

LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS

Michael J. Kastoryano

November 14 2016, QuSoft Amsterdam

VILLUM FONDEN

CONTENTS

Local recovery maps

Exact recovery and approximate recovery

Local recovery for many body systems

Hammersley-Clifford and Gibbs sampling

State preparation

Evaluating local expectation values Efficient state preparation

Further Applications

LOCAL RECOVERY MAPS

Strong subadditivity (SSA):

$$I_{\rho}(A:C|B) = S(AB) + S(BC) - S(B) - S(ABC) \ge 0$$

Equality

$$I_{\rho}(A:C|B) = 0 \quad \Leftrightarrow \quad R_{AB}(\rho_{BC}) = \rho$$

Petz map

$$R_{AB}(\sigma) = \rho_{AB}^{1/2} \rho_B^{-1/2} \sigma \rho_B^{-1/2} \rho_{AB}^{1/2}$$

M. Ohya and D. Petz, (2004)

Markov State

$$\rho = \bigoplus_{j} \rho_{AB_{j}^{L}} \otimes \rho_{B_{j}^{R}C}$$

P. Hayden, et. al., CMP 246 (2004)

there exists a disentangling unitary on B.

Approximately LOCAL RECOVERY MAPS

Strengthening SSA:

$$I_{\rho}(A:C|B) \ge -2\log_2 F(\rho, R_{AB}(\rho_{AB}))$$

O. Fawzi and R. Renner, CMP 340 (2015)

Rotated Petz map

$$R_{AB}(\sigma) = \int dt \beta(t) \rho_{AB}^{\frac{1}{2}+it} \rho_{B}^{-\frac{1}{2}-it} \sigma \rho_{B}^{-\frac{1}{2}+it} \rho_{AB}^{\frac{1}{2}-it}$$

M. Junge, et. al. arXiv:1509.07127

ABC are arbitrary

Is the map universal?

Is the conditional mutual information necessary?

Other properties of the map?

APPLICATIONS

Shannon Theory and Entanglement theory

APPLICATIONS

Shannon Theory and Entanglement theory

Classical Simulations

Tensor networks, stoquastic models

Quantum Simulations (sampling)

Topological order

Quantum error correction

Renormalization Group, critical models, AdS/CFT

APPLICATIONS

Shannon Theory and Entanglement theory

Classical Simulations

Tensor networks, stoquastic models

Quantum Simulations (sampling)

Topological order

Quantum error correction

Renormalization Group, critical models, AdS/CFT

MANY-BODY SETTING

Exact recovery

For any A, and B shielding A:

$$I_{\rho}(A:C|B) = 0$$

$$\mathcal{H} = \mathcal{H}_2^{\otimes N}$$

HAMMERSLEY-CLIFFORD

Exact recovery

For any A, and B shielding A:

$$I_{\rho}(A:C|B) = 0$$

 $\rho > 0$ is the Gibbs state of a local commuting H

W. Brown, D. Poulin, arXiv:1206.0755

 $ho = |\psi\rangle\langle\psi|$ is the ground state of a local commuting H

$$\mathcal{H} = \mathcal{H}_2^{\otimes N}$$

HAMMERSLEY-CLIFFORD

Exact recovery

For any A, and B shielding A:

$$I_{\rho}(A:C|B) = 0$$

 $\rho > 0$ is the Gibbs state of a local commuting H

W. Brown, D. Poulin, arXiv:1206.0755

 $ho = |\psi\rangle\langle\psi|$ is the ground state of a local commuting H

 $\mathcal{H}=\mathcal{H}_2^{\otimes N}$

Approximate recovery

For any A, and B shielding A:

$$I_{\rho}(A:C|B) \leq Ke^{-c\ell}$$

HAMMERSLEY-CLIFFORD

Exact recovery

For any A, and B shielding A:

