LOCAL APPROXIMATE ERROR CORRECTION CODES

Michael J. Kastoryano

w/ Steve Flammia, Jeongwan Haah and Isaac Kim

Quantum 1, 4 (2017) JHEP 04 (2017) 40

September 14 2017, QEC
U. Maryland
MOTIVATION

Intriguing example

- No quantum code can correct more than $n/4$ arbitrary errors
- Classical codes (Ex: repetition code) can correct up to $\lfloor n/2 \rfloor$ arbitrary classical errors

Crépeau et. al. (2005), quant-ph/0503139

Consequence of no-cloning theorem

Indication that approximate codes can outperform exact codes!

Crépeau et. al. (2005) construct an approximate quantum code that can correct up to $\lfloor n/2 \rfloor$ arbitrary quantum errors!
MOTIVATION

What about topological codes?

Codes often characterised by three numbers:
length \(n \); distance \(d \); encoded (qu-)bits \(k \)

Tradeoff bounds

- \(kd^2 \leq cn \)
 Commuting projector codes
 Bravyi, Poulin, Terhal

- \(kd \leq cn \)
 Subsystem codes
 Bravyi

- \(kd^{1/2} \leq cn \)
 Classical lattice systems
 Bravyi, Poulin, Terhal; Yoshida

Where do approximate quantum codes sit?
Lattice commuting projector codes

\[\{ S_j \} \quad [S_j, S_k] = 0 \quad S_j = S_j^2 \]

\[\Pi = \prod_j S_j \quad C = \{ |\psi\rangle, \Pi |\psi\rangle = |\psi\rangle \} \]

\[\rightarrow \quad C \text{ is the codespace} \quad \rightarrow \quad \text{Erasure errors} \]
Lattice commuting projector codes

\{ S_j \} \quad [S_j, S_k] = 0 \quad S_j = S_j^2

\Pi = \prod_j S_j \quad C = \{ |\psi\rangle, \Pi |\psi\rangle = |\psi\rangle \}

\rightarrow C \text{ is the codespace} \rightarrow \text{Erasure errors}

Lemma \quad Let \(C \) be a commuting projector code, and \(ABC = \Lambda \) be decomposition of the lattice such that the distance between \(A \) and \(C \) is at least \(\ell \geq w \), the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable \(O_\Lambda \) with support on \(A \), any two ground states \(|\phi\rangle \) and \(|\psi\rangle \) give the same expectation value, \(\langle \phi | O^A |\phi\rangle = \langle \psi | O^A |\psi\rangle \).

(ii) Decoupling: For any \(\rho \in C \) we have \(I_\rho(A:C|R) = 0 \).

(iii) Error correction: There exists a recovery map acting on \(AB \) such that \(R_B^{AB}(\rho^{BC}) = \rho^{ABC} \) for any \(\rho \in \Pi \).

(iv) Disentangling unitary: For any \(\rho \in C \) there exists a unitary \(U^B \), such that \(U^B \rho U^B\dagger = \omega^{AB_1} \otimes \rho^{B_2C} \), for some state \(\omega^{AB_1} \).

(v) Cleaning: For any unitary \(U \) preserving the code space, there exists a unitary \(V^{BC} \) such that \(U|_C = V^{BC}|_C \).
Lemma Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O_Λ with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_\rho(A : CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $R_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^B|_A = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1}.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_C = V^{BC}|_C$.

(i) Topological order
Lemma Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O_Λ with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_\rho(A : CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $R^A_B(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1}.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|c = V^{BC}|c$.

(i) Topological order

(ii) Decoupling $I_\rho(A : CR) = S(A) + S(AB) - S(B)$
Lemma. Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O_Λ with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle\phi| O^A |\phi\rangle = \langle\psi| O^A |\psi\rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_\rho(A : CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $R_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^B = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1}.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_C = V^{BC}|_C$.
Lemma. Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O_Λ with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_\rho(A : CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $R^A_B(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1}.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U |_C = V^{BC} |_C$.
Lemma Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_\rho(A : CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $R_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^B$ = $\omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1}.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U |_C = V^{BC} |_C$.
CLEANABILITY
CLEANABILITY
Lemma. Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O_Λ with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_\rho(A : CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $R_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^B^\dagger = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1}.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary $V^{BC} \big|_C$ such that $U \big|_C = V^{BC} \big|_C$.

Which properties can be extended to approximate codes?

Focus on topological codes; tradeoff bounds
BPT BOUND?

