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Abstract. We report new results on the non-conserved dynamics of parallel steps on vicinal surfaces in the
case of sublimation with electromigration and step-step interactions. The derived equations are valid in the
quasistatic approximation and in the limit f−1 � lD � l± � li, where f is the inverse electromigration
length, lD the diffusion length, l± the kinetic lengths and li the terrace widths. The coupling between
crystal sublimation and step-step interactions induces non-linear, non-conservative terms in the equations
of motion. Depending on the initial conditions, this leads to interrupted coarsening, anticoarsening of step
bunches or periodic switching between step trains of different numbers of bunches.

1 Introduction

For the theoretical study of homoepitaxial growth and
sublimation of a crystal in contact with the gas phase it
is important to have a model, which includes the kinetic
processes and the different effects existing on the crystal
surface. The classical model for the evolution of vicinal
surfaces was introduced by Burton, Cabrera and Frank
(BCF) [1]. It is based on the observation that the kink
sites are those positions at the surface steps where the
exchange between the adatom layer on the terraces and
the solid phase takes place. On the mesoscopic scale the
change of the crystal volume is a result of the movement
of the steps. On this scale we can reduce a surface with
straight steps to a one-dimensional step train. Such a sur-
face may undergo step bunching, an instability where the
steps move close to each other and form groups, called
step bunches [2–5].

The theoretical description of step bunching instabili-
ties within the framework of the BCF-model and its exten-
sions has been the subject of much recent interest [6–14].
Here we focus specifically on the effect of non-conservative
processes on the non-linear evolution of a step train. As
we reported in [14] for the problem of sublimation in the
presence of Ehrlich-Schwoebel (ES) barriers [15,16], non-
conservative terms violating volume conservation in the
co-moving frame arise generically from the interplay of
sublimation and step-step interactions, and cause the in-
terruption of the coarsening of the growing bunches or
splitting of a large bunch into several smaller bunches.
In the present paper we expand this analysis to include
the experimentally relevant effect of surface electromi-
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gration [2,5,17–27]. In 1989, Latyshev and collaborators
discovered that by changing the direction of the direct
heating current, a vicinal Si(111) surface switches be-
tween bunching and debunching [17]. Additionally, they
observed several distinct temperature regimes. In the so
called regimes I and III [5] the bunching instability occurs
only if the heating current is applied in the down-step
direction. On the other hand, for the same direction in
regime II debunching occurs, and bunching requires an
up-step current. Here, we consider the first temperature
regime, where the temperature is low enough in order to
neglect step transparency (the motion of adatoms across
steps) [5,8,25].

Interrupted coarsening of electromigration-induced
step bunches in the presence of sublimation was previ-
ously observed numerically by Sato and Uwaha [6], how-
ever a detailed analysis of the phenomenon was not carried
out due to the complexity of their model. Other stud-
ies have approached the problem within the framework of
weakly nonlinear amplitude equations, which can be sys-
tematically derived by an expansion around the instability
threshold [5]. In this setting the non-conserved dynamics
is described on large scales by the Benney equation, which
displays either spatio-temporal chaos or an ordered array
of bunches, but no coarsening [28,29]. This macroscopic
behavior is consistent with the complex mesoscopic step
dynamics revealed in the present work.

The paper is organized as follows. First, we sketch the
derivation of the discrete step equations for the case of
attachment-detachment limited kinetics and present the
result of the linear stability analysis for very large wave
lengths. Additionally, for comparison, we write down the
corresponding equations for the case of growth. We then
discuss the discrete equations and their continuum limits
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for two special cases, where the kinetic asymmetry be-
tween ascending and descending steps is caused solely by
an ES-effect or by electromigration, respectively. Finally,
we show the results of numerical simulations of the dis-
crete step equations for the case with electromigration.

