Exercise Sheet 2

Kastoryano: Quantum Error Correction

October 25, 2018

1 Exercise 1: Mixed state and the Bloch sphere

Exercise 1.1 (from N&C) Let ρ be a density operator on \mathcal{H}_d , for some finite $d \geq 2$. Show that $\operatorname{tr}[\rho^2] \leq 1$, with equality if and only if ρ is pure.

Exercise 1.2 (from N&C)

1. Show that an arbitrary density matrix for a mixed qubit state can be written as

$$\rho = \frac{1}{2}(\mathbb{1} + \vec{r} \cdot \vec{\sigma}),\tag{1}$$

where \vec{r} is a three dimensional vector such that $||\vec{r}|| \leq 1$, and $\vec{\sigma} = (X, Y, Z)$ is the vector of Pauli matrices.

- 2. What is the Bloch vector representation of $\rho = \alpha |+\rangle \langle +|+(1-\alpha)|-\rangle \langle -|$ for $0 \le \alpha \le 1$?
- 3. Show that ρ is pure if and only if $||\vec{r}|| = 1$.

2 Exercise 2: Quantum Measurements

Exercise 2.1 (from N&**C)** Let \vec{u} be a three dimensional unit vector (i.e. $||\vec{u}|| = 1$). Show that $\vec{u} \cdot \vec{\sigma}$ has eigenvalues ± 1 , and that the projectors onto the corresponding eigenspacees are given by $P_{\pm} = \frac{1}{2}(\mathbb{1} \pm \vec{u} \cdot \vec{\sigma})$?

Exercise 2.2 (from N&C) Calculate the probability of obtaining the result +1 for a measurement of $\vec{u} \cdot \vec{\sigma}$ given that the state prior to measurement is $|0\rangle$. What is the state of the system after the measurement if +1 is obtained?

3 Exercise 3: Quantum channels

A map T taking the space of $d \times d$ matrices M_d to itself is said to be *positive* if $T(X) \ge 0$ whenever $X \ge 0$, with $X \in \mathcal{M}_d$. The map is *completely positive* if $\mathrm{id} \otimes T(X) \ge 0$, whenever $X \ge 0$ for $X : \mathcal{M}_{d^2} \to \mathcal{M}_{d^2}$. Show that the transpose operation is positive but not completely positive.

(Hint: consider a two qubit maximally entangled state $|\psi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$.)