$$I_{\rho}(A:C|B) = 0$$

 $\rho > 0$ is the Gibbs state of a local commuting H

W. Brown, D. Poulin, arXiv:1206.0755

 $ho = |\psi\rangle\langle\psi|$ is the ground state of a local commuting H

$$\mathcal{H} = \mathcal{H}_2^{\otimes N}$$

Approximate recovery

For any A, and B shielding A:

$$I_{\rho}(A:C|B) \le Ke^{-c\ell}$$

 $\rho > 0$ is the Gibbs state of a local non-commuting H

K. Kato, F Brandao, arXiv:1609.06636

 $\rho = |\psi\rangle\langle\psi|$ is the ground state of a gaped local non-commuting H

AREA LAW

Further consequences

$$I(A:B_1\cdots B_{n+1}) - I(A:B_1\cdots B_n) = I(A:B_{n+1}|B_1\cdots B_n)$$

Mutual info area law: $I(A:A^c) \le c|\partial A|$

Decaying CMI provides a quantitative MI area law

AREA LAW

Further consequences

$$I(A:B_1\cdots B_{n+1}) - I(A:B_1\cdots B_n) = I(A:B_{n+1}|B_1\cdots B_n)$$

Mutual info area law: $I(A:A^c) \le c|\partial A|$

Decaying CMI provides a quantitative MI area law

Can also show:

Small CMI implies efficient MPS/MPO representation!

Take-home message:

CMI replaces Area Law, HC program replaces the area law conjecture

AREA LAW

Further consequences

Mutual info area law: $I(A:A^c) \le c|\partial A|$

Decaying CML

quantitat

What about dynamics and state preparation?

Can also show

Take-home message:

CMI replaces Area Law, HC program replaces the area law conjecture

 B_1

 $\overline{B_3}$

MONTE-CARLO SIMULATIONS

Want to evaluate:

$$\langle Q \rangle = \sum_{x} \pi(x) Q(x)$$
 $\pi \propto e^{-\beta H}$ classical Gibbs state

Idea: - obtain a sample configuration from the distribution π - Set up a Markov chain with π as an approximate fixed point

MONTE-CARLO SIMULATIONS

Want to evaluate:

$$\langle Q \rangle = \sum_{x} \pi(x) Q(x)$$
 $\pi \propto e^{-\beta H}$ classical Gibbs state

Idea: - obtain a sample configuration from the distribution π - Set up a Markov chain with π as an approximate fixed point

Metropolis algorithm: (- start with random configuration)

- Flip a spin at random, calculate energy
- If energy decreased, accept the flip
- If energy increased, accept the flip with probability $\,p_{\mathrm{flip}} = e^{-\beta \Delta E}$
- Repeat until equilibrium is reached

MONTE-CARLO SIMULATIONS

Want to evaluate:

$$\langle Q \rangle = \sum_{x} \pi(x) Q(x)$$
 $\pi \propto e^{-\beta H}$ classical Gibbs state

Idea: - obtain a sample configuration from the distribution π - Set up a Markov chain with π as an approximate fixed point

Metropolis algorithm: (- start with random configuration)

- Flip a spin at random, calculate energy
- If energy decreased, accept the flip
- If energy increased, accept the flip with probability $\,p_{\mathrm{flip}} = e^{-\beta \Delta E}$
- Repeat until equilibrium is reached

Equilibrium?

ANALYTIC RESULTS

Note: - Glauber dynamics (Metropolis) is modeled by a semigroup $P_t = e^{tL}$

ANALYTIC RESULTS

Note: - Glauber dynamics (Metropolis) is modeled by a

semigroup

 $P_t = e^{tL}$

Fundamental result for Glauber dynamics:

 π has exponentially decaying correlations

 P_t mixes in time $O(\log(N))$

L is gapped

F. Martinelli, Lect. Prof. Theor. Stats, Springer A. Guionnet, B. Zegarlinski, Sem. Prob., Springer

independent of boundary conditions in 2D

independent of specifics of the model

no intermediate mixing

QUANTUM GIBBS SAMPLERS

Commuting Hamiltonian

Davies maps are another generalization of Glauber dynamics

MJK and K. Temme, arXiv:1505.07811

$$T_t = e^{t\mathcal{L}}$$

$$\mathcal{L} = \sum_{j \in \Lambda} (R_{j\partial} - id)$$
 $R_{j\partial}$ is the Petz recovery map!