2 Model

We consider an ascending one-dimensional step train with
step edges located at positions xi (Fig. 1). The starting
point for the derivation of the equations of motion for the
steps is the balance equation

∂ni

∂t
= Ds

[
∂2ni

∂x2
− f

∂ni

∂x

]
− ni

τ
+ F

!= 0 (1)

for the concentration of adatoms ni(x, t) on the ith ter-
race of width li = xi+1 − xi. Here Ds is the surface diffu-
sion constant, and τ is the average life time of an adatom
before desorption. Together these two quantities define
the diffusion length lD =

√
Dsτ , which sets the scale of

spatial variation for the adatom concentration. The ter-
race is losing adatoms due to desorption at rate 1/τ and
gaining adatoms because of deposition with constant flux
F . The applied direct heating force Fel causes a drift of
adatoms for which we can use the Einstein relation and
define a further length scale, the so called electromigra-
tion length f−1 = kBT/Fel [6,18]. As is common in the
field, we assume that the adatom concentration adjusts
instantaneously to the slowly moving steps, an assump-
tion that is known as the quasistatic approximation and
amounts to setting ∂tni(x, t) = 0 in (1). An approach that
goes beyond this approximation was recently presented by
Ranguelov and Stoyanov [24,25].

The general solution ni(x) of the ordinary differential
equation (1) can be specified using mass conservation at
the steps as boundary conditions. A terrace of width l is
bounded by two steps with positions x = ±l/2, at which
the flux continuity conditions

f−
Ω

= Ds

[
∂n

∂x
− fn

]
= +k−[n − neq], x = − l

2
,

f+

Ω
= Ds

[
∂n

∂x
− fn

]
= −k+[n − neq] x = +

l

2
, (2)

must hold, where Ω is the cross section of an atomic site at
the step. The labels +/− refer to quantities correspond-
ing to the lower/upper terrace of a step. The fluxes f±
depend on both the difference of the adatom concentra-
tion n(x) compared to its equilibrium value neq and on
the attachment/detachment to the steps with kinetic co-
efficients k±. If the condition k+ > k− is fulfilled we speak
about a standard ES effect [15]. It induces an asymmetry
in the concentration profiles ni(x) quantified by the asym-
metry parameter

bES ≡ k+ − k−
k+ + k−

=
l− − l+
l− + l+

, (3)

x

h Fel−→
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Ds

1
τ

F

Fig. 1. (Color online) Sketch of the elementary processes in
the Burton-Cabrera-Frank model.

where l± = Ds/k± are called kinetic lengths.
Apart from the attachment kinetics, a second effect

incorporated into the boundary conditions (2) is the step-
step repulsion. The equilibrium concentration neq is de-
termined by the chemical potential Δμi at the ith step
through the relation neq ≈ n0

eq(1 + �μi/kBT ), and �μi

depends on the widths of the two neighboring terraces li
and li−1 according to [2,30]

�μi

kBT
= −g

(
l3

l3i
− l3

l3i−1

)
= : gνi, (4)

where l is the mean terrace spacing and g is a dimension-
less measure for the strength of repulsion between the
steps [2,31].

3 Step equations of motion

Using equations (1), (2) and (4) we find the concentrations
ni(x) for all terraces. The velocity of the ith step is then
given by the superposition of the fluxes coming from the
two neighboring terraces as dxi/dt = f− + f+. Since the
non-conservative terms of primary interest here arise from
sublimation, we discuss separately the limiting cases of
pure sublimation (F = 0, 1

τ > 0) and pure growth (F >

0, 1
τ = 0); of course, in a typical experimental setup both

processes may proceed simultaneously. For the case of pure
sublimation and in the limit f−1 � lD, we obtain the non-
linear system

R−1 dxi

dt
=

[(
l+
l2D

+ f
2

)
si + 1

lD
ci

]
γi − 1

lD
e−

fli
2 γi+1[

f(l−−l+)
2 + 1

]
si + l−+l+

lD
ci

+

[
( l−

l2D
− f

2 )si−1 + 1
lD

ci−1

]
γi − 1

lD
e

fli−1
2 γi−1[

f(l−−l+)
2 + 1

]
si−1 + l−+l+

lD
ci−1

,

(5)

where R = n0
eqΩDs, si = sinh(li/lD), ci = cosh(li/lD) and

γi = 1 + gνi. The result (5) contains all four length scales
and illustrates the complicated functional dependence for
a simple one-dimensional step train.

