

UNIVERSITY OF COPENHAGEN

QUANTUM GIBBS SAMPLERS: THE COMMUTATIVE CASE

M. J. Kastoryano, F. G. S. L. Brandao

QIP 2015, Sydney

VILLUM FONDEN

MOTIVATION

Simulation of systems in thermal equilibrium

Can we say anything about the difficulty of simulating a state, just from the state? Analysis of thermalization in nature

> Does nature always prepare "easy states" efficiently?

MOTIVATION

Main structural theorem:

Characterizes the thermodynamically trivial phase

SETTING

Finite lattice system

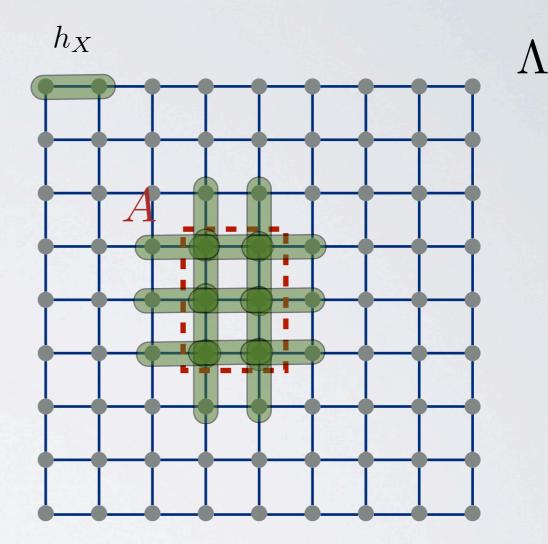
Finite local dimension

Bounded, local and **commuting** Hamiltonian

$$H_A = \sum_{Z \in A} h_Z \quad \begin{bmatrix} h_Z, h_Y \end{bmatrix} = 0, \quad \forall Z, Y$$
$$A \subset \Lambda$$

Global Gibbs state:

 $ho \propto e^{-\beta H_{\Lambda}}$



Non-commutative \mathbb{L}_p spaces:

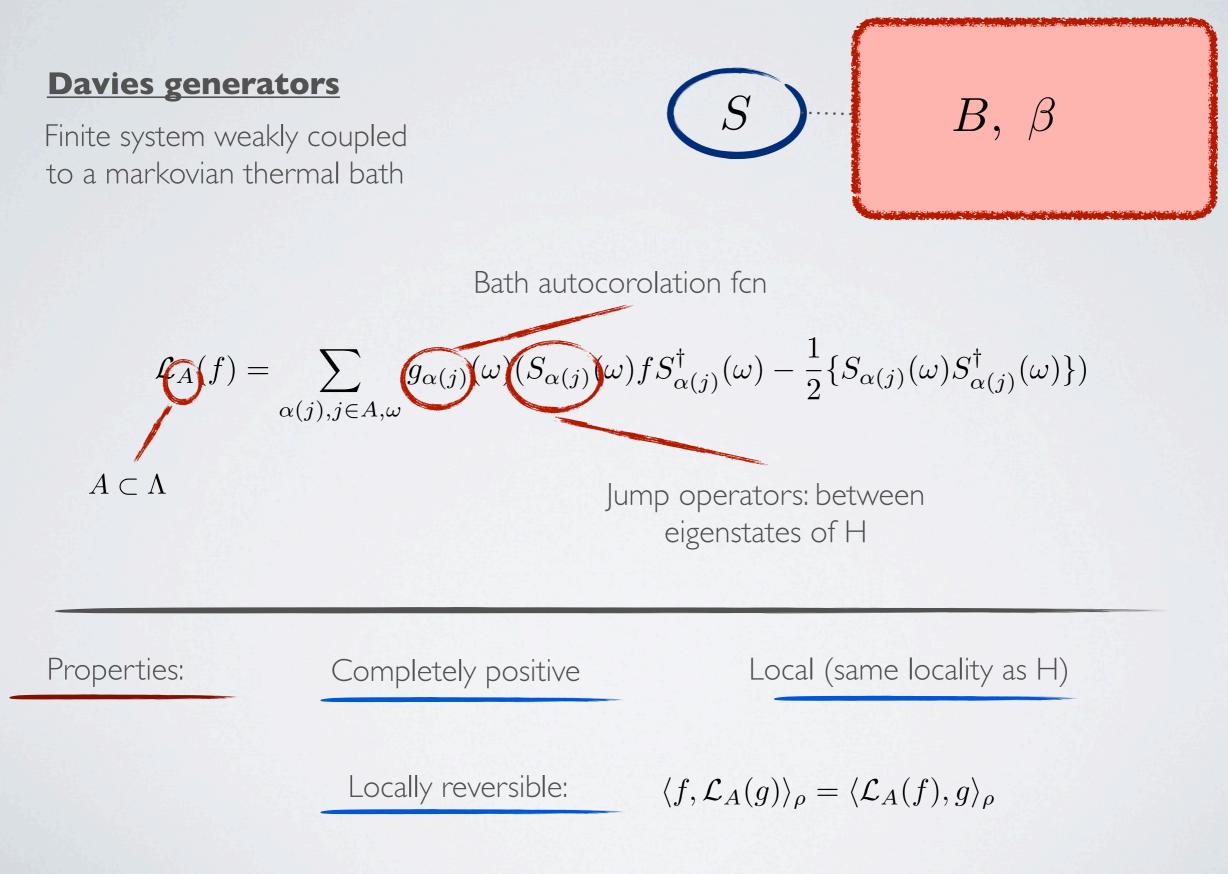
$$\langle f, g \rangle_{\rho} = \operatorname{tr}[\rho^{1/2} f^{\dagger} \rho^{1/2} g]$$

