logical
operators are a string (or vice versa) for all codes (see Fig. (27). Stated dif-
ferently, either d1 or d2 is equal to one, and thus the energy barrier is always
constant. This implies that the time at which a flip occurs is never exponen-
tially suppressed, but it is a constant, which makes self-correction impossible.

Finding a self-correcting quantum error correcting code in less than four
dimensions was the major open problem in quantum error correction research
for a long time. In order to get around the no-go theorem, physicists have
tried the following strategies:

1. Interactions between the syndromes
One proposal that uses interactions between the syndromes consists in
embedding a 2D toric code in a 3D liquid. When there is a syndrome,

73

Figure 27: In three dimensions, D = 3, the no-go theorem says that the Z
logical operators are a plane and the X logical operators are a string (or vice
versa) for all codes.

the engineered interactions work such that the viscous force on the
syndromes prevent them from moving away from each other.

2. Fractal logical operators
The fractal logical operators have irrational dimension, which make the
energy barrier growing with the logarithm of the system size. Unfortu-
nately, when the entropic contribution plays a role, the fractal logical
operator fail. The Haah code is an example of a code with fractal
logical operators.

3. Entropic doping

4. Fractal embeddings
We know that a 2D Ising model has a phase transition. This phase
transition remains even if we cut little squares of the lattice. In fact,
the maximal amount of lattice that we can cut corresponds to the
Sierpinski carpet (see Fig. 28), which has a fractal dimension. With two
cut 2D Ising model, we can construct a toric code with dimension 2.9.
The problem of this approach is that, even if the effective dimension
is smaller than three, the code still lives in a 4D space. Then, the 4D
toric code must be embedded to three dimensions, but this embedding
makes either the logical operators non-communting or the stabilizer
operators non-local.

5. Dissipative codes
If errors occur in the system, we only need to extract the entropy
that has been added to the system in order to preserve the purity
of the encoded subspace. Thermal noise does exactly this process.
Interestingly, a dissipative code exists in 2D and it is realated to the
phase transition in the cellular automaton in 1D.

74

6. Non-commuting codes
At the moment, there exists no non-commuting code that works. In
fact, analysis of non-commuting codes is very hard because the mathe-
matical model of the thermal noise requires a commuting Hamiltonian.

The majority of these attempts either failed or still have not been proven
to work. Some approaches theoretically succeed, but they were experimen-
tally not practical. Nowadays, it is believed that self-correction for quantum
computation is not going to be a useful option.

Figure 28: Sierpinski carpet. Picture taken from the website
http://mathworld.wolfram.com/SierpinskiCarpet.html.

12 Surface codes

In previous sections we have seen two quantum error correcting codes: the
Shor code and the toric code. Although both codes are stabilizer codes, they
have a very different nature. The toric code is defined on a surface, while the
Shor code does not consider any topology. In this section we first want to
consider planar codes, which are codes defined on a surface with non-periodic
boundary conditions, and compare them with the toric code, which have pe-
riodic boundary conditions. Then, we study another surface code known as
the colour code.

12.1 Planar codes

The toric code is a specific instance of a class of codes called surface codes.
In particular, the toric code is defined in any surface with periodic boundary
conditions. Implementing periodic boundary conditions on a many body ob-
ject in a lab can become very messy. Experimental physicists overcome this
problem by using a planar code. A planar code is a stabilizer code imple-
mented on a planar surface with non-periodic boundary conditions (see Fig.
29). For simplicity, we consider a quadrilateral surface.

75

Figure 29: Planar codes are stabilizer codes implemented on a planar surface
with non-periodic boundary conditions. a) The X (pink) and Z (blue) sta-
bilizer operators in the bulk are plaquettes with a diamond form, whereas,
at the edges, the stabilizers have a triangular form. Note that all stabilizers
commute because they overlap at an even number of qubits. b) The X and Z
logical operators of the planar code are strings of X and Z operators. Note
that the logical operators can be deformed. Note further that not all trian-
gular operators commute with the logical operators, and thus this triangular
operators cannot be part of the stabilizer group.

The X and Z stabilizer operators in the bulk are plaquettes with a diamond
form, whereas, at the edges, the stabilizers have a triangular form. We can
easily note that all stabilizers commute because, when different type of sta-
bilizers meet, they always overlap on two qubits. Recall that, in the toric
code, the product of all X stabilizers and Z stabilizers (independently) is
equal to the identity (Eq. 15). The non-periodic boundary conditions of the
planar codes, however, break this property in such a way that the product
of all X (Z) stabilizers leave a line of X (Z) on the top and bottom (right
and left) boundaries (see Fig. 30). Therefore, we cannot use this property
to compute the number of logical qubits of the planar code as we did for the
toric code. We will do it with the logical operators.

The X and Z logical operators of the planar code are strings of X and Z
operators, respectively (see Fig. 29). The obvious main difference between
planar codes and the toric code are the boundary conditions. In the case of
the toric code the logical operators had to wrap around itself, whereas on
the case of the planar code the string only needs to be attached somewhere
on the boundary. Logical operators can be deformed as shown in of Fig.
29. This deformation corresponds to a product of a straight string with a
stabilizer, which gives a new logical operator.

76

Figure 30: The product of all X (Z) stabilizers leave a line of X (Z) on the
top and bottom (right and left) boundaries.

If we consider a logical operator made of a string of X operators, there is
at least one Z stabilizer at the boundary that does not commute with the
string of X. Thus, this stabilizer operator cannot be part of the stabilizer
group (see Fig. 29). This gives us an intuition of the fact that quadrilateral
planar codes only encode one logical qubit30. The number of logical qubits
increases if we consider a surface code defined on a surface with more sides.
For example, a planar code on an octagon encodes three logical qubits, which
correspond to eight edges divided into two types of logical operators minus
one logical qubit that is redundant (see Fig. 31).

Figure 31: A planar code on an octagon encodes three logical qubits, which
correspond to eight edges divided into two types of logical operators minus
one logical qubit that is redundant.

We have described the surface codes in a square lattice, but they can be

30Here we do not want to go over the rigorous proof, but only give a feeling of its idea.

77

implemented on any lattice. Consider any lattice with one qubit placed in
each edge. At every face we define a Z stabilizer in a form of a plaquette
of Z operators and, at each vertex, we define a X stabilizer as a cross of
X operators (see Fig. 32). In the next subsection we study a surface code
which is not defined in a square lattice.

