Rapid mixing and clustering of correlations in open quantum systems

Michael Kastoryano

Dahlem Center for Complex Quantum Systems, Freie Universität Berlin

QCCC, Prien/Chiemsee

Prien/Chiemsee, October 21, 2013

Michael Kastoryano (Berlin)

Mixing vs. Clustering

▶ ▲ 日 ▶ ▲ 三 ▶ ▲ 三 ▶ 三 ⑦ Q ○
Prien/Chiemsee, October 21, 2013 1/33

Outline

Motivation

Preliminaries

- Rapid mixing bounds
- Correlation Measures
- 3 Rapid mixing implies clustering
 - χ^2 clustering
 - Log-Sobolev clustering and stability
 - Area Law

- The main theorem
- Corollaries
- Outlook

Table of Contents

Motivation

Preliminaries

- Rapid mixing bounds
- Correlation Measures
- 3 Rapid mixing implies clustering
 - χ^2 clustering
 - Log-Sobolev clustering and stability
 - Area Law
- Clustering implies rapid mixing
 - The main theorem
 - Corollaries

Outlook

• Finite state space: $n \times n$ complex matrices.

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Finite state space: $n \times n$ complex matrices.
- Markovian Dynamics

$$\partial_t \rho = \mathcal{L}^*(\rho) = i[H,\rho] + \sum_k L_k \rho L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho \}_+$$

Typically, we will assume that L_k and H are bounded (there exists a $K < \infty$ s.t. $||L_k|| < K$ for all k) and geometrically local on a d-dimensional cubic lattice of side length L.

- Finite state space: $n \times n$ complex matrices.
- Markovian Dynamics

$$\partial_t \rho = \mathcal{L}^*(\rho) = i[H,\rho] + \sum_k L_k \rho L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho \}_+$$

Typically, we will assume that L_k and H are bounded (there exists a $K < \infty$ s.t. $||L_k|| \le K$ for all k) and geometrically local on a d-dimensional cubic lattice of side length L.

• We say that \mathcal{L} is *primitive* if it has has a unique full-rank stationary state $\sigma > 0$.

- Finite state space: $n \times n$ complex matrices.
- Markovian Dynamics

$$\partial_t \rho = \mathcal{L}^*(\rho) = i[H,\rho] + \sum_k L_k \rho L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \rho \}_+$$

Typically, we will assume that L_k and H are bounded (there exists a $K < \infty$ s.t. $||L_k|| \le K$ for all k) and geometrically local on a d-dimensional cubic lattice of side length L.

- We say that \mathcal{L} is *primitive* if it has has a unique full-rank stationary state $\sigma > 0$.
- We say \mathcal{L} is *reversible* (detailed balance) if

$$\mathcal{L}^*(\sqrt{\sigma}g\sqrt{\sigma}))=\sqrt{\sigma}\mathcal{L}(g)\sqrt{\sigma}.$$

Mixing times:

There exist constant A, b > 0 such that:

$$\|oldsymbol{e}^{t\mathcal{L}^*}(
ho_0)-\sigma\|_1\leq oldsymbol{A}oldsymbol{e}^{-oldsymbol{b}t}$$

イロト イヨト イヨト イヨト

æ

Mixing times:

There exist constant A, b > 0 such that:

$$\|oldsymbol{e}^{t\mathcal{L}^*}(
ho_0)-\sigma\|_1\leq oldsymbol{A}oldsymbol{e}^{-oldsymbol{b}t}$$

Clustering of correlations:

There exist constants $C, \xi > 0$ such that for any subsets of the lattice A, B we get

$$\operatorname{Corr}_{\sigma}(A:B) \leq C \operatorname{poly}(|A|,|B|)e^{-d(A:B)/\xi},$$

where d(A : B) is the distance separating regions A, B.