 $||f||_{p,\rho}^{p} = \operatorname{tr}[|\rho^{1/2p} f \rho^{1/2p}|^{p}]$

 \mathbb{L}_p inner product \mathbb{L}_p norm

Def: Gibbs samplers are primitive semigroups with Gibbs state as unique stationary state

GIBBS SAMPLERS



GIBBS SAMPLERS

Heat-bath generators

local projection onto Gibbs state

$$\mathcal{L}_A(f) = \sum_{k \in A} \mathbb{E}_k^{\rho}(f) - f$$

 $\mathbb{E}_k^{\rho}(f) = \operatorname{tr}_k[\gamma_k f \gamma_k^{\dagger}]$

 \mathbb{E}^{ρ}_{A} is a conditional expectation

Only depends on properties of the state.

 $\gamma_k = (\operatorname{tr}_k[\rho])^{-1/2} \rho^{1/2}$

Properties:

Completely positive

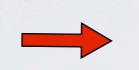
Local (same locality as H)

Locally reversible:

 $\langle f, \mathcal{L}_A(g) \rangle_{\rho} = \langle \mathcal{L}_A(f), g \rangle_{\rho}$

RELAXATIONTIME

We want to estimate how rapidly the sampler converges to the Gibbs state

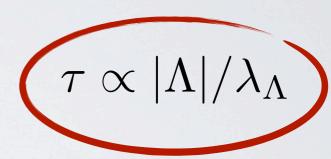


Trace norm bound: $||e^{t\mathcal{L}}(\phi) - \rho||_1 \leq \epsilon$

Mixing time:

 $\tau \ge \frac{\log(||\rho^{-1}||/\epsilon)}{\lambda}$

 $||\rho^{-1}|| \le e^{o(|\Lambda|)}$



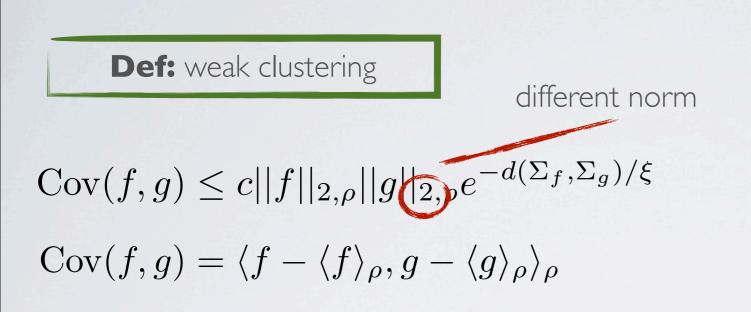
Reduces to estimating the gap!