Figure 32: Surface codes can be implemented on any lattice. Qubits are
placed on the edges, Z stabilizers (blue) are defined on faces and X stabilizers
(pink) are defined on crosses.

12.2 Colour codes (2D)

Colour codes are codes implemented on a trivalent lattice (i.e., all vertices are
connected to three edges) with 3-colourable faces (i.e., faces can be coloured
in three different colour such that no two faces that share a boundary have the
same colour). Edges can also be coloured and, typically, 3-coloured graphs
are coloured in red (r), green (g) and blue (b). There is a qubit on each
vertex of the lattice. For simplicity we assume periodic boundary conditions
and the honeycomb lattice, which is the simplest example of a trivalent 3-
colourable lattice (see Fig. 33).

The stabilizer operators of the colour codes act on qubits living on the same
face. In particular, for every single face we define a X and a Z stabilizer
operator as

Xfc =
∏
j∈F

Xj and Zfc =
∏
j∈F

Zj,

where F is a face and c ∈ {r, g, b} denotes the colour of the face. Any two
faces of the lattice meet at two vertices, and thus all stabilizers commute.
Indeed, the set {Xfc , Zfc ∀fc ∀c} form an over-complete set of stabilizers.

78

Figure 33: Colour codes are codes implemented on a trivalent lattice with
3-colourable faces. Qubits are placed on the vertices of the lattice and stabi-
lizers operators are defined on each face. Logical operators are vertical and
horizontal strings.

The product of all stabilizers defined on faces of the same colour satisfies∏
fr

Xf =
∏
fg

Xf =
∏
fb

Xf =
∏

full lattice

Xf , (31)

∏
fr

Zf =
∏
fg

Zf =
∏
fb

Zf =
∏

full lattice

Zf . (32)

The equations (31) and (32) imply that a colour code on a torus encodes four
logical qubits.

In order to completely describe the colour code, we need to construct its
logical operators. Let us consider a string across the lattice. We can break
the string up on sections of different colours and define operators on each
section such that

Xc
γ =

∏
j∈Vc

Xj Zc
γ =

∏
j∈Vc

Zj,

where γ is a string and c ∈ {r, g, b} denotes the colour of the section. The
reason for this breaking is that every Xc

γ is an independent formulation of

79

the same string. In other words, since each Xc
γ of any c fully specifies the

string, we only need to specify the operators of a single colour. We can easily
see that each Xc

γ and each Zc
γ commute with all stabilizers. For any string,

it is satisfied that

Xr
γX

g
γX

b
γ = I and Zr

γZ
g
γZ

b
γ = I. (33)

This means that there are only two colours independent and the third is
dependent. Therefore, the set of independent logical operators of the colour
code is {Xc

γ, X
c′
γ , Z

c
γ, Z

c′
γ }, where c 6= c′. If we take a string in the vertical

direction, even if it overlaps in several faces with the horizontal string, they
overlap in an even number of qubits, and thus X and Z logical operators
commute.

Logical operators of the colour code not only can be deformed as in the toric
code, but they can also have bifurcations. As usual, a deformation of a logical
operator is done by multiplying a string with a stabilizer. The bifurcations
appear due to the colours and the property of Eq. (33). Consider a green
logical operator. If we multiply the green logical operator with a blue logical
operator, we get a red logical operator because the logical operators satisfy
Eq. (33). Consider now the same green logical operator, but we multiply it
with a red stabilizer. As the stabilizer formalism says, we get a new logical
operator and it consists on a green string with a bifurcation (see Fig. 34).
The bifurcations must close, i.e., the branches must get together again at
some vertex.

13 Fault tolerance

In all previous sections we have addressed error correction from the point of
view of errors that occur when storing information. Nevertheless, the appli-
cation of gates on qubits are also a source of errors. A good error correction
protocol must answer how to keep the logical information as well as as well as
how to perform gates in an efficient way. Fault tolerance is the field of error
correction that deals with performing gates. In classical computing, fault
tolerance is only an academic exercise because the elements of a computer
can perform gates with errors of the order of 10−18. In contrast, fault toler-
ance is a crucial field in quantum error correction as we will see in this section.

A quantum algorithm consists on three steps:

1. State preparation of an initial state, |ψ0〉. For simplicity, the initial

80

Figure 34: a) A blue logical operator multiplied by a green logical operator
gives a red logical operator due to Eq. (33). b) Logical operators of the
colour code can have bifurcations, but they must close.

state is often considered the product state |ψ0〉 = |0〉⊗N , where N is
the number of qubits of the system.

2. State evolution, which is called quantum circuit and denoted by a uni-
tary U .

3. Measurement.

Figure 35 shows a typical scheme to describe a quantum algorithm.

Figure 35: Scheme of a quantum algorithm, where |ψ0〉 is the initial state
and U the quantum circuit.

For any N -qubit state, |ψ〉, there exists a unitary, U , such that

|ψ〉 = U |ψ0〉,

81

where U is a 2N × 2N matrix that can involve any type of correlations31.
In the following we want to see that we can perform any unitary, U , from
a finite set of two-qubit unitaries. Therefore, as long as we have access to
this finite set of unitaries, we are able to perform any unitary operation on
any system (up to some precision). For that, we consider the following three
steps:

1. Step 1
A N qubit unitary can always be decomposed in, at most, O(2N) two-
qubit unitary operators (see Fig. 36). Note that this a week statement
because we need access to arbitrary two-qubit unitaries. Moreover, a
quantum circuit made of an exponential number of gates is not efficient,
and thus we are interested on quantum circuits which have a polynomial
number of gates.

2. Step 2
Any two-qubit unitary, U , can be written as two single-qubit unitaries,
V and W , and a CNOT gate32 (see Fig. 37). This step is more effi-
cient than the first one since it goes from completely general two-qubit
unitaries to only single-qubit unitaries and a CNOT, but still the single-
qubit unitaries are arbitrary.

3. Step 3
Any single-qubit unitary can be approximated by a product of gates in
{X,Z,H, T}, where H and T are the Hadamard gate and the π

8
-gate,

respectively. Mathematically, we write

H =
1√
2

(
1 1
1 −1

)
and T =

(
1 0
0 eiπ/4

)
.

In concrete, the theorem states the following.