To simplify these expressions we use the approximation
of attachment-detachment limited kinetics, lD � l± �
l [31,32]. After some calculations along the lines of [14]

http://www.epj.org


Eur. Phys. J. B (2012) 85: 72 Page 3 of 7

we arrive at

R−1
e

dxi

dt
≈ γi

[
(1 − bES)

2
li +

(1 + bES)
2

li−1

]

+ U (2νi − νi+1 − νi−1)

− bel

2
[(γi + γi+1) li − (γi + γi−1) li−1] . (6)

Here a second asymmetry parameter

bel ≡ − fl2D
l− + l+

(7)

incorporating the strength of electromigration has been
introduced, Re = (n0

eqΩDs)/l2D = n0
eqΩ/τ is the constant

rate with which the surface changes volume in a unit time
(in the absence of non-linear, non-conservative terms, see
below) and U = (gl2D)/(l− + l+).

4 Linear stability

Equations similar to (6) can be derived when the sur-
face is subject to a growth flux but sublimation is absent
(F > 0, 1

τ = 0). In that case the factor γi in front of
the square bracket on the right hand side of (6), which
depends nonlinearly on the step coordinates, is replaced
by the constant

γ = −Fτ

n0
eq

. (8)

Analogous to the problem considered in [14], this implies
qualitatively different instability conditions for growth
and sublimation. Performing a standard linear stability
analysis, in the limit of large wavelength perturbations we
find the instability conditions

bsub ≡ 2bel + bES > 6g for sublimation (9)

bgr ≡ 2bel − Fτ

n0
eq

bES > 0 for growth. (10)

In the case of growth step bunching merely requires
the compound asymmetry parameter bgr to be positive,
whereas for sublimation the corresponding quantity bsub

needs to exceed a positive threshold value 6g. This is an
important consequence of the qualitatively different con-
tributions to the balance equation (1) that arise from des-
orption and deposition, respectively. Note that in a gen-
eral situation the instability conditions (9), (10) can be
combined into the form b = (1− Fτ/n0

eq)bES + 2bel > 6g,
which was already obtained in [12].

5 Conservative and nonconservative dynamics

Beyond the linear stability properties, a fundamental dif-
ference between the scenarios of pure growth and sub-
limation is that the surface dynamics is conservative
during growth but not during sublimation [8,14]. Here
conservative dynamics implies that the rate of volume

change of the crystal, obtained by summing the equations
of motion over all steps xi, is independent of the sur-
face configuration [33]. Indeed, replacing the γi in front
of the square brackets on the right hand side of (6) by
the constant (8) and summing over i, one readily obtains∑

i ẋi = −FΩL, where L is the total length of the crystal.
It is instructive to compare the structure of the non-

conservative contributions induced during sublimation by
the configuration-dependent factors γi in (6) for the two
step bunching instabilities driven by electromigration and
by an ES-effect, respectively. First we neglect the ES-
effect, setting bES = 0, which simplifies (6) into the form

R−1
e

dxi

dt
=

γi

2
(li + li−1) + U (2νi − νi+1 − νi−1)

− bel (li − li−1) +
gbel

2
× (νili−1 − νili + νi−1li−1 − νi+1li) . (11)

The second group of terms on the RHS of equation (11)
with prefactor U arises from equilibrium step-step interac-
tions and stabilizes the regular step train, while the third
group of terms describes the effect of electromigration,
which is stabilising or destabilising depending on the sign
of bel, i.e., the direction of Fel. The last group of terms
arises from the interplay of electromigration and step-step
interactions. Since the terms in this group cancel pairwise
under summation over i, their contribution is conserva-
tive and the only non-conservative contributions in equa-
tion (11) are the first terms multiplied by γi.