Image: Image:

Mixing times:

There exist constant A, b > 0 such that:

$$\|oldsymbol{e}^{t\mathcal{L}^*}(
ho_0)-\sigma\|_1\leq oldsymbol{A}oldsymbol{e}^{-oldsymbol{b} t}$$

Clustering of correlations:

There exist constants $C, \xi > 0$ such that for any subsets of the lattice A, B we get

$$\operatorname{Corr}_{\sigma}(A:B) \leq C \operatorname{poly}(|A|,|B|)e^{-d(A:B)/\xi},$$

where d(A : B) is the distance separating regions A, B.

The goal of this talk is to explain to what extent these two statements are equivalent.

Michael Kastoryan	o (Berlin)
-------------------	------------

Table of Contents

Introduction

- Setting
- Motivation
- - Rapid mixing bounds
 - Correlation Measures
- - χ^2 clustering
 - Log-Sobolev clustering and stability
 - Area Law
- - The main theorem
 - Corollaries

Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go theorems (New J. Phys. 12 025013 (2010)).

Image: Image:

- Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go theorems (New J. Phys. 12 025013 (2010)).
- Stability of Liouvillian dynamics (arXiv:1303.4744, arXiv:1303.6304).

- Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go theorems (New J. Phys. 12 025013 (2010)).
- Stability of Liouvillian dynamics (arXiv:1303.4744, arXiv:1303.6304).
- Topology in open systems, or at non-zero temperature.

- Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go theorems (New J. Phys. 12 025013 (2010)).
- Stability of Liouvillian dynamics (arXiv:1303.4744, arXiv:1303.6304).
- Topology in open systems, or at non-zero temperature.
- (Runtimes of dissipative algorithms and state preparation (Nature Phys. 5, 633 (2009)).)

- Quantum memories: Davies generators of stabilizer Hamiltonians. Rigorous no-go theorems (New J. Phys. 12 025013 (2010)).
- Stability of Liouvillian dynamics (arXiv:1303.4744, arXiv:1303.6304).
- Topology in open systems, or at non-zero temperature.
- (Runtimes of dissipative algorithms and state preparation (Nature Phys. 5, 633 (2009)).)
- (Bounds on the thermalization times of quantum systems, i.e. efficient Gibbs samplers?)

-

Table of Contents

Introduction Setting

Motivation

Preliminaries

Rapid mixing bounds

Correlation Measures

Rapid mixing implies clustering

- χ^2 clustering
- Log-Sobolev clustering and stability
- Area Law
- Clustering implies rapid mixing
 - The main theorem
 - Corollaries

Outlook

Rapid mixing: χ^2 bound

χ^2 bound:

Let \mathcal{L} be a primitive reversible Liouvillian with stationary state $\sigma > 0$, then

$$\|\boldsymbol{e}^{t\mathcal{L}^*}(\rho_0) - \sigma\|_1 \leq \sqrt{\|\sigma^{-1}\|} \boldsymbol{e}^{-\lambda t},$$

for any initial state ρ_0 .

Rapid mixing: χ^2 bound

χ^2 bound:

Let \mathcal{L} be a primitive reversible Liouvillian with stationary state $\sigma > 0$, then

$$\|\boldsymbol{e}^{t\mathcal{L}^*}(\rho_0) - \sigma\|_1 \leq \sqrt{\|\sigma^{-1}\|} \boldsymbol{e}^{-\lambda t},$$

for any initial state ρ_0 .

Proof sketch: write $\rho_t = e^{t\mathcal{L}^*}(\rho_0)$, then $\|\rho_t - \sigma\|_1^2 \leq \chi^2(\rho_t, \sigma) \leq \chi^2(\rho_0, \sigma) e^{-2t\lambda}$, where $\chi^2(\rho, \sigma) = \operatorname{tr}\left[(\rho - \sigma)\sigma^{1/2}(\rho - \sigma)\sigma^{1/2}\right]$ is the χ^2 divergence, and it satisfies $\chi^2(\rho, \sigma) \leq \|\sigma^{-1}\|$.

Note that if \mathcal{L} is reversible, then λ is just the spectral gap of \mathcal{L} . For a system of N spins (qubits) $\|\sigma^{-1}\| \ge 2^N$.

