1 Exercise 1: Shor\(_9\) code protection against arbitrary single qubit error.

Exercise 1.1 Let \(\mathcal{E}(\rho) = \sum_k E_k \rho E_k^\dagger \) be the error channel. Show that each error \(E_k \) can be written as
\[
E_k = e_1^k \mathbb{1} + e_X^k X + e_Y^k Y + e_Z^k Z.
\]
What constraints are there on the \(\{e_0^k\} \)?

Exercise 1.2 Show that the Shor\(_9\) code protects against \(\mathcal{E} \), by showing that each error \(E_k \) can be protected individually (you may use the Knill-Laflamme theorem).

2 Exercise 2: Depolarizing channel on each qubit.

Exercise 1.1 Calculate the logical error rate of the Shor\(_9\) code against the independent identically distributed depolarizing channel.

Exercise 1.2 (BONUS) Calculate the logical error rate of the Shor\(_n\) code against the independent identically distributed depolarizing channel.