For comparison, setting bel = 0 equation (6) reduces
to the equations derived in [14],

R−1
e

dxi

dt
=

γi

2
(li + li−1) + U (2νi − νi+1 − νi−1)

− bES

2
(li − li−1) +

gbES

2
(νili−1 − νili) . (12)

The difference between the two cases is that the terms
proportional to gbES on the RHS of equation (12) do not
cancel under summation with respect to i, and thus are
non-conservative. As will be shown in the next section,
this gives rise to distinct contributions in the continuum
limit.

6 Continuum equations

In previous work a systematic method for deriving con-
tinuum equations of motion from the discrete step dy-
namics was developed [9,10] which was applied to the
model (12) in [14]. Briefly, the method can be seen as
a kind of Lagrange transformation [34] which replaces
the ‘Lagrangian’ dynamics of particle-like steps by the
’Eulerian’ evolution of the step density m(x, t). The latter
in turn defines a continuous height profile h(x, t) through
m(x, t) = ∂h

∂x .
Here we wish to compare the two instability mecha-

nisms described by equations (11) and (12), respectively,
on the continuum level. Following the procedure outlined
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in [14] for both models, we find that the continuum evo-
lution equation takes the general form

∂h

∂t
+

∂

∂x

[
−3gm2

2
− m′

6m3
+

3U
(
m2

)′′
2m

− Jb

]
+ 1 =

− 3g
(
m2

)′
2

[
m′

6m3

]′
− Φb, (13)

where primes denote spatial derivatives. Here time t is
rescaled by Re, length x by the average step distance l,
and height h is measured in units of the monoatomic step
height. The terms inside the square brackets on the LHS
are conservative, and the non-conservative contributions
are collected on the RHS of equation (13). The two mod-
els (11) and (12) differ in the form of the contribution Jb

to the conserved surface flux, and of the non-conservative
term Φb. Labeling the contributions due the ES-effect by
ES and those due to electromigration by el, respectively,
the conservative terms are given by

JES
b =

bES

2m
, Jel

b =
bel

m
− 3gbelm

′, (14)

and the non-conserved contributions are

ΦES
b =

3gbES

(
m2

)′
2

[
1

2m

]′
, Φel

b ≡ 0. (15)

As was discussed above, the terms in equation (11) pro-
portional to gbel give rise to a conservative contribution,
whereas the terms in (12) proportional to gbES contribute
to the non-conservative part of the continuum equation.

In earlier work based on the continuum approach [9,10]
the non-conservative contributions were generally ne-
glected because of the smallness of g [14], and it was there-
fore concluded that step bunching phenomena induced by
electromigration and by the ES-effect belong to the same
universality class [9,35]. However, it has subsequently be-
come clear that small non-conservative terms may qual-
itatively change the nonlinear dynamics of surface steps
[14], and the fact that these terms are of different form for
the two instability mechanisms implies that their equiva-
lence needs to be reexamined. In the following we there-
fore explore the nonlinear behavior of the electromigration
model (11) using numerical simulations.

7 Nonlinear step dynamics

Numerical simulations of equation (11) were carried out
using an odeint-type procedure [36] for systems of M steps
with periodic boundary conditions. We consider the fol-
lowing ranges for the four independent parameters of the
model: bel ∈ [0, 0.5], U ∈ [0, 0.5], g ∈ [0, 0.1] and M < 100.
Another degree of freedom is provided by the choice of
the initial condition. In general, we start the simulations
with two types of initial step train configurations: either
a randomly disturbed equidistant step train, or an ini-
tial shock of closely spaced steps and a single large ter-
race. Step trajectores are shown in the co-moving coor-

dinate system x̃i(t) = xi(t) − lt, and we normalize both
the height of the (monoatomic) steps and the average ter-
race width l to unity. The time t is rescaled by Re and
we measure the integration time in time units (t.u.). For
the description of the bunch geometry we use two mea-
sures: the maximal slope mmax ≡ maxi{mi} and the min-
imal curvature κmin ≡ mini{κi}, where mi = 1/li and
κi = −8(li+1 − li)/(li+1 + li)3 respectively. A step is de-
fined to belong to a bunch, if its distance to the next
closest step of the bunch is smaller than l = 1.