Theorem 13.1 (Solvay-Kitaev). We need a O[log(1/ε)] number of
gates from {X,Z,H, T} to approximate an arbitrary two-qubit unitary

31In experiments, unitaries are typically restricted to, at most, three body interactions.
32Recall that a CNOT gate is a two-qubit gate that flips the second qubit (the target

qubit) if and only if the first qubit (the control qubit) is in |1〉. Mathematically,

CNOT (1, 2) = |0〉1〈0| ⊗ I2 + |1〉11⊗X2 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

where qubit 1 is the control qubit and qubit 2 is the target qubit.

82

with precision ε33.

Putting all three steps together, we have seen that an arbitrary unitary
operator, U , can be approximated by O[(2N) log(1/ε)] number of gates in
G ≡ {X,Z,H, T, CNOT}, which are one- and two-qubit gates. Indeed, the
set G ≡ {X,Z,H, T, CNOT} is a universal set of gates.

Figure 36: A N qubit unitary can always be decomposed in, at most, O(2N)
two-qubit unitary operators.

Figure 37: Any two-qubit unitary, U , can be written as two single-qubit
unitaries, V and W , and a CNOT gate.

13.1 Transversal gates

We have been able to decompose this computation as a product of CNOTs
and single-qubit gates. We do this in such a way that the answer that we
get out is always encoded in the last qubit. Then, to get the answer we only
need to measure the last qubit. Now, we wonder what happens if there are
errors in the quantum circuit. We can easily convince ourselves that an odd
number of errors, and thus, in particular, a single error, would give a wrong
answer. Stated differently, any computation is going to fail in a constant
amount of time34 if we do not perform error correction. Fault tolerance (FT)

33Precision ε means that
||U − Ũ || ≤ ε,

where U is a two-qubit unitary and Ũ is its approximation consisting on only unitaries in
{X,Z,H, T}.

34A failure in a constant amount of time cannot be avoided adding more qubits to the
system.

83

is a method of performing gates in the encoded space without decoding at
every step of the quantum circuit. In other words, FT performs gates on
the encoded qubits instead of the physical qubits (see Fig. 38). This is not
a trivial change because of the following idea. Consider an input qubit on
which we perform some gate. If a physical qubits of this implementation
have an error, the act of performing gates will create more errors. Therefore,
an implementation of a gate can take the system from a state with a toler-
able number of errors to a state with too many errors for a quantum error
correcting code. Otherwise speaking, since errors get multiplied by gates,
logical errors can be created. The goal of fault tolerance is to design gates
that do not multiply errors.

Figure 38: Fault tolerance (FT) is a method of performing gates on encoded
qubits (orange lines) instead of the physical qubits (black lines).

The theorem below establishes a threshold for a computation to be performed
in terms of the probability of creating a logical error.

Theorem 13.2 (Threshold theorem). [1] Consider q the probability of cre-
ating one or more logical errors with any fault tolerant gate in {X,Z,H, T}.
There exists pth such that p ≤ pth arbitrary long computation can be per-
formed.

Let us remark that the nature of theorem 13.2 is atypical for threshold theo-
rems on quantum error correcting codes. Usually thresholds for QEC codes
are derived by adding more physical qubits to make the computation error
better. In the case of theorem 13.2, however, adding more gates does not
work.

Transversal gates are a way of performing FT gates for CSS codes. In order
to explain them, let us state the proper definition of transversal gates and
CSS codes.

Definition 13.1. A transversal gate, U , is a gate such that

UT =
⊗
α

Vα,

84

where all Vα act on individual physical qubits.

Definition 13.2. A CSS code is a stabilizer code that satisfies two conditions:

1. X stabilizers and Z stabilizers consists only on X operators and Z
operators, respectively.

2. There exists a X logical operator and a Z logical operator that are
product of only X operators and Z operators, respectively.

The logical Hadamard gate, the logical X gate, the logical Z gate and the log-
ical CNOT consist on a product of physical Hadamard gates, X operations,
Z operations and CNOT gates, respectively (see Fig. 39). Mathematically,
we write

HL =
⊗
α

Hα, XL =
⊗
α

Xα, ZL =
⊗
α

Zα,

CNOTL(α, β) =
⊗
αi

CNOT (αi, βi).

This is not true for the logical T gate.

Figure 39: The logical Hadamard gate (above) and the logical CNOT (below)
are transversal gates, i.e., they consist on a product of physical Hadamard
gates and CNOT gates, respectively. The logical X gate and the logical Z
gate are also transversal and their scheme is analogous to the scheme of the
logical Hadamard gate.

Transversal operators are convenient for two reasons. First, transversal op-
erations are naturally fault tolerant because they act only on single qubits,

85

and thus they do not propagate errors to other physical qubits. Otherwise
speaking, if there are errors on the system, transversal operations keep them
localised. The second reason is that transversal operations can be performed
in parallel.
The Hadamard gate maps the X to a Z, and viceversa, i.e.,

HZH = X and HXH = Z (34)

Therefore, the Hadamard gate on the toric codes maps a Z stabilizer to an
X stabilizer and a Z logical operator to an X logical operator, and viceversa.
The toric code is then defined on the dual lattice since X stabilizers act on
crosses and Z stabilizers on squares (see Fig. 40). This map between the
primal and the dual lattice due to the Hadamard gate only makes sense for
a selfdual codes. A selfdual code is a code that can be defined identically in
the primal and the dual lattice35.

Figure 40: The Hadamard gate on a toric code maps a Z stabilizer to an X
stabilizer and a Z logical operator to an X logical operator, and viceversa.
The toric code is then defined on the dual lattice.

We have seen that the set of gates G = {X,Z,H, T,CNOT} is a universal
gate set. For selfdual codes, the Hadamard gate is a transversal gate and,
as we have mentioned before, for CSS codes, CNOT is always a transversal
because it never maps between two different Pauli operators. The X and Z
gates are transversal by construction. Therfore, all gates in G except for the
T gate are transversal. However, the square of the T gate, which is known as
the phase gate, is transversal. The phase gate is denoted by S and written

35Obviously, a quantum error correcting codes is not selfdual in general. For example,
the five-qubit code, which we have seen in Section 7 and its stabilizers and logical operators
are in Eq. (14)), is not selfdual.

86

Figure 41: Truncated square lattice. Image taken from
https://zh.wikipedia.org.

in matrix notation as

S = T 2 =

(
1 0
0 i

)
.

