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MOTIVATION

Simulation of systems in 
thermal equilibrium

Analysis of 
thermalization in nature

Can we say anything about 
the difficulty of simulating a 
state, just from the state?

Does nature always 
prepare “easy states” 

efficiently?
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MOTIVATION

Rate of convergence

Correlations in Gibbs state

Main structural theorem:

Characterizes the 
thermodynamically trivial phase
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SETTING
Finite lattice system 

⇤Finite local dimension

Bounded, local and 
commuting Hamiltonian

[hZ , hY ] = 0, 8Z, YHA =
X

Z2A

hZ

A ⇢ ⇤

A

Non-commutative       spaces:

⇢ / e��H⇤Global Gibbs state:

hf, gi⇢ = tr[⇢1/2f†⇢1/2g]

||f ||pp,⇢ = tr[|⇢1/2pf⇢1/2p|p]

Lp inner product

norm

Lp

Lp

Def: Gibbs samplers are 
primitive semigroups with 

Gibbs state as unique 
stationary state

hX
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GIBBS SAMPLERS
Davies generators

LA(f) =
X

↵(j),j2A,!

g↵(j)(!)(S↵(j)(!)fS
†
↵(j)(!)�

1

2
{S↵(j)(!)S

†
↵(j)(!)})

Finite system weakly coupled 
to a markovian thermal bath

A ⇢ ⇤

Bath autocorolation fcn

Jump operators: between 
eigenstates of H

Properties:

Locally reversible:

Completely positive

hf,LA(g)i⇢ = hLA(f), gi⇢

S B, �

Local (same locality as H)
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GIBBS SAMPLERS
Heat-bath generators

local projection onto Gibbs 
state

LA(f) =
X

k2A

E⇢
k(f)� f

�k = (trk[⇢])
�1/2⇢1/2

E⇢
k(f) = trk[�kf�

†
k]

Only depends on properties 
of the state.

is a conditional expectationE⇢
A

Properties:

Locally reversible:

Completely positive

hf,LA(g)i⇢ = hLA(f), gi⇢

Local (same locality as H)
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RELAXATION TIME

VarA = ||f � E⇢
A(f)||

2
2,⇢

�A = inf
f2A⇤

hf,�LA(f)i⇢
VarA(f)

We want to estimate how 
rapidly the sampler 

converges to the Gibbs state

Trace norm bound:

Mixing time:

||etL(�)� ⇢||1  ✏

⌧ � log(||⇢�1||/✏)
�

||⇢�1||  eo(|⇤|)

⌧ / |⇤|/�⇤

Reduces to estimating the 
gap!

where
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CLUSTERING

Def: weak clustering

Cov(f, g)  c||f ||2,⇢||g||2,⇢e�d(⌃f ,⌃g)/⇠

⌃f

⌃g

⇤

d(⌃f ,⌃g)

Cov(f, g) = hf � hfi⇢, g � hgi⇢i⇢

Def: strong clustering

CovA[B(EA(f),EB(f))  c||f ||22,⇢e�w(A\B)/⇠

CovA[B(f, g) = hf � EA(f), g � EB(g)i⇢

⇤
A \B

AcBc

w(A \B)

different norm
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=

weak clustering

local 
indistinguishability

strong 
clustering

Equivalence breaks 
down for quantum 

systems!

⇤

A A

DLR THEORY (CLASSICAL)
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MAIN THEOREM

is gapped

satisfies strong clustering

L

L
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PROOF OUTLINE
Prop: If the Gibbs state satisfies strong clustering, 

then 

CovA[B(EA(f),EB(f))  ✏||f ||22,⇢

Assume w(A \B) ⇡
p
L w(A) ⇡ w(B) ⇡ L

VarA[B(f)  (1 + ✏)(VarA(f) + VarB(f))

 (1 + ✏)(��1
A hf,�LA(f)i⇢ + ��1

B hf,�LB(f)i⇢)

 (1 + ✏)��1
A,B(hf,�LA[B(f)i⇢ + hf,�LA\B(f)i⇢)

can eliminate this term by 
averaging

Thus we get: �(2L) ⇡ �(L) since 

VarA[B(f)  (1 + ✏)(VarA(f) + VarB(f))

✏  ce�
p
L/⇠ applying iteratively completes 

the proof

⇤
A \B

AcBc

w(A \B)
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PROOF OUTLINE
Map Liouvillian onto FF Hamiltonian

Use the detectability lemma 

Can invoke the 
theory of FF gaped 

Hamiltonians

By constructing an 
approximate projector ⇧l ⇡ E = E

in

E
out

it is not difficult to show that ||ÊAÊB � ÊA[B ||  e�l�/⇠
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MAIN THEOREM

is gapped

satisfies strong clustering

L

L
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APPLICATIONS 
In 1D strong and weak clustering are equivalent

In 1D Gibbs samplers are always gapped

Boundaries can be 
removed in 1D

One can use MPS methods in 1D

Beyond a universal critical temperature Gibbs 
samplers are gapped

Note: cannot use Araki’s result!
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OUTLOOK

Extend the results to get Log-Sobolev 
bounds

Consider what this means for topological order 
at non-zero temperature

What can we say about the non-
commuting case?
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THANK YOU FOR YOUR 
ATTENTION!
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