Log-Sobolev bound:

Let \mathcal{L} be a primitive reversible Liouvillian with stationary state $\sigma > 0$, then

$$\|\boldsymbol{e}^{t\mathcal{L}}(\rho_0) - \sigma\|_1 \leq \sqrt{2\log(\|\sigma^{-1}\|)}\boldsymbol{e}^{-2\alpha t},$$

for any initial state ρ_0 .

Log-Sobolev bound:

Let \mathcal{L} be a primitive reversible Liouvillian with stationary state $\sigma > 0$, then

$$\| \boldsymbol{e}^{t\mathcal{L}}(
ho_0) - \sigma \|_1 \leq \sqrt{2\log\left(\|\sigma^{-1}\|
ight)} \boldsymbol{e}^{-2lpha t}$$

for any initial state ρ_0 .

- Same proof but with $\chi^2(\rho, \sigma)$ replaced by $S(\rho \| \sigma) = \operatorname{tr} \left[\rho(\log \rho \log \sigma) \right]$.
- The Log-Sobolev constant α can only be obtained by a complicated variational formula ⇒ equivalent to Hypercontractivity of the semigroup.
- The bound provides an exponentially improved pre-factor! Importantly, $\alpha \leq \lambda$
- See J. Math. Phys. 54, 052202 (2013) for more details.

Table of Contents

- Setting
- Motivation

Preliminaries

- Rapid mixing bounds
- Correlation Measures
- - χ^2 clustering
 - Log-Sobolev clustering and stability
 - Area Law
- - The main theorem
 - Corollaries

Correlation measures

We consider a cubic lattice Λ and denote subsets of the lattice $A \subset \Lambda$. Assume $A \cap B = \emptyset$,

Correlation measures

• The covariance correlation:

$$C_{\rho}(\boldsymbol{A}:\boldsymbol{B}) := \sup_{\|\boldsymbol{f}\| = \|\boldsymbol{g}\| = 1} |\mathrm{tr}\left[(\boldsymbol{f} \otimes \boldsymbol{g})(\rho_{AB} - \rho_{A} \otimes \rho_{B})\right]|, \tag{1}$$

where f is supported on region A, and g is supported on region B.

• The trace norm correlation:

$$T_{\rho}(\boldsymbol{A}:\boldsymbol{B}) := \|\rho_{\boldsymbol{A}\boldsymbol{B}} - \rho_{\boldsymbol{A}} \otimes \rho_{\boldsymbol{B}}\|_{1}. \tag{2}$$

• The mutual information correlation:

$$I_{\rho}(\boldsymbol{A}:\boldsymbol{B}) := \boldsymbol{S}(\rho_{\boldsymbol{A}\boldsymbol{B}} \| \rho_{\boldsymbol{A}} \otimes \rho_{\boldsymbol{B}}), \tag{3}$$

where $S(\rho \| \sigma) = tr [\rho(\log \rho - \log \sigma)]$ is the relative entropy.

The different correlation measures can be easily related:

Theorem

Let ρ be a full rank state of the lattice Λ , and let $A, B \subset \Lambda$ be non-overlapping subsets. Let d_{AB} be the dimension of the subsystem defined on AB, then the following inequalities hold,

$$\begin{array}{ll} \displaystyle \frac{1}{2d_{AB}^2}T_\rho(A:B) &\leq \quad C_\rho(A:B) \leq T_\rho(A:B), \\ \displaystyle \frac{1}{2}T_\rho^2(A:B) &\leq \quad I_\rho(A:B) \leq \log(\|\rho_{AB}^{-1}\|)T_\rho(A:B). \end{array}$$

The different correlation measures can be easily related:

Theorem

Let ρ be a full rank state of the lattice Λ , and let $A, B \subset \Lambda$ be non-overlapping subsets. Let d_{AB} be the dimension of the subsystem defined on AB, then the following inequalities hold,

$$\begin{array}{ll} \displaystyle \frac{1}{2d_{AB}^2}T_\rho(A:B) &\leq \quad C_\rho(A:B) \leq T_\rho(A:B), \\ \displaystyle \frac{1}{2}T_\rho^2(A:B) &\leq \quad I_\rho(A:B) \leq \log(\|\rho_{AB}^{-1}\|)T_\rho(A:B). \end{array}$$