The effect of the phase gate on single Pauli matrices is

SZS† =

(
1 0
0 i

)(
1 0
0 −1

)(
1 0
0 −i

)
=

(
1 0
0 −1

)
= Z, (35)

SXS† =

(
1 0
0 i

)(
1 0
0 −1

)(
0 1
1 0

)
=

(
0 −i
i 0

)
= Y = iXZ (36)

Now, we can see how the phase gate transforms logical operators, ZL and
XL, which are strings of Z and X operators. The mapping established by
the phase gate is ∏

j

SjZL
∏
j

S†j = ZL,

∏
j

SjXL

∏
j

S†j = (i)LXLZL,

where L is the length of the logical operators. We clearly see that in order
to get the right action on the logical operators with a transversal phase gate,
the length, L, of the logical operations is very important. In particular, the
length must be 1 modulus 4. Toric code logical operators have even length,
and thus a transversal S gate is not possible on the toric code in general.
Some colour codes36 can implement the phase gate, such as the colour code
defined on a truncated square lattice (see Fig. 41) because the number of
faces are a multiple of four.

In the next subsection we study a strategy to perform CNOT without using
transversal gates. Later on, we also see methods to implement T gates and
S.

36not the colour code on a honeycomb lattice

87

13.2 Braiding

For topological codes, operations on single qubits can be performed transver-
sally in an easy way, but a two-qubit transversal gate is not useful. To imple-
ment more than one-qubit transversal gates on topological codes, for example
to implement a CNOT, we need to connect two lattices, which is not very
practical. Fortunately, there exist other ways to implement a CNOT. In the
following, we want to explain how to perform a CNOT gate using a strategy
called braiding. For that, we first need to introduce holes in the lattice.

Consider a large toric code lattice37. On the lattice in Figure 42, we represent
the Z and X stabilizers by light blue and light pink diamonds, respectively,
and the Z and X logical operators by blue and pink strings, respectively.
Now, we remove a Z stabilizer, and thus the lattice has a hole (green in Fig.
42). Recall that logical operators can freely propagate on the lattice by mul-
tiplying them by stabilizers. The removal of a stabilizer, however, implies
that the logical operators cannot propagate across the hole any more. In
addition, the existence of a hole creates a new logical element, i.e., a non-
contractable loop that commutes with all elements in the stabilizer group.
Consider a product of Z operators around the hole. Usually this element
can be contracted, but the removal of the stabilizer makes it not possible
any more. In other words, the hole creates a new logical element. As the
number of encoded qubits is the number of logical operators, the creation of
a new logical element implies that we have a new encoded qubit (see below).
Analogously, we can create X holes.

Encoded qubits created by holes are referred as X-cuts and Z-cuts and they
are defined as follows.

Definition 13.3. We define the Z-cut qubit as the encoded qubit formed by
removing two Z stabilizers. Its logical operators are XL, which is a product
of X operators from a boundary of one Z-hole to the other Z-hole, and ZL,
which is product of Z operators surrounding the Z-hole (see Fig. 43)38.

Definition 13.4. We define the X-cut qubit as the encoded qubit formed by
removing two X stabilizers. Its logical operators are ZL, which is a product
of Z operators from a boundary of one X-hole to the other X-hole, and XL,
which is product of X operators surrounding the X-hole (see Fig. 43).

37As we have discussed in the previous section, the code considered in labs is the planar
code because of the open boundary conditions. For the academic purpose of these notes,
considering the toric code is enough.

38Note that each hole creates a new encoded qubit. For simplicity, here we only consider
one of them.

88

Figure 42: a) The removal of a Z stabilizer creates a Z-hole on the code. It
blocks string logical operators to move across the hole, but it creates a new
encoded qubit. b) Holes can be extended multiplying the logical operator
consisting of a loop around the hole by a neighbouring Z stabilizer and then
removing this stabilizer.

The definition of X- and Z-cut qubits is a way of initialising states. Now,
given a combination of |0〉 and |1〉, we only need to perform X on the differ-
ent lines connecting holes.

Figure 43: Z-cut (right) and X-cut (left) are encoded qubits created by the
existence of holes in the lattice.

In the section about stabilizer formalism (Section 7), we have seen that dis-
tance of a code is the length of the shorter logical operator39. Note that holes
can be easily extended. If we multiply the logical operator consisting of a
loop around the hole by a neighbouring Z stabilizer and then remove this
stabilizer, we get an larger hole with a larger logical operator (see Fig. 42b).
Since the quality of the code is determined by the distance, in general we
would prefer holes to be large and far away from each other.

39Recall that, in the stabilizer formalism, the length of a logical operator, which is a
product of X or Z operators, is measured by the number of operators that it consists of.

89

An important operation involving cut qubits is called braiding. A topological
braid transformation consists on moving one hole of a cut qubit between the
two holes of a second cut qubit (see Fig. 44). Note that braiding does not
decrease the distance of the code. We want to show that braiding an X-cut
qubit with a Z-cut qubit performs a CNOT gate. For that, we first need to
explain how braiding is implemented, i.e., how we move holes.

Figure 44: A topological braid transformation consists on moving one hole
of a cut qubit between the two holes of a second cut qubit.

A hole can be moved around the lattice by multiplying logical operators
with stabilizers and removing and adding stabilizers. In particular, consider
a Z-cut qubit with logical operators X

(a)
L = X1X2X3 and Z

(a)
L = Z3Z4Z5Z6

(see Fig. 45). We want to vertically move the bottom hole one cell down.

For that, we multiply Z
(a)
L by the Z stabilizer below, Z6Z7Z8Z9, and get

a new logical operator Z
(b)
L = Z3Z4Z5Z7Z8Z9. We remove the stabilizer

Z6Z7Z8Z9 and apply an X operator on qubit 6, which resets the Pauli basis.
Then, we extend X

(a)
L by multiplying it by X6 and get X

(c)
L = X1X2X3X6.

We turn on the stabilizer Z3Z4Z5Z6 and define a new logical operator as
Z

(c)
L = Z3Z4Z5Z6Z

(b)
L = Z6Z7Z8Z9.

In order to see that braiding performs the CNOT gate, we will look at the
effect of the CNOT on the following operators:

a) CNOT(I⊗XL)CNOT = I⊗XL

b) CNOT(XL ⊗ I)CNOT = XL ⊗XL

c) CNOT(I⊗ ZL)CNOT = ZL ⊗ ZL

90

Figure 45: a) We want to move one cell down the bottom hole of the Z-

cut qubit with logical operators X
(a)
L = X1X2X3 and Z

(a)
L = Z3Z4Z5Z6. b)

First, we multiply Z
(a)
L by the Z stabilizer below, Z6Z7Z8Z9, and get a new

logical operator Z
(b)
L = Z3Z4Z5Z7Z8Z9. We remove the stabilizer Z6Z7Z8Z9.

c) Then, we apply an X operator on qubit 6, which resets the Pauli basis.