Tradeoff bound

\[kd^2 \leq cn \]

Subspace or commuting projector codes

Bravyi, Poulin, Terhal

→ Toric code saturates the bound in 2D

Proof:

- Expansion bound
- Union bound
- Counting degrees of freedom
Expansion Lemma:

If A is correctable and B is correctible, then $A \cup B$ is correctable.

Proof:

If A is correctable

$$\rho^{ACD} = \omega^A \otimes \rho^{CD} \quad (iv)$$

If B is correctable

$$\mathcal{R}_{AC}^{ABC} (\rho^{ACD}) = \rho^{ABCD} \quad (iii)$$

Define a map

$$\mathcal{F}_{C}^{ABC} (\rho^{CD}) = \mathcal{R}_{AC}^{ABC} (\omega^A \otimes \rho^{CD})$$

Show (iii)

$$\mathcal{F}_{C}^{ABC} (\rho^{CD}) = \mathcal{R}_{AC}^{ABC} (\omega^A \otimes \rho^{CD}) = \mathcal{R}_{AC}^{ABC} (\rho^{ACD}) = \rho^{ABCD}$$

$k d^2 \leq c n$
Union Lemma:
If A is correctable and B is correctible, then $A \cup B$ is correctable.

Proof:

\begin{align*}
A \text{ correctable } & \Rightarrow \mathcal{R}^{B \partial B}_\partial (\rho^A \setminus B) = \rho^A \tag{iv} \\
B \text{ correctable } & \Rightarrow \mathcal{R}^{B \partial B}_\partial (\rho^A \setminus A) = \rho^A \tag{iii} \\
\text{Clearly,} & \Rightarrow \mathcal{R}^{AB \partial B}_\partial (\rho^A \setminus AB) = \rho^A
\end{align*}

$k d^2 \leq cn$
Proof:

Construct the largest square correctible region by adding ‘onion’ rings.

\[
\text{Largest square region } d^2
\]

Decompose the lattice as in Fig 2.

\[
X \text{ and } Y \text{ are correctable}
\]

\[
I(X : R) = S(X) + S(R) - S(XR) = 0
\]

\[
S(Y) + S(R) - S(YR) = 0
\]

Sum the two and use subadditivity to get

\[
S(R) \leq S(Z)
\]

Take identity state on code space

\[
S(R) = k \log(2) \quad \text{and} \quad S(Z) \leq cn/d^2 \quad \Rightarrow \quad kd^2 \leq cn
\]
Lemma Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) *Topological Quantum Order (TQO):* for any observable O_A with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) *Decoupling:* For any $\rho \in C$ we have $I_\rho(A : CR) = 0$.

(iii) *Error correction:* There exists a recovery map acting on AB such that $R_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) *Disentangling unitary:* For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^B_\dagger = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1}.

(v) *Cleaning:* For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_C = V^{BC}|_C$.

Which properties can be extended to approximate codes?

Focus on topological codes; tradeoff bounds

Take as our basic definition
AQEC?

Definition (approximate correctability):

There exists a recovery map R_B^{AB} such that for any code state $\rho_{ABR} \in \mathcal{C}$ the following holds:

$$\mathcal{B}(\rho_{ABR}, R_B^{AB}(\rho_{BR})) \leq \delta$$

- Bures distance: $\mathcal{B}(\rho, \sigma)^2 = 1 - F(\rho, \sigma)$
 $$F(\rho, \sigma) = \text{tr}[\sqrt{\sqrt{\sigma} \rho \sqrt{\sigma}}]$$

- Stabilised distance; R is a copy of the logical space.
AQEC?

Definition (local approximate correctability):

There exists a recovery map R_{AB}^{CR} such that for any code state $\rho^{ABCR} \in \mathcal{C}$ the following holds:

$$\mathcal{B}(\rho^{ABCR}, R_{AB}^{CR} \rho^{BCR}) \leq \delta$$

→ state can be recovered without modifying C
Definition (information-disturbance tradeoff):

\[
\inf_{\omega^A} \sup_{\rho_{ABCR}} \mathcal{B}(\omega^A \otimes \rho^{CR}, \rho^{ACR}) = \inf_{\mathcal{R}_B^AB} \sup_{\rho_{ABCR}} \mathcal{B}(\mathcal{R}_B^AB (\rho^{BCR}, \rho^{ABCR})
\]

\[
\delta_\ell(A) := \inf_{\omega^A} \sup_{\rho_{ABCR}} \mathcal{B}(\omega^A \otimes \rho^{CR}, \rho^{ACR})
\]

\[\rho^{ABCR}\] is in the code space

\[\omega^A\] is some fixed state on \(A\)

\[\rho^{ABCR}\] is in the code space
Lemma Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O_Λ with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_\rho(A : CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $R_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^{B\dagger} = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1}.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_c = V^{BC}|_c$.