There is also an exponential separation between correlation measures. Is there a connection to the exponential separation in rapid mixing regimes? YES

Michael Kastoryano	(Berlin)
--------------------	----------

Mixing vs. Clustering

Table of Contents

Introduction

- Setting
- Motivation

Preliminaries

- Rapid mixing bounds
- Correlation Measures

- Log-Sobolev clustering and stability
- Area Law
- Clustering implies rapid mixing
 - The main theorem
 - Corollaries

Outlook

χ^2 clustering

Theorem

- $A, B \subset \Lambda$ are subsets of the \mathcal{D} -dimensional cubic lattice Λ .
- $\mathcal{L} = \sum_{Z \subset \Lambda} \mathcal{L}_Z$ is a local, bounded, reversible Liouvillian with stationary state σ
- λ is the gap, v is the Lieb-Robinson velocity v

Then there exists a constant c > 0 such that

$$C_{\sigma}(A:B) \leq c \; d(A:B)^{\mathcal{D}-1} e^{-rac{\lambda d(A:B)}{
u+2\lambda}}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

χ^2 clustering

Theorem

- $A, B \subset \Lambda$ are subsets of the \mathcal{D} -dimensional cubic lattice Λ .
- $\mathcal{L} = \sum_{Z \subset \Lambda} \mathcal{L}_Z$ is a local, bounded, reversible Liouvillian with stationary state σ
- λ is the gap, v is the Lieb-Robinson velocity v

Then there exists a constant c > 0 such that

$$\mathcal{C}_{\sigma}(\mathcal{A}:\mathcal{B}) \leq c \; \mathcal{d}(\mathcal{A}:\mathcal{B})^{\mathcal{D}-1} e^{-rac{\lambda \mathcal{d}(\mathcal{A}:\mathcal{B})}{v+2\lambda}}$$

Weak rapid mixing implies weak clustering

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Define $\operatorname{Cov}(f, g) = \operatorname{tr} [\sigma fg] - \operatorname{tr} [\sigma f] \operatorname{tr} [\sigma g]$, write $f_t := e^{t\mathcal{L}}(f)$ and consider

 $|\operatorname{Cov}(f,g)| \leq |\operatorname{Cov}(f_t,g_t)| + |\operatorname{Cov}(f_t,g_t) - \operatorname{Cov}(f,g)|$

• Define $\operatorname{Cov}(f, g) = \operatorname{tr}[\sigma fg] - \operatorname{tr}[\sigma f] \operatorname{tr}[\sigma g]$, write $f_t := e^{t\mathcal{L}}(f)$ and consider $|\operatorname{Cov}(f, g)| \le |\operatorname{Cov}(f_t, g_t)| + |\operatorname{Cov}(f_t, g_t) - \operatorname{Cov}(f, g)|$

• The first term is bounded using a mixing argument

$$\begin{aligned} |\operatorname{Cov}(f_t,g_t)| &\leq \sqrt{\operatorname{Var}(f_t)\operatorname{Var}(g_t)} \\ &\leq \sqrt{\operatorname{Var}(f)\operatorname{Var}(g)}e^{-t\lambda} \leq \|f\| \ \|g\|e^{-t\lambda} \end{aligned}$$

• Define $\operatorname{Cov}(f, g) = \operatorname{tr} [\sigma fg] - \operatorname{tr} [\sigma f] \operatorname{tr} [\sigma g]$, write $f_t := e^{t\mathcal{L}}(f)$ and consider $|\operatorname{Cov}(f, g)| \le |\operatorname{Cov}(f_t, g_t)| + |\operatorname{Cov}(f_t, g_t) - \operatorname{Cov}(f, g)|$