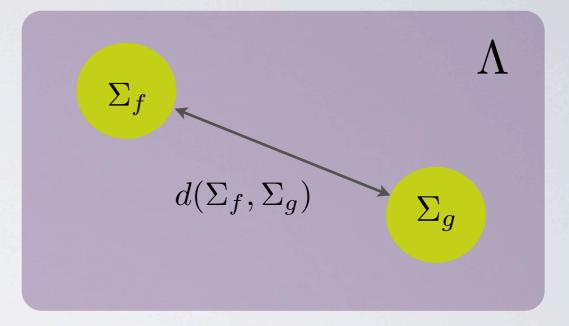
$$\lambda_A = \inf_{f \in \mathcal{A}_{\Lambda}} \frac{\langle f, -\mathcal{L}_A(f) \rangle_{\rho}}{\operatorname{Var}_A(f)}$$

where

$$\operatorname{Var}_{A} = ||f - \mathbb{E}_{A}^{\rho}(f)||_{2,\rho}^{2}$$

CLUSTERING

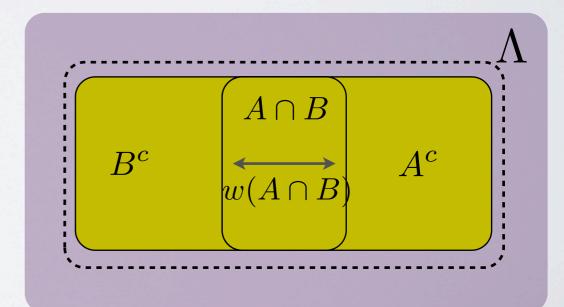




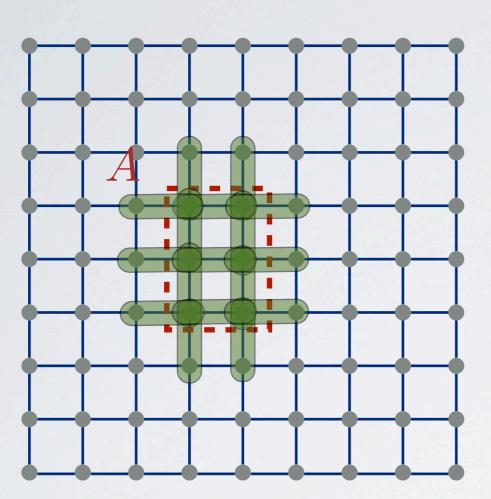
Def: strong clustering

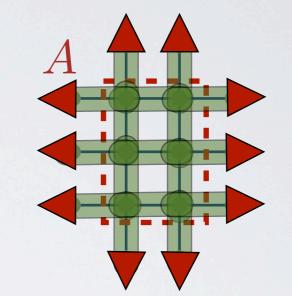
 $\operatorname{Cov}_{A\cup B}(\mathbb{E}_A(f), \mathbb{E}_B(f)) \le c||f||_{2,\rho}^2 e^{-w(A\cap B)/\xi}$

 $\operatorname{Cov}_{A\cup B}(f,g) = \langle f - \mathbb{E}_A(f), g - \mathbb{E}_B(g) \rangle_{\rho}$



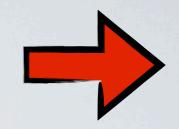
DLRTHEORY (CLASSICAL)



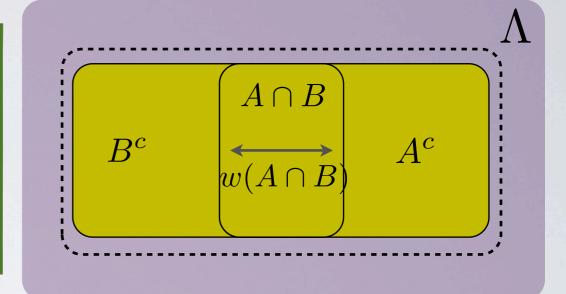


MAINTHEOREM

PROOF OUTLINE



Prop: If the Gibbs state satisfies strong clustering, $Cov_{A\cup B}(\mathbb{E}_{A}(f), \mathbb{E}_{B}(f)) \leq \epsilon ||f||_{2,\rho}^{2}$ then $Var_{A\cup B}(f) \leq (1+\epsilon)(Var_{A}(f) + Var_{B}(f))$