QUANTUM GIBBS SAMPLERS

Commuting Hamiltonian

Davies maps are another generalization of Glauber dynamics

MJK and K. Temme, arXiv:1505.07811

$$T_t = e^{t\mathcal{L}}$$

$$\mathcal{L} = \sum_{j \in \Lambda} (R_{j\partial} - id)$$
 $R_{j\partial}$ is the Petz recovery map!

The exists a partial extension of the statics = dynamics theorem

MJK and F. Brandao, CMP 344 (2016)

QUANTUM GIBBS SAMPLERS

Commuting Hamiltonian

Davies maps are another generalization of Glauber dynamics MJK and K. Temme, arXiv:1505.07811

$$T_t = e^{t\mathcal{L}}$$

$$\mathcal{L} = \sum_{j \in \Lambda} (R_{j\partial} - id)$$
 $R_{j\partial}$ is the Petz recovery map!

The exists a partial extension of the statics = dynamics theorem

MJK and F. Brandao, CMP 344 (2016)

Non-commuting Hamiltonian

$$\mathcal{L} = \sum_{j \in \Lambda} (R_{j\partial} - id)$$

 $R_{i\partial}$ is the rotated Petz map!

no longer frustration-free

Theorem *does not hold

Davies maps are non-local

STATE PREPARATION

Based on: MJK, F. Brandao, arXiv:1609.07877

SETTING

Lattice:

$$A \subset \Lambda$$

Hamiltonian:

$$H_A = \sum_{Z \subset A} h_Z$$

$$h_Z = 0 \text{ for } |Z| \ge K$$

Gibbs states: $\rho^A = e^{-\beta H_A}/\text{Tr}[e^{-\beta H_A}]$

is the Gibbs state restricted to A

Note:

Superscript for domain of definition of Gibbs state, while subscript for partial trace.

THE MARKOV CONDITION

Uniform Markov:

Any subset $X = ABC \subset \Lambda$ with B shielding A from C in X , we have

$$I_{\rho^X}(A:C|B) \le \delta(\ell)$$

Recall: $\rho^X = e^{-\beta H_X} / \text{Tr}[e^{-\beta H_X}]$

Also must hold for noncontractible regions

CORRELATIONS

Uniform Clustering:

Any subset $X = ABC \subset \Lambda$ with $\operatorname{supp}(f) \subset A \text{ and } \operatorname{supp}(g) \subset B$

$$\operatorname{Cov}_{\rho^X}(f,g) \le \epsilon(\ell)$$

$$\operatorname{Cov}_{\rho}(f,g) = |\operatorname{tr}[\rho f g] - \operatorname{tr}[\rho f]\operatorname{tr}[\rho g]|$$

Note: Uniform Clustering follows from uniform Gap

LOCAL PERTURBATIONS

Commuting Hamiltonian

$$e^{-\beta(H^A+H^B)} = e^{-\beta H^A}e^{-\beta H^B}$$
 if
$$[H^A,H^B] = 0$$

MB. Hastings, PRB 201102 (2007)

Non-commuting Hamiltonian

General $e^{-\beta(H+V)} = O_V e^{-\beta H} O_V^{\dagger}$

$$||O_V - O_V^{\ell}|| \le c_1 e^{-c_2 \ell} \equiv \gamma(\ell)$$

$$||O_V|| \le e^{\beta||V||}$$

Only works if V is local!