We extend X
(a)
L by multiplying it by X6 and get X

(c)
L = X1X2X3X6. We

finally turn on the stabilizer Z3Z4Z5Z6 and define a new logical operator as
Z

(c)
L = Z3Z4Z5Z6Z

(b)
L = Z6Z7Z8Z9.

91

d) CNOT(ZL ⊗ I)CNOT = ZL ⊗ I

Taking linear combinations of these four elements, we can create any two-
qubit logical operations involving Pauli matrices. We want to check these
four equalities directly with the braiding of an X-cut with a Z-cut. If the
equalities are fulfilled, then it guaranties that the braiding performs a CNOT
gate. Figure 46 shows pictorically that braiding an X-hole with a Z-hole en-
codes the CNOT gate on the logical information. This method of performing
a CNOT is fault tolerant because it does not propagate errors. Let us remark
that neither with braiding operations nor with transversal gate we can per-
form a T gate on a toric code. As we will see later on, we need measurement
Z-feedbacks.

13.3 Clifford operations

In this section, we want to define study Clifford operations, which are oper-
ations map Pauli operations to Pauli operations. One important property is
that they can be simulated efficiently, and thus, we need to go beyond them
in order to make quantum computation powerful.

The definition of the Clifford group is the following.

Definition 13.5. The Clifford group,W1, consists of all operations that map
Pauli matrices to Pauli matrices via conjugation without considering possible
added phases. Mathematically, we write

W ≡ {W such that WPW ∈ P∗ ∀ P ∈ P∗},

where P∗ ≡ P\{±I} ≡ {±I,±X,±Y,±Z}.

Analogously to the Clifford group, we can define the n-qubit Clifford group,
Wn, based on P∗n = Pn\Pn, where Pn is the n-qubit Pauli group defined in
Eq. (10). The Hadamard gate, the phase gate, the CNOT gate are gener-
ators of the n-qubit Clifford group, i.e., Wn = 〈{H,S,CNOT}〉. Note that
the generators of the Clifford group can be performed transversally.

Consider single-qubit case, where the Clifford group is generated by the
Hadamard and the phase gate, W1 = 〈{H,S}〉. Recalling Eq. (34), (35) and
(36), single-qubit Clifford gates can be thought as rotations on the Bloch
sphere around the different axes. In particular, when we apply H or S to
a qubit represented on one concrete point of the Bloch sphere, we rotate
the qubit to the mirror point on the Bloch sphere with respect to the cor-
responding axis. Since we can only rotate to the mirror points, all possible

92

Figure 46: Braiding an X-cut qubit with a Z-cut qubit performs a CNOT
gate. In a), note that a Z-hole always meet an X line at two points, and
thus they commute. The same occurs for the case of X-holes and Z-lines. In
b), the cycle would be trivial if there was no hole. Since there is an X-hole,
the cycle cannot be completely contracted, but only shrunk on to the border
of the X-hole.

93

combinations of the Hadamard and the phase gates give access to a finite
number of rotations. At the beginning of the section, however, we have ar-
gued that with a finite number of gates we are able to perform any unitary
operation with a certain precision. Thus, we need another element tp achieve
this; the T gate.

In the exercise class we have seen that the T gate and the product HTH are
rotations of π

8
around the ẑ axis and the x̂ axis, respectively (see Fig. 47).

Mathematically, we write

T ∝ ei
π
8
Z and HTH ∝ ei

π
8
X . (37)

One can also show that THTH is a rotation by an angle θ = 2 arccos
(
cos2 π

8

)
around the axis

n̂ =
2√

6 +
√

2
(cos π

8
, sin π

8
, cos π

8
).

The crucial property of this rotation is that the angle θ is an irrational number
multiple of π. To see this, consider a rational rotation multiple of π, i.e., a
rotation of an angle

θ =
p

q
2π,

where p and q are integer numbers. If we perform q times this rational
rotation, we are back to the starting point. Therefore, whenever the rotation
that we are able to perform is rational, we have access only to a discrete
number of points. Conversely, there exists a theorem that states that, given
a starting point, the iteration of an irrational rotation covers the unit circle.
This process is efficient, i.e., given a point on the Bloch sphere, we can
always reach it with a finite number of rotations which is proportional to the
precision by which we want to reach this point. In particular, if we iterate
the operator THTH a sufficient number of times on the Bloch sphere, we
can reach any point on the circle that is spanned by the rotations in Eq. (37)
(see Fig. 47). The operator HTHT is also an irrational rotation, but around
an axis orthogonal to n̂. Using THTH and HTHT we can apply rotation
as the following theorem states.

Theorem 13.3. Given two orthogonal unit vectors, n̂ and m̂, any rotation,
R, can be written as

R = Rn̂(α)Rm̂(β)Rn̂(γ),

where α, β, γ ∈ [0, 2π).

In summary, as long as we have access to Hadamard gate and T gate, we are
able to perform any rotation on the Bloch sphere. A direct consequence of

94

Figure 47: The T gate and the product HTH are rotations of π
8

around the
ẑ axis (green rotationi) and the x̂ axis (orange rotation), respectively. If we
iterate the operator THTH a sufficient number of times, we can reach any
point on the blue circle, which is the unit circle spanned by the rotations
made by T and HTH.

this theorem is that any rotation can be decomposed as a product of H and
T gates. Recall, however, that the T gate cannot be perform transversally,
and thus we still need a strategy to perform it. Note that irrational rotation
have been the key element to to go from a continuous set of single-qubit gates
to a finite set.

Whether quantum computers will be able to overcome classical computers
is not yet clear. Even more, the origin of the possible improvements that
quantum computations can achieve it is unknown. In 1998, Gottesmann
published the theorem below, which clearly states that this supposed power
does not come from Clifford gates.

Theorem 13.4 (Gottesmann-Knill). Any computation based on Clifford op-
erations (i.e., combinations of {H,S,X,Z,CNOT}), state preparation in any
Pauli basis and measurements in any Pauli basis can be efficiently simulated
on a classical computer.

This theorem means that, if we have a long unitary circuit that only involves
Clifford gates, UClifford, there exists a classical program which is able to per-
form the same task as UClifford. Moreover, the number of classical gates that
the classical program need is only a polynomial times the number of quantum
gates that form UClifford. An immediate consequence of the Gottesmann-Knill
theorem is that we need to find a way to perform the T gate, which is a non-

95

Clifford gate, in order quantum computation to be useful.

