Exercise Sheet 9

Kastoryano: Quantum Error Correction

January 17, 2019

1 Exercise 1: Universal rotations

Let H be the Haddamard gate, and let T be the $\pi/8$ gate;

$$H = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad \qquad T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix} \tag{1}$$

Show that

$$THTH \propto \exp(-i\frac{\pi}{8}Z)\exp(-i\frac{\pi}{8}X),\tag{2}$$

and argue that the combined operation corresponds to a rotation of the Bloch sphere about the axis given along $\vec{n} = (\cos(\pi/8)), \sin(\pi/8), \cos(\pi/8))$ by an angle $\theta = 2 \arccos(\cos^2(\pi/8))$.

2 Exercise 2: Irrationality of θ (NC, 4.42)

Suppose $\cos \theta = 3/5$. Give a proof by contradiction that θ is an irrational multiple of 2π .

- Using the fact that $e^{i\theta} = (3+4i)/5$, show that if θ is rational, then there must exist a positive integer m such that $(3+4i)^m = 5^m$.
- Show that $(3+4i)^m = 3+4i \pmod{5}$ for all m > 0, and conclude that no m such that $(3+4i)^m = 5^m$ can exist.

Bonus: Can you show the same for $\theta = 2 \arccos(\cos^2(\pi/8))$?

3 Injected S gate

Show that the following circuit implements the phase (S) gate, where the state $|Y_L\rangle = (|0\rangle + i|1\rangle)/\sqrt{2}$.