APPROXIMATIONS

Uniform Markov

$$I_{\rho^X}(A:C|B) \le \delta(\ell)$$

Uniform clustering

$$\operatorname{Cov}_{\rho^X}(f,g) \le \epsilon(\ell)$$

Local perturbations

$$||e^{-\beta(H+V)} - O_V^{\ell} e^{-\beta H} O_V^{\ell}|| \le c_1 e^{-c_2 \ell} \equiv \gamma(\ell)$$

LOCAL INDISTINGUISHABILITY

Result 1:

Any subset $X=ABC\subset \Lambda$ with B shielding A from C in X , if ρ is uniformly clustering,

$$||\operatorname{tr}_{BC}[\rho^{ABC}] - \operatorname{tr}_{B}[\rho^{AB}]||_{1} \le c|AB|(\epsilon(\ell) + \gamma(\ell))|$$

Consequence:

Efficient evaluation of local expectation values

$$\langle O_A \rangle = \operatorname{tr}[\rho^{\Lambda} O_A] \approx \operatorname{tr}[\rho^{AB} O_A]$$

Tuesday, November 15, 16

LOCAL INDISTINGUISHABILITY

Result 1:

Any subset $X = ABC \subset \Lambda$ with B shielding A from C in X, if ρ is uniformly clustering,

$$||\operatorname{tr}_{BC}[\rho^{ABC}] - \operatorname{tr}_{B}[\rho^{AB}]||_{1} \le c|AB|(\epsilon(\ell) + \gamma(\ell))|$$

Proof idea:

Remove pieces of the boundary of \boldsymbol{B} one by one

telescopic sum

$$||\operatorname{tr}_{BC}[\rho^{X} - \rho^{AB} \otimes \rho^{C}]||_{1} \le \sum_{j} ||\operatorname{tr}_{BC}[\rho^{X_{j+1}} - \rho^{X_{j}}]||_{1}$$

Bound each term

$$\begin{aligned} ||\operatorname{tr}_{BC}[\rho^{X_{j+1}} - \rho^{X_{j}}]||_{1} &\approx \sup_{g_{A}} |\operatorname{tr}[g_{A}(O_{j}^{\ell}\rho^{X_{j}}O_{j}^{\ell,\dagger} - \rho^{X_{j}}]| \\ &= \operatorname{Cov}_{\rho} x_{j} \left(g_{A}, O_{j}^{\ell,\dagger}O_{j}^{\ell}\right) \end{aligned}$$

STATE PREPARATION

Main Result:

If ρ is uniformly clustering and uniformly Markov, then there exists a depth D+1 circuit of quantum channels $\mathbb{F}=\mathbb{F}_{D+1}\cdots\mathbb{F}_1$ of local range $O(\log(L))$, such that

$$||\mathbb{F}(\psi) - \rho||_1 \le cL^D(\epsilon(\ell) + \delta(\ell) + \gamma(\ell))$$

MJK, F. Brandao, arXiv:1609.07877

STATE PREPARATION

Main Result:

If ρ is uniformly clustering and uniformly Markov, then there exists a depth D+1 circuit of quantum channels $\mathbb{F}=\mathbb{F}_{D+1}\cdots\mathbb{F}_1$ of local range $O(\log(L))$, such that

$$||\mathbb{F}(\psi) - \rho||_1 \le cL^D(\epsilon(\ell) + \delta(\ell) + \gamma(\ell))$$

MJK, F. Brandao, arXiv:1609.07877

Corollary:

If ρ is uniformly clustering and uniformly Markov, then there exists a depth $M = O(\log(L))$ circuit of strictly local quantum channels $\mathbb{F} = \mathbb{F}_M \cdots \mathbb{F}_1$, such that

$$||\mathbb{F}(\psi) - \rho||_1 \le cL^D(\epsilon(\ell) + \delta(\ell) + \gamma(\ell))$$