If Gottesmann and Knill showed that Clifford gates are not enough to over-
come classical computation, Eastin and Knill proved that we also need to go
beyond transversal operations. Their theorem states the following.

Theorem 13.5 (Eastin-Knill). For any local stabilizer code, where local
means that the stabilizer operators have a finite number of Paulis matrices,
the set of transversal operations is not a universal set.

As we have commented previously in these notes, in the lab we can only deal
with local quantum error correcting codes. Nevertheless, the Eastin-Knill
theorem say, if the code is local, we need to be able to perform non-transversal
gates in order to have a universal set of gates. In the following subsection,
we see a method to perform the T gate, which is a non-transversal gate.

13.4 Magic state distillation

Magic state distillation is a technique that uses measurements to go beyond
Clifford and transversal gates, i.e., to get around the Gottesmann-Knill the-
orem and the Eastin-Knill theorem.

Suppose we can prepare the state |A〉 = 1√
2
(|0〉+ ei

π
4 |1〉), which is known as

magic state, then we can perform the T gate on an arbitrary qubit, |ψ〉, by
implementing the circuit in Figure 48. Mathematically, we write

T |ψ〉|A〉 = C(S,Z)CNOT|ψ〉|A〉, (38)

where C(S,Z) is an S gate controlled by a Z measurement, i.e., the S gate
is applied only if the measurement result is 1; otherwise, nothing happens.
We can easily prove Eq. (38) by straight computation. Given an arbitrary

96

Figure 48: Circuit that implements the T gate on an arbitrary qubit |ψ〉 =

a|0〉+ b|1〉 with a magic state |A〉 = 1
2
(|0〉+ ei

π
4 |1〉).

qubit, |ψ〉 = a|0〉+ b|1〉, we have

C(S,Z)CNOT|ψ〉|A〉 =
1√
2
C(S,Z)CNOT(a|0〉+ b|1〉)(|0〉+ ei

π
4 |1〉,

=
1√
2
C(S, Z)CNOT(a|00〉+ aei

π
4 |01〉+ b|10〉+ bei

π
4 |11〉),

= 1√
2
C(S,Z)(a|00〉+ aei

π
4 |01〉+ b|11〉+ bei

π
4 |10〉),

=

{
I⊗ |0〉〈0|(a|00〉+ aei

π
4 |01〉+ b|11〉+ bei

π
4 |10〉) if result is 0,

S ⊗ |1〉〈1|(a|00〉+ aei
π
4 |01〉+ b|11〉+ bei

π
4 |10〉) if result is 1,

=

{
(a|00〉+ bei

π
4 |1〉)|0〉 if result is 0,

(aei
π
4 |0〉+ bei

π
2 |1〉)|1〉 if result is 1,

=

{
T |ψ〉|0〉 if result is 0,
T |ψ〉|1〉 if result is 1,

where we have omitted the global phase because it is not physically relevant.
Note that the CNOT gate as well as the S gate controlled by a Z mea-
surement are Clifford operations. Therefore, the key point that allow us to
perform the T gate is the ability of preparing the magic state, |A〉. Actually,
there exist more states that are as powerful as state |A〉. All these states
are known as magic states and they can be obtained from |A〉 via Clifford
operations. In the following, we want to study a strategy for magic state
preparation.

There exists a simple circuit that allow us to encode a state in the code
subspace. In particular, two subsequent CNOT gates (see Fig. 49) transform
an arbitrary state |ψ〉 = a|0〉+b|1〉 to the encoded state |ψL〉 = a|000〉+b|111〉
such that

|ψL〉123 = CNOT(1, 2)CNOT(1, 3)|ψ〉1|0〉2|0〉3.
This circuit corresponds to the encoding of the repetition code. More gener-
ally, there is a way of going from stabilizer operators to general construction

97

Figure 49: Encoding circuit of the repetition code.

of the unitary operation corresponding to the quantum code, UC (see Fig.
50). The quantum circuit UC takes a state ρ that we want to encode to
an encoded subspace. Then, one might expect that, if we perform the in-
verse operation, U †C , the map identifies the elements in the code space and it
projects them into a single state, ρ′ (see Fig. 51). Indeed, if we can prepare
ρ such that 〈T0|ρ|T0〉 ≤ 1− εc, where |T0〉 is a magic state and εc ≈ 0.2, then
applying U †C on N copies of ρ we get 〈T0|ρ′|T0〉 ≤ 1− ε′, where ε′ << ε with
ε′ ≈ εN . This process is known as a (magic state) distillation. In words, if
we are able to prepare states close to a magic state, then we can flow them
into an inverse quantum error correcting code and distil them to obtain a
single-copy, but with higher fidelity. However, there is a trade-off. In the
distillation procedure, we need to construct the |0〉 states, i.e., we need to
perform a measurement on each of the individual qubits and post-select on
the result 000 · · · 0. If there are too many states, the probability of obtaining
the result 000 · · · 0 is exponentially suppress. Therefore, we should use a code
that is not too large (five- or seven-qubit code). Measurements will fail most
of the times, but every once in a while, we will get the result 000 · · · 0 and
obtain am almost magic state. Once we have this almost magic state, we can
send it to the circuit that performs a T gate (Eq. (38)). Therefore, quantum
computations need “magic state factories” that are constantly measuring
and, when they obtain an almost magic state, they send it to the main cir-
cuit to perform a T gate. This procedure implies a high cost on time and
on the number of qubits. For toric code, quantum computation is even more
expensive because we need another distillation procedure to perform S gates,
which are required in the T -gate circuit (Eq. (38)). Therefore, to quantum
compute on the toric code we need two levels of distillation: one to perform
the T gate and another to implement the S gate.

98

Figure 50: General encoding circuit.

Figure 51: Distillation process.

13.5 Coupling of two surface codes without transversal
operations

As we have mentioned earlier in this section, performing many-qubit gates
on surface codes using transversal gates is not efficient. It requires a direct
interaction between two surfaces in order to couple the qubits and this pro-
duces a lot of loses. We have studied braiding as a possible alternative, but,
indeed, braiding can also be understood as a transversal gate. Other alter-
natives are known and here we want to see some.