• The first term is bounded using a mixing argument

$$\begin{aligned} |\operatorname{Cov}(f_t, g_t)| &\leq \sqrt{\operatorname{Var}(f_t)\operatorname{Var}(g_t)} \\ &\leq \sqrt{\operatorname{Var}(f)\operatorname{Var}(g)}e^{-t\lambda} \leq \|f\| \ \|g\|e^{-t\lambda} \end{aligned}$$

The second term is bounded using quasi-locality of the dynamics

$$\begin{aligned} |\operatorname{Cov}(f_t,g_t) - \operatorname{Cov}(f,g)| &\leq |\operatorname{tr}\left[\sigma((fg)_t - f_tg_t\right]| \\ &\leq c \|f\| \|g\| e^{tv - d(A:B)/2} \end{aligned}$$

• Define $\operatorname{Cov}(f, g) = \operatorname{tr} [\sigma fg] - \operatorname{tr} [\sigma f] \operatorname{tr} [\sigma g]$, write $f_t := e^{t\mathcal{L}}(f)$ and consider $|\operatorname{Cov}(f, g)| \le |\operatorname{Cov}(f_t, g_t)| + |\operatorname{Cov}(f_t, g_t) - \operatorname{Cov}(f, g)|$

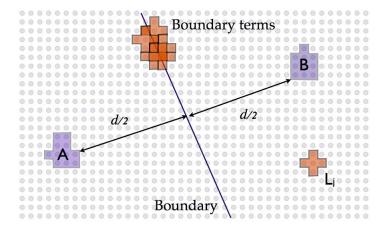
The first term is bounded using a mixing argument

$$\begin{aligned} |\operatorname{Cov}(f_t, g_t)| &\leq \sqrt{\operatorname{Var}(f_t)\operatorname{Var}(g_t)} \\ &\leq \sqrt{\operatorname{Var}(f)\operatorname{Var}(g)}e^{-t\lambda} \leq \|f\| \ \|g\|e^{-t\lambda} \end{aligned}$$

The second term is bounded using quasi-locality of the dynamics

$$\begin{aligned} |\operatorname{Cov}(f_t,g_t) - \operatorname{Cov}(f,g)| &\leq |\operatorname{tr}\left[\sigma((fg)_t - f_tg_t)\right]| \\ &\leq c \|f\| \|g\| e^{tv - d(A:B)/2} \end{aligned}$$

• Finally, chose the *t* which minimizes the sum of both expressions.



E

Table of Contents

Introduction

- Setting
- Motivation

Preliminaries

3

- Rapid mixing bounds
- Correlation Measures

Rapid mixing implies clustering

- χ^2 clustering
- Log-Sobolev clustering and stability
- Area Law
- Clustering implies rapid mixing
 - The main theorem
 - Corollaries

Outlook

Log-Sobolev clustering

- $A, B \subset \Lambda$ are subsets of the \mathcal{D} -dimensional cubic lattice Λ .
- $\mathcal{L} = \sum_{Z \subset \Lambda} \mathcal{L}_Z$ is a local, bounded, reversible Liouvillian with stationary state σ
- α is the Log-Sobolev constant, v is the Lieb-Robinson velocity.

Then there exists a constant c > 0 such that

$$I_{\rho}(\boldsymbol{A}:\boldsymbol{B}) \leq c \ \boldsymbol{d}(\boldsymbol{A}:\boldsymbol{B})^{\mathcal{D}-1}(\log(\|\rho^{-1}\|))^{3/2}\boldsymbol{e}^{-\frac{\alpha \boldsymbol{d}(\boldsymbol{A}:\boldsymbol{B})}{2(\nu+\alpha)}},$$

Log-Sobolev clustering

- $A, B \subset \Lambda$ are subsets of the \mathcal{D} -dimensional cubic lattice Λ .
- $\mathcal{L} = \sum_{Z \subset \Lambda} \mathcal{L}_Z$ is a local, bounded, reversible Liouvillian with stationary state σ
- α is the Log-Sobolev constant, v is the Lieb-Robinson velocity.