PROOF OUTLINE

- Cover the lattice in concentric squares $A_- \subset A \subset A_+$
- By the Markov condition

$$||R_{A_+}^{\rho}(\rho_{A^c}) - \rho||_1 \le N_A(\gamma(\ell) + \delta(\ell))$$

By Local indistinguishability $||\operatorname{tr}_A[\rho_{A^c}^{A_c^c}] - \rho_{A^c}||_1 \leq N_A \epsilon(\ell)$

• Local cpt map $\mathbb{F}_A \equiv R_{A_+}^{\rho} \operatorname{tr}_A$

$$||\mathbb{F}_A(\rho^{A_-^c}) - \rho||_1 \le N_A(\epsilon(\ell) + \gamma(\ell) + \delta(\ell))$$

If we can build the lattice A_{-}^{c} with holes, then we can reconstruct the original lattice.

PROOF OUTLINE

Step 2:

 Λ

Break up the connecting regions

$$B_- \subset B \subset B_+$$

By the Markov condition

$$||R_{B_{+}}^{\rho^{A_{-}^{c}}}(\rho_{B^{c}}^{A_{-}^{c}}) - \rho^{A_{-}^{c}}||_{1} \le N_{B}(\gamma(\ell) + \delta(\ell))$$

By Local indistinguishability

$$||\operatorname{tr}_{B}[\rho^{(A_{-}B_{-})^{c}}] - \rho_{B^{c}}^{A_{-}^{c}}]||_{1} \le N_{B}\epsilon(\ell)$$

• Local cpt map $\mathbb{F}_B \equiv R_{B_+}^{\rho^{A_-^c}} \operatorname{tr}_B$

$$||\mathbb{F}_B\mathbb{F}_A(\rho^{(A_-B_-)^c}) - \rho||_1 \le (N_A + N_B)(\epsilon(\ell) + \gamma(\ell) + \delta(\ell))$$

If we can build the lattice $(A_{-}B_{-})^{c}$, then we can reconstruct the original lattice.

PROOF OUTLINE

Step 3:

- ullet Project onto ρ^C
- By locality

$$\mathbb{F}_C(\psi) = \rho^c \operatorname{tr}_C[\psi]$$

• Finally $||\mathbb{F}_C \mathbb{F}_B \mathbb{F}_A(\psi) - \rho||_1 \le (N_C + N_A + N_B)(\epsilon(\ell) + \gamma(\ell) + \delta(\ell))$

The entire lattice can be built from a local circuit of cpt maps.

GROUND STATES

Proof ingredients

- (uniform) Local indistinguishability
- (uniform) Markov condition
- Local definition of states

- For injective PEPS, proof can be reproduced exactly.
- We can show that the conditions of the theorem hold it the topological entanglement entropy is zero.

SPECTRAL GAP

We showed:

$$||\mathbb{F}_C \mathbb{F}_B \mathbb{F}_A(\psi) - \rho||_1 \le L^D e^{-\ell/\xi}$$

Define

$$\mathbb{F}_A = e^{t\mathcal{L}_A}$$

$$\mathcal{L}_A = \sum_j (\mathbb{F}_{A_i} - \mathrm{id})$$

If \mathbb{F}_A , \mathbb{F}_B , \mathbb{F}_C had the same fixed point, then $\mathcal{L} = \mathcal{L}_A + \mathcal{L}_B + \mathcal{L}_C$ is gaped, by the reverse detectability lemma.

A. Anshu, et. al., Phys. Rev. B 93, 205142 (2016)

- The same strategy works for proving gaps of parent Hamiltonians of injective PEPS
- New strategy for proving the gap of the 2D AKLT model!!!

All about boundary conditions

OUTLOOK

Spectral gap analysis, entanglement spectrum

New classification for many-body systems

Approximate Quantum error correction

Tradeoff bounds

S. Flammia, J. Haah, MJK, I. Kim, arXiv:1610.06169

New codes?

Renormalization Group, critical models, AdS/CFT