Which properties can be extended to approximate codes?

(iii) \iff (iv)
Definition (information-disturbance tradeoff):

\[
\inf_{\omega^A} \sup_{\rho_{ABCR}} B(\omega^A \otimes \rho^{CR}, \rho^{ACR}) = \inf_{\mathcal{R}_B^{AB}} \sup_{\rho_{ABCR}} B(\mathcal{R}_B^{AB}(\rho^{BCR}), \rho^{ABCR})
\]

\[
\delta_\ell(A) := \inf_{\omega^A} \sup_{\rho_{ABCR}} B(\omega^A \otimes \rho^{CR}, \rho^{ACR})
\]

Definition (decoupling):

\[
\frac{1}{9} \delta_\ell(A)^2 \leq \sup_{\rho_{ABCR}} B(\rho^{ACR}, \rho^A \otimes \rho^{CR}) \leq 2\delta_\ell(A)
\]
Lemma Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O_Λ with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_\rho (A : CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $R_B^{AB} (\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^B^\dagger = \omega^{AB_1} \otimes \rho^{B_2C}$, for some state ω^{AB_1}.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_C = V^{BC}|_C$

Which properties can be extended to approximate codes?

(iii) \iff (iv)

(iii) \iff (ii) but with different error order
Error correction \Rightarrow cleanability:
If A is locally correctable: $B(\mathcal{R}^{AB}_B(\rho^{BCR}), \rho^{ABCR}) \leq \delta$
Then for any logical unitary U^{ABC}, the pull-back $V^{BC} = (\mathcal{R}^{AB}_B)^*(U^{ABC})$ satisfies
$$\|(U^{ABC} - V^{BC})\Pi\| \leq 4\sqrt{\delta}$$

Error correction \Leftarrow cleanability:
If for any U^{AB} there exists a $\|V^B\| \leq 1$ on B s.t. $\|(U^{ABC} - V^{BC})\Pi\| \leq \delta$
Then there exists ω^A s.t.
$$\|\rho^{AB} - \omega^A \otimes \rho^R\|_1 \leq 5\delta$$
Lemma Let C be a commuting projector code, and $ABC = \Lambda$ be decomposition of the lattice such that the distance between A and C is at least $\ell \geq w$, the interaction range (e.g. as in Fig. 3.) Then the following are equivalent:

(i) Topological Quantum Order (TQO): for any observable O_Λ with support on A, any two ground states $|\phi\rangle$ and $|\psi\rangle$ give the same expectation value, $\langle \phi | O^A | \phi \rangle = \langle \psi | O^A | \psi \rangle$.

(ii) Decoupling: For any $\rho \in C$ we have $I_\rho(A : CR) = 0$.

(iii) Error correction: There exists a recovery map acting on AB such that $R_B^{AB}(\rho^{BC}) = \rho^{ABC}$ for any $\rho \in \Pi$.

(iv) Disentangling unitary: For any $\rho \in C$ there exists a unitary U^B, such that $U^B \rho U^B_\dagger = \omega^{AB_1} \otimes \rho^{B_2 C}$, for some state ω^{AB_1}.

(v) Cleaning: For any unitary U preserving the code space, there exists a unitary V^{BC} such that $U|_C = V^{BC}|_C$.

Which properties can be extended to approximate codes?

(iii) \iff (iv)

(iii) \iff (ii) but with different error order

(iii) \iff (v) but with different error order and different locality constraints
APPROXIMATE BPT

Tradeoff bound

\[kd^2 \leq cn \quad \text{becomes} \quad (1 - c \frac{n\delta}{d} \log \frac{d}{n\delta})kd^2 \leq c'n\ell^4 \]

Proof:

- Approximate expansion bound
- Need (iv) and (iii)

- Approximate union bound
- Need locality of recovery
Proof:

Construct the largest square correctible region by adding ‘onion’ rings.

Decompose the lattice as in Fig 2.

X and Y are correctable

$I(X : R) = S(X) + S(R) - S(XR) = 0$

$S(Y) + S(R) - S(YR) = 0$

Sum the two and use subadditivity to get

$S(R) \leq S(Z)$

Take identity state on code space

$S(R) = k\log(2) \quad \text{and} \quad S(Z) \leq cn/d^2 \quad \Rightarrow \quad kd^2 \leq cn$

\[\square\]
Proof:

Construct the largest square correctible region by adding ‘onion’ rings.