Then there exists a constant c > 0 such that

$$I_{
ho}(A:B) \leq c \; d(A:B)^{\mathcal{D}-1} (\log(\|
ho^{-1}\|))^{3/2} e^{-rac{lpha d(A:B)}{2(v+lpha)}},$$

Strong rapid mixing implies strong clustering

Corollary: Local perturbations perturb locally

- $A, B \subset \Lambda$ are subsets of the \mathcal{D} -dimensional cubic lattice Λ .
- $\mathcal{L} = \sum_{Z \subset \Lambda} \mathcal{L}_Z$ is a local, bounded, reversible Liouvillian with stationary state ρ
- Q_A is a local Liouvillian perturbation, acting trivially outside of A. Let σ be the stationary state of L + Q_A.
- α is the Log-Sobolev constant and v is the Lieb-Robinson velocity of \mathcal{L}

Then,

$$\|\rho_B - \sigma_B\|_1 \leq c \ d(A:B)^{\mathcal{D}-1} (\log(\|\rho^{-1}\|))^{1/2} e^{-\frac{\alpha d(A:B)}{\nu+\alpha}},$$

Table of Contents

Introduction

- Setting
- Motivation

Preliminaries

- Rapid mixing bounds
- Correlation Measures

8 Rapid mixing implies clustering

- χ^2 clustering
- Log-Sobolev clustering and stability
- Area Law
- Clustering implies rapid mixing
 - The main theorem
 - Corollaries

Outlook

Mutual information Area Law

Let \mathcal{L} be a regular, reversible Liouvillian with stationary state ρ and Log-Sobolev constant α . Let $A \subset \Lambda$, then for any $\epsilon > 0$, there exist constants $\gamma_1, \gamma_2 > 0$ such that

$$I_{
ho}(A, A^c) \leq (\gamma_1 + \gamma_2 \log \log \|
ho^{-1} \|) |\partial_A| + \epsilon,$$

where $|\partial_A|$ is the boundary of *A*.

Note: it is not know whether one can get rid of the log log $\|\rho^{-1}\|$ factor?

Table of Contents

Introduction

- Setting
- Motivation

Preliminaries

- Rapid mixing bounds
- Correlation Measures
- 3 Rapid mixing implies clustering
 - χ^2 clustering
 - Log-Sobolev clustering and stability
 - Area Law
 - Clustering implies rapid mixingThe main theorem
 - Corollaries

Outlook

The main theorem

- Let $H = \sum_{j} H_{j}$ be a bounded, local, commuting Hamiltonian (i.e. $[H_{j}, H_{k}]$).
- Let $\rho = e^{-\beta H} / \text{tr} \left[e^{-\beta H} \right]$ be the Gibbs state of *H*.
- Suppose that there exist constants c, ξ > 0 such that for all observables f, g,

$$\operatorname{Cov}_{\rho}(f,g) \leq c \sqrt{\operatorname{Var}_{\rho}(f)\operatorname{Var}_{\rho}(g)} e^{-d(\Lambda_f,\Lambda_g)/\xi}$$

Cov_ρ(f, g) = tr [√ρf[†]√ρg] − tr [ρf] tr [ρg], Var_ρ(f) = Cov_ρ(f, f), and d(Λ_f, Λ_g) is the minimum distance separation the supports of f, g.

Then, there exists a local, bounded parent Liouvillian \mathcal{L}^{ρ} such that ρ is its unique stationary state, and the spectral gap of \mathcal{L}^{ρ} is independent of the size of the lattice.

Michael Kastoryano	(Berlin)
--------------------	----------

イロト イポト イヨト イヨト 二日

The parent Liouvillian

The parent Liouvillian

where

and

$$\gamma_j = (\mathrm{tr}_j[\rho])^{-1/2} \rho^{1/2}$$

 \mathbb{E}_{j}^{ρ} should be interpreted as a conditional expectation value of ρ on site *j* which minimally disturbs the sites around *j*.