The first method to perform logical gates without transversal gates consists
in introducing a kink in the lattice. A kink deforms the lattice replacing
one four-qubit stabilizer to a five-qubit stabilizer and another four-qubit sta-
bilizer to a three-qubit stabilizer as Figure 52 shows. The effect of a kink
is that, when a Z logical operator moves across the kink, it becomes a X
logical operator, and viceversa. It turns out that combining holes and kinks,
S gates are possible.

Another alternative that avoids transversal gates is called lattice surgery.
Lattice surgery combines small chunks of a planar code and treats each chunk

99

Figure 52: A kink deforms the lattice replacing one four-qubit stabilizer
to a five-qubit stabilizer and another four-qubit stabilizer to a three-qubit
stabilizer.

as a qubit (see Fig. 53). If chunks are only one line away, it turns out that
there exists an efficient way of measuring the chunks that performs gates.
This might be the optimal strategy of performing gates nowadays.

In the case of colour codes, there exists a third alternative. If you put a
colour code in a three-dimensional lattice that has a concrete structure and
boundaries, then it is possible to construct the code such that we can perform
T gates, but not Hadamard gates. The trick is then to use a two-dimensional
colour code to perform Hadamard gates and a three-dimensional colour code
to implement T gates. The quantum computation switches between both

Figure 53: Lattice surgery combines small chunks of a planar code and treats
each chunk as a qubit.

100

colour codes.

For a quantum computation on a toric code using lattice surgery, kinks and
magic state distillation, estimates say that we will need 109 − 1010 physical
qubits and 1012 operations for factoring a hundred-digit co-prime.

14 Subsystem codes

Almost all quantum error correcting codes that we have seeen in these notes
are stabilizer codes. This section wants to go beyond stabilizer formalism by
considering the so-called subsystem codes. Subsystem codes are a set of codes
combine decoherence free subspaces, noiseless subsystems, and quantum er-
ror correcting codes. This combination provides subsystem codes interesting
characteristics, such as simplified syndrome calculation and a easily imple-
mentable fault-tolerant operations.

When we defined the stabilizer codes (see Sec. 7), we divided the Hilbert
space, H, into the code space, C, and its orthogonal space, i.e., H = C ⊕ C⊥.
This decomposition is not the most general decomposition of a Hilbert space.
A Hilbert space, H, can be decocomposed as

H =
⊕
j

Aj ⊗ Bj.

The stabilizer codes are the particular case where B1 is trivial, and thus we
have C = A1 and C⊥ =

⊕
j>1

Aj, i.e.,

HStabilizer codes = A1

⊕
j>1

Aj.

For subsystems codes, B is not trivial any more, which implies that the
Hilbert space decomposes as

HSubsytem codes = (A⊗ B)⊕ C⊥,

where the code subspace is C = A⊗B with B non trivial. Here, the subspace
A encodes the logical information, and thus A is called logical subsystem;
and B is known as gauge subsystem and it contains the gauge information,
i.e., the degrees of freedom that are not logical information.

101

Subsystem codes have a code space defined analogously as the code space of
stabilizer codes, i.e.,

C = {|ψ〉 such that Sj|ψ〉 = |ψ〉 ∀Sj ∈ S},

where S is the stabilizer group. In addition to the stabilizer group, subsystem
codes have a logical group, L, and a gauge group, G, which are subspaces
of the Pauli group, i.e., L, G, S ≤ Pn, with Pn the n-qubit Pauli group.
Consequently, all elements of L, G, S are products of Pauli operators. These
groups have the following interesting properties:

� Elements in G are referred to as gauge operators.

� As long as L and G are non-trivial, only S is abelian.

� Elements of L, G and S commute among each other, i.e.,

∀ G ∈ G,∀ L ∈ L and ∀ S ∈ S, [G,L] = 0 = [S, L] = [G,S]. (39)

� The stabilizer group is a subgroup of the gauge group, i.e., S ≤ G.

In subsystem codes, we have the extra degrees of freedom that form the gauge
group, but we do not care about the information they encode. Thus, we do
not need to protect this information neither care if measurements effect it.

Logical information which is contained in A have different representations.
Consider a state |ψ〉 ∈ C and interpret that G|ψ〉 for any G ∈ G as repre-
senting the same information. This implies that logical operation have also
many representations.

Definition 14.1. A logical operator, L ∈ C, is called a bare logical operator
if it can be written as

L = LA ⊗ IB,

where LA ∈ L.

Definition 14.2. A logical operator, L ∈ C, is called a dressed logical oper-
ator if it can be written as

L = LA ⊗ LB,

where LA ∈ L and LB ∈ G such that LB 6= IB.

102

Note that this different representation for logical operators of subsystem
codes is not the same as the different logical operators we can have for sta-
bilizer codes. In particular, all logical operators of stabilizer codes are bare
logical operators since G is trivial.

For an n-qubit stabilizer code, we had k logical operators and we completed
the rest of the code space with n− k stabilizers such that

Stabilizer operators Logical operators
SX1 SX2 · · · SXn−k X̄1 · · · X̄k

SZ1 SZ2 · · · SZn−k Z̄1 · · · Z̄k

where {SXi , SZi } and {X̄i, Z̄i} are stabilizer and logical operators, respectively.
For subsystem codes, we still have a certain number of stabilizer and logical
operators and, moreover, we have a number of gauge qubits such that

Stabilizer operators Gauge operators Logical operators

SX1 · · · SXn−k−r X̃1 · · · X̃r X̄1 · · · X̄k

SZ1 · · · SZn−k−r Z̃1 · · · Z̃r Z̄1 · · · Z̄k

where {SXi , SZi }, {X̄i, Z̄i} and {X̃i, Z̃i} are stabilizer, logical and gauge op-
erators, respectively. A convenient way to understand gauge operators is as
gauge qubits which we encode in the space, but we do not care about pro-
tecting them against noise. Stated differently, we engineer the system such
that we can measure the stabilizers and effectively detect and correct errors
on the logical qubits without paying attention on the effect on the gauge
qubits.

As for stabilizer codes, logical operations of subsystem codes can be multi-
plied by stabilizers operators and we get new logical operators. The minimal
length of the logical operators is the distance of the code.

14.1 Shor code

In previous chapters, we have studied the Shor code using the stabilizer for-
malism. Now, we want to see the Shor code as a subsystem code.