Assume $w(A \cap B) \approx \sqrt{L}$ $w(A) \approx w(B) \approx L$

can eliminate this term by averaging

 $\begin{aligned} \operatorname{Var}_{A\cup B}(f) &\leq (1+\epsilon)(\operatorname{Var}_{A}(f) + \operatorname{Var}_{B}(f)) \\ &\leq (1+\epsilon)(\lambda_{A}^{-1}\langle f, -\mathcal{L}_{A}(f)\rangle_{\rho} + \lambda_{B}^{-1}\langle f, -\mathcal{L}_{B}(f)\rangle_{\rho}) \\ &\leq (1+\epsilon)\lambda_{A,B}^{-1}(\langle f, -\mathcal{L}_{A\cup B}(f)\rangle_{\rho} + \langle f, -\mathcal{L}_{A\cap B}(f)\rangle_{\rho}) \end{aligned}$

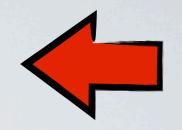
Thus we get:

 $\lambda(2L) \approx \lambda(L)$

since $\epsilon \leq c e^{-\sqrt{L}/\xi}$

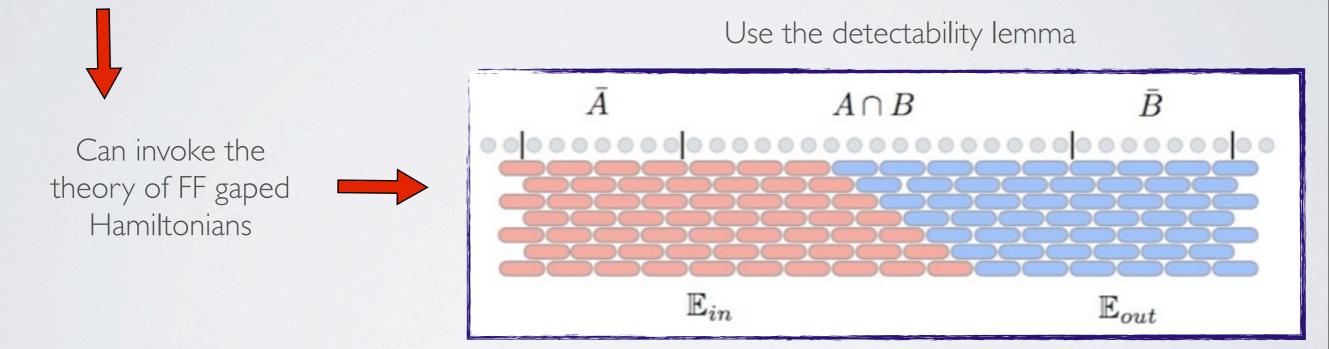
applying iteratively completes the proof

PROOF OUTLINE



Map Liouvillian onto FF Hamiltonian

	Commuting Gibbs Sampler	Frustration-free Hamiltonian
State	Gibbs state ρ	Ground state $ \varphi\rangle$
Dynamics	Reversible Liouvillians \mathcal{L}	Hamiltonian H
Projectors	Conditional Expectations \mathbb{E}	Ground state projectors P
Gap	Spectral gap of \mathcal{L}	Spectral gap of H
Framework	\mathbb{L}_p spaces	Hilbert spaces \mathcal{H}



By constructing an approximate projector

it is not difficult to show that

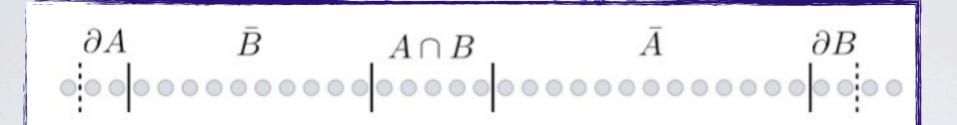
$$\Pi^l \approx \mathbb{E} = \mathbb{E}_{in} \mathbb{E}_{out}$$

 $||\hat{\mathbb{E}}_A\hat{\mathbb{E}}_B - \hat{\mathbb{E}}_{A\cup B}|| \le e^{-l\lambda/\xi}$

MAINTHEOREM

APPLICATIONS

In ID strong and weak clustering are equivalent



Boundaries can be removed in ID

In ID Gibbs samplers are always gapped

One can use MPS methods in ID

Beyond a universal critical temperature Gibbs samplers are gapped

Note: cannot use Araki's result!

OUTLOOK

Consider what this means for topological order at non-zero temperature

Extend the results to get Log-Sobolev bounds

What can we say about the noncommuting case?

ii

-

Ŧ