Note: if *H* has locally commuting terms, then γ_i has support on a ball of radius *r*, where *r* is the range of the Hamiltonian. Then $\mathcal{L}^{\rho}_{\Lambda}$ is local.

Michael	Kastoryano	(Berlin)
---------	------------	----------

Proof sketch I

We will show that the gap of a lattice Λ is approximately the same as the gap on half the lattice size: $\lambda(\Lambda) \approx \lambda(\Lambda/2)$.

• The variational expression of the gap. Let $A \subset \Lambda$,

$$\lambda(A) = \sup_{f=f\dagger} \frac{\mathcal{E}_A(f)}{\operatorname{Var}_A(f)}$$

where $\mathcal{E}_{A}(f) = \langle f, -\mathcal{L}_{A}(f) \rangle_{\rho}$ and $\operatorname{Var}_{A}(f) = \langle f - \mathbb{E}_{A}(f), f - \mathbb{E}_{A}(f) \rangle_{\rho}$, and $\langle f, g \rangle_{\rho} = \operatorname{tr} \left[\sqrt{\rho} f^{\dagger} \sqrt{\rho} g \right]$ is an \mathbb{L}_{2} inner product.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof sketch I

We will show that the gap of a lattice Λ is approximately the same as the gap on half the lattice size: $\lambda(\Lambda) \approx \lambda(\Lambda/2)$.

• The variational expression of the gap. Let $A \subset \Lambda$,

$$\lambda(A) = \sup_{f=f\dagger} \frac{\mathcal{E}_A(f)}{\operatorname{Var}_A(f)}$$

where $\mathcal{E}_{A}(f) = \langle f, -\mathcal{L}_{A}(f) \rangle_{\rho}$ and $\operatorname{Var}_{A}(f) = \langle f - \mathbb{E}_{A}(f), f - \mathbb{E}_{A}(f) \rangle_{\rho}$, and $\langle f, g \rangle_{\rho} = \operatorname{tr} \left[\sqrt{\rho} f^{\dagger} \sqrt{\rho} g \right]$ is an \mathbb{L}_{2} inner product.

Decomposition of the conditional variance: If (E_A(f), E_B(f))_ρ ≤ ε, then for A ∪ B = Λ and A ∩ B ≠ Ø, then

$$\operatorname{Var}_{\Lambda}(f) \leq (1 - 2\epsilon)^{-1} (\operatorname{Var}_{A}(f) + \operatorname{Var}_{B}(f))$$

イロト イポト イヨト イヨト 二日

Proof sketch II

• Let $A \cap B \approx \sqrt{L} \times L$ (in 2D). If ρ is clustering, then $\langle \mathbb{E}_A(f), \mathbb{E}_B(f) \rangle_{\rho} \leq c e^{-\sqrt{L}/\xi}$. Then

$$\begin{aligned} \operatorname{Var}_{\Lambda}(f) &\leq (1 - c e^{-\sqrt{L}/\xi})^{-1} (\operatorname{Var}_{A}(f) + \operatorname{Var}_{B}(f)) \\ &\leq (1 - c e^{-\sqrt{L}/\xi})^{-1} (\frac{\mathcal{E}_{A}(f)}{\lambda(A)} + \frac{\mathcal{E}_{B}(f)}{\lambda(B)}) \\ &\leq (1 - c e^{-\sqrt{L}/\xi})^{-1} \max\{\frac{1}{\lambda(A)}, \frac{1}{\lambda(B)}\} (\mathcal{E}_{\Lambda}(f) + \mathcal{E}_{A \cap B}(f)) \end{aligned}$$