Recall that, in the stabilizer formalism, the stabilizer group of the Shor code
on nine qubits is

S = {Z1Z2, Z2Z3, Z3Z4, Z4Z5, Z5Z6, Z6Z7, Z7Z8, Z8Z9, X1 · · ·X6, X4 · · ·X9},

103

Figure 54: a) X (orange) and Z (green) gauge operators of the subsystem
Shor code, b) X (pink) and Z (blue) stabilizer operators of the subsystem
Shor code.

where all S ∈ S are independent. The Shor code encodes one logical qubit,
which is defined by the logical operators

X̄1 =
9∏
i=1

Xi and Z̄1 =
9∏
i=1

Zi. (40)

In order to build the subsystem Shor code, we take four independent stabilizer
operators that form the stabilizer group40 and we have one logical qubit,
then we still have four extra degrees of freedom, which constitute the gauge
qubits. Thus, the subsystem Shor code has four guage operators (of each
type). Indeed, the gauge group of the subsystem Shor code (see Fig. 54) is
an overcomplete41 group given by

G = {Z1Z2, Z2Z3,Z3Z4, Z4Z5, Z5Z6, Z6Z7, Z7Z8, Z8Z9,

X1X4, X2X5, X3X6, X4X7, X5X8, X6X9}.

Note that gauge operators do not commute in general. The stabilizer group
of the subsystem Shor code is

S = {Z1Z2Z4Z5Z7Z8, Z2Z3Z5Z6Z8Z9, X1X2X3X4X5X6, X4X5X6X7X8X9}.

The logical operators of the subsystem Shor code are the same as the logical
operators of the stabilizer Shor code (Eq. (40)). Summarizing, we have

Stabilizer operators Gauge operators
X1X2X3X4X5X6 X4X5X6X7X8X9 X1Z7 X3X9 X4X7 X6X9

Z1Z2Z4Z5Z7Z8 Z2Z3Z5Z6Z8Z9 Z1Z6 Z2Z3 Z5Z6 Z4Z5

40Elements of the stabilizer group of a subsystem code are sometimes denoted as check
operators.

41i.e., elements are not independent

104

Logical operators
X1 · · ·X9

Z1 · · ·X9

Note that all these operators satisfy the constraint given by Eq. (39). Mul-
tiplying a Z logical operator by a Z stabilizer we see that the distance of the
subsystem Shor code is three.

An important difference between stabilizers and gauge operators is that gauge
operators are local, which is an important property to implement the code
in the lab. For a subsystem code implemented in the lab, we measure gauge
operators instead of stabilizer operators and, from the gauge measurements,
we infer the values of the stabilizers. Recall that gauge operators do not
commute, and thus the result of the gauge measurements depends on the or-
dering of these measurements. However, the values of the stabilizers, which
are products of gauge measurements outcomes, are independent of the or-
dering of gauge measurements as long as property in Eq. (39) is fulfilled.

The subsystem Shor code can correct against one error, which can be a flip
or a phase error, as well as the stabilizer Shor code does. Recall that the
stabilizer Shor code additionally protects against flip errors in blocks of three
qubits. This extra protection property is not possible in the subsystem Shor
code any more due to the reduction of the number of stabilizers.

14.2 Bacon-Shor code

The Bacon-Shor code is the natural extension of the Shor code to a lattice
of N × N qubits. Label the qubits of the lattice with the subindices (i, j),
where i = 1, . . . , N denotes the row and j = 1, . . . , N denotes the column
(see Fig. 55).

The gauge group is

G = {{ZijZ(i+1)j ∀i = 1, . . . , N − 1 and ∀j = 1, . . . , N}, (41)

{XijXi(j+1) ∀i = 1, . . . , N and ∀j = 1, . . . , N − 1}} (42)

The Z logical operators are vertical strings of Z operators and the X logical
operators are horizontal strings of X operators. For a fix i and j, we write

X̄i = Xi1 · · ·XiN and Z̄j = Z1j · · ·ZNj.

105

Figure 55: The Bacon-Shor code, where the X and Z gauge operators are in
represented in orange and green, respectively, the X and Z logical operators
are in represented in purple and dark blue, respectively, and the X and Z
stabilizer operators are in represented in pink and light blue, respectively.

The Z stabilizer operators are two vertical strings of Z operators and the X
stabilizer operators are two horizontal strings of X operators. Given a fix
i < N and j < N , we have

SXi = Xi1 · · ·XiNX(i+1)1 · · ·X(i+1)N and ZZ
j = Z1j · · ·ZNjZ1(j+1) · · ·ZN(j+1).

Note that, as required, the logical operators commute with all stabilizer op-
erators and gauge operators as well as stabilizer and gauge operators also
commute.

In the Bacon-Shor code, logical operators can be translated by multiplying
them with stabilizer operators, but, unlike the toric code, we are not allowed
to bend logical operators.

A disadvantage of the Bacon-Shor is that it is not resistant to {X,Z} in-
dependent and identically distributed noise. Even considering perfect mea-
surements, the Bacon-Shor code has no threshold. If measurements are not
perfect, the code fails because we need to perform N -measurements, and thus
the larger N gets, the bigger is the error corresponding to the measurement
of a stabilizer is going to be worse and worse. If we do have perfect mea-
surements, the Bacon-Shor code has no threshold either because, roughly

106

speaking, we do not have enough stabilizer measurements to distinguish er-
rors. Stated differently, we are able to protect against strings that extend in
one direction, but not in both.

107

References

[1] M. A. Nielsen, and I. L. Chuang, (Cambrige University Press, 2011),
Quantum computation and quantum information, 10th edn.

108

	Classical Error Correction
	Physical error rate
	Linear codes
	Parity-check matrix
	Decoding
	Distance of a code
	Thresholds

	Quantum mechanics of one qubit
	Classical information
	Quantum information with one qubit

	The Shor code
	Quantum error correction conditions
	Physical noise
	Continuous time errors
	Stabilizer codes
	Toric code
	Connection to many-body theory (quantum statistical mechanics)
	Errors on the toric code
	Minimum weight perfect matching
	Renormalisation

	Thresholds

	Lower bound on the threshold
	Entropy and Energy
	Lower bound on the threshold
	Estimating the optimal threshold

	Topological order and QEC
	Definition of topological order
	Topological order I: Local indistinguishability
	Topological order II: topological entanglement entropy
	Topological order III

	Theorems, lemmas and facts on CPC

	Thermal noise (self-correction)
	Phenomenology

	Surface codes
	Planar codes
	Colour codes (2D)

	Fault tolerance
	Transversal gates
	Braiding
	Clifford operations
	Magic state distillation
	Coupling of two surface codes without transversal operations

	Subsystem codes
	Shor code
	Bacon-Shor code

	References