Need (iii) = (iv)

Decompose the lattice as in Fig 2.

\[I(X : R) = S(X) + S(R) - S(XR) = 0 \]

\[S(Y) + S(R) - S(YR) = 0 \]

Sum the two and use subadditivity to get

\[S(R) \leq cn/d^2 \quad \Rightarrow \quad kd^2 \leq cn \]
EXAMPLES

(i) Perturbations of commuting projector codes

Follows from the stability of topological order and Lieb-Robinson bounds
EXAMPLES

(i) Perturbations of commuting projector codes

Follows from the stability of topological order and Lieb-Robinson bounds

(ii) MERA codes
MERA CODES

\[s = 5 \]
\[\mathcal{H}_5 \]

\[s = 4 \]
\[s = 3 \]
\[s = 2 \]
\[s = 1 \]
\[s = 0 \]

“Disentangling” unitary

Isometry

Logical space

Physical space
The MERA circuit encodes the subspace \mathcal{H}_s into \mathcal{H}_0 as

$$|\rho_s\rangle = W_1 W_2 \cdots W_s |\phi(s)\rangle \quad |\phi(s)\rangle \in \mathcal{H}_s$$

$C_s \subset \mathcal{H}_s$
Local operators get mapped to local operators!
\[\langle \rho_s | O_s | \sigma_s \rangle = \langle \rho_{s+1} | \Phi_{s+1}^s (O_s) | \sigma_{s+1} \rangle \]

\(\Phi(O) \) is a quantum channel in the Heisenberg picture

\(\Phi^n(O) \approx 1 \text{tr}[\rho O] \) Exponentially fast in n.

Local operators get mapped to local operators!
Definition (information-disturbance tradeoff):

$$\inf_{\omega^A} \sup_{\rho_{ABCR}} \mathcal{B}(\omega^A \otimes \rho^{CR}, \rho^{ACR}) = \inf_{\mathcal{R}_B^{AB}} \sup_{\rho_{ABCR}} \mathcal{B}(\mathcal{R}_B^{AB}(\rho^{BCR}), \rho^{ABCR})$$

$$\frac{1}{9} \delta_\ell(A)^2 \leq \sup_{\rho_{ABCR}} \mathcal{B}(\rho^{ACR}, \rho^A \otimes \rho^{CR}) \leq 2\delta_\ell(A)$$

$$\delta_\ell(A) := \inf_{\omega^A} \sup_{\rho_{ABCR}} \mathcal{B}(\omega^A \otimes \rho^{CR}, \rho^{ACR})$$

More familiar distance measure

$$2B^2(\rho, \sigma) \leq \|\rho - \sigma\|_1 \leq 2\sqrt{2}B(\rho, \sigma)$$

To show the existence of a good local recovery map, we need to bound:

$$\|\rho^A \otimes \rho^{CR} - \rho^{ACR}\|_1$$ is small

Proof is very similar to showing decay of correlations
Disentangling unitary Isometry

Logical space

Physical space

\[\|R_{AB}^B (\rho^{BCR}) - \rho^{ABCR}\|_1 \leq c \left(\frac{|A|}{|AB|} \right)^{\nu/2}\]

Proof is similar to that for decay of correlations in MERA
PROOF SKETCH

\[\begin{align*}
\|\rho^A \otimes \rho^{CR} - \rho^{ACR}\|_1 &= \sup_{O_{ACR}} \text{tr}[O_{ACR}(\rho^A \otimes \rho^{CR} - \rho^{ACR})] \\
\text{tr}[O_{ACR}\rho] &= \text{tr}[\Phi^s(O_{ACR})\rho(s)] = \sum_j \text{tr}[\Phi^s(O_{Aj}) \otimes \Phi^s(O_{CRj})\rho(s)] \\
&\approx \sum_j \text{tr}[1 \otimes \Phi^s(O_{CRj})\rho(s)]\text{tr}[O_{Aj}\sigma]
\end{align*} \]
FURTHER RESULTS

Tradeoff bound

\[K d^\alpha \leq cn \]
\[\alpha = 0.63 \]
\[\alpha = 0.78 \] From uberholography

Lieb-Robinson bound

\[\| [O_A, O_B(t)] \| \leq \| O_A \| \| O_B \| e^{\log(vt) - d(A,B)/\xi} \]
HOLOGRAPHY?

Constructive connection b/w QEC and Holography?

Useful toy model

Possible access to dynamics

Some properties not recovered (entanglement wedge hypothesis)
OPEN PROBLEMS

Further examples?

Source-channel codes

Decoding MERA codes / AQEC?

Defining topological order with frustration

Dynamics or Fault tolerance?

Approximate Eastin-Knill?