Proof sketch II

• Let $A \cap B \approx \sqrt{L} \times L$ (in 2D). If ρ is clustering, then $\langle \mathbb{E}_A(f), \mathbb{E}_B(f) \rangle_{\rho} \leq c e^{-\sqrt{L}/\xi}$. Then

$$\begin{aligned} \operatorname{Var}_{\Lambda}(f) &\leq (1 - c e^{-\sqrt{L}/\xi})^{-1} (\operatorname{Var}_{A}(f) + \operatorname{Var}_{B}(f)) \\ &\leq (1 - c e^{-\sqrt{L}/\xi})^{-1} (\frac{\mathcal{E}_{A}(f)}{\lambda(A)} + \frac{\mathcal{E}_{B}(f)}{\lambda(B)}) \\ &\leq (1 - c e^{-\sqrt{L}/\xi})^{-1} \max\{\frac{1}{\lambda(A)}, \frac{1}{\lambda(B)}\} (\mathcal{E}_{\Lambda}(f) + \mathcal{E}_{A \cap B}(f)) \end{aligned}$$

• By an averaging trick over *L*^{1/3} different overlaps, we can upper bound the following upper bound:

$$\begin{aligned} \operatorname{Var}_{\Lambda}(f) &\leq (1 - c e^{-\sqrt{L}/\xi})^{-1} (1 + \frac{1}{L^{1/3}}) \max\{\frac{1}{\lambda(A)}, \frac{1}{\lambda(B)}\} \mathcal{E}_{\Lambda}(f) \\ &\leq (1 + \frac{1}{\sqrt{L}}) \max\{\frac{1}{\lambda(A)}, \frac{1}{\lambda(B)}\} \mathcal{E}_{\Lambda}(f) \end{aligned}$$

If $L \ge L_0$ for some L_0 independent of the systems size.

Table of Contents

Introduction

- Setting
- Motivation

Preliminaries

- Rapid mixing bounds
- Correlation Measures
- 3 Rapid mixing implies clustering
 - χ^2 clustering
 - Log-Sobolev clustering and stability
 - Area Law

Clustering implies rapid mixing

- The main theorem
- Corollaries

Outlook

Important Corollary

- Let $H = \sum_{i} S_{i}$ stabilizer Hamiltonian.
- Let $\rho = e^{-\beta H}/\text{tr} \left[e^{-\beta H} \right]$ be the Gibbs state of *H*.
- Suppose that there exist constants $c, \xi > 0$ such that for all observables f, g,

$$\operatorname{Cov}_{\rho}(f,g) \leq c \sqrt{\operatorname{Var}_{\rho}(f)\operatorname{Var}_{\rho}(g)} e^{-d(\Lambda_f,\Lambda_g)/\xi}$$

Then, there Davies generator \mathcal{L}^{D} has a spectral gap which is independent of the size of the lattice.

Note: the Davies generator is obtained by a canonical weak system bath coupling, where the bath is in a thermal state.

1D non-commuting Hamiltonians

- Let $H = \sum_{i} H_{i}$ be a local bounded Hamiltonian in 1D.
- Let $\rho = e^{-\beta H}/\text{tr} \left[e^{-\beta H}\right]$ be the Gibbs state of *H*.

Then, there exists a local, bounded parent Liouvillian \mathcal{L}^{ρ} such that ρ is its unique stationary state, and the spectral gap of \mathcal{L}^{ρ} is independent of the size of the lattice.

Collaborators

Collaborators

Michael Kastoryano (Berlin)

Mixing vs. Clustering

Prien/Chiemsee, October 21, 2013 31 / 33

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Thank you for your attention!

Michael	Kastoryano 🛛	(Berlin)
---------	--------------	----------

Mixing vs. Clustering

▶ < □ ▶ < 三 ▶ < 三 ▶ 三 つ Q ○</p>
Prien/Chiemsee, October 21, 2013 32 / 33

References

K. Temme, MJK, M.B. Ruskai, M.M. Wolf, F. Verstraete

The χ^2 divergence and mixing times of quantum Markov processes. J. Math. Phys. 51, 122201 (2010)

MJK and J. Eisert

Rapid mixing implies exponential decay of correlations. arXiv:1303.6304

MJK and K. Temme

Quantum logarithmic Sobolev inequalities and rapid mixing.

J. Math. Phys. 54, 052202 (2013)

MJK and F.G.S.L Brandao

Exponential decay of correlation implies rapid mixing. in preparation

Comparison theorems for thermal quantum semigroups. in preparation