An important consequence of the non-conservative
character of the dynamics is the phenomenon of anti-
coarsening, where an initial large step bunch splits into
smaller bunches [14]. In Figure 2 we show an example
of this behavior for parameter values bel = 0.4, g =
0.05, U = 0.05, and M = 80. Figure 2a displays the
movement of the first step in the train. After 11 180 t.u.
the large bunch splits for the first time into a large and
a very small bunch, which is reflected in a clear change
in the velocity of the step; smaller bunches move faster.
Focusing on the splitting region one finds that the ini-
tial small bunch disappears again after 4 t.u., an event
which is repeated at 11 258 t.u. with a small bunch life
time of 19 t.u. In Figure 2b we show the trajectories of
all steps in the train in the time window 11 280–11 470
t.u. At 11 333 t.u. the small bunch appears for the third
time and at 11 415 t.u. a third bunch arises for the first
time. The switching between different numbers of bunches
continues until the step train relaxes into four bunches, as
seen in the height profiles in Figure 2c. Figure 2d shows
the corresponding time evolution of the minimal curvature
κmin and the maximal slope mmax, along with the num-
ber of bunches. Both κmin and mmax show clear changes
in the region of the splitting; however, whereas the maxi-
mal slope remains essentially the same after the splitting
event, there is a significant decrease in the minimal cur-
vature.

In Figure 3 we summarize results obtained from sim-
ulations starting from a randomly disturbed equidistant
step array of 40 steps. Figure 3a shows the phase dia-
gram of the system in the g-bel plane at fixed U = 0.2.
Below the line bel = 3g the system is linearly stable and
mmax = m(x) ≡ 1. Above this line we see three qualita-
tively different types of long-time behavior: steady solu-
tions with one single bunch, with two bunches, and time-
dependent solutions that switch periodically between one
and two bunches. In Figure 3b we plot the time evolu-
tion of the maximal slope mmax at five points along the
line bel = 0.35. For g = 0 we see the usual coarsening
behavior, in which the number of bunches decreases in
a step-wise fashion until a single bunch configuration is
reached and the system relaxes to a stationary periodic
state with a clearly bounded maximal slope. The remain-
ing temporal periodicity of mmax is due to the permanent
step exchange between the front and back end of the bunch
(see also inset in Fig. 2a). Increasing g the maximal slope
decreases (while still maintaining the single bunch config-
uration), until at g = 0.05 the regime of periodic switching
is reached, leading to a complex periodic pattern in mmax.
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Fig. 2. (Color online) An example for the splitting of a large bunch in a system of 80 steps with parameters bel = 0.4, g =
0.05, U = 0.05. (a) Time evolution of one of the steps. The inset shows a blowup around the onset of splitting. The period of
oscillations prior to the breakup reflects the time required for the step to once traverse the (single) bunch. (b) Plot of all step
trajectories between 11 280 t.u. and 11 470 t.u. (c) Comparison of the profiles after 6000 t.u., 11 500 t.u., 13 000 t.u. and 15 000
t.u. (d) Time evolution of the globally maximal slope, the globally minimal curvature and the number of bunches.
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Fig. 3. (Color online) System with U = 0.2, M = 40 and fluctuating initial condition. (a) Stability/instability diagram, showing
the number of bunches in the final state, for different combinations of bel and g – �: 1 bunch, •: 1 or 2 bunches, ×: 2 bunches,
below the line bel = 3g: stability. (b) Time evolution of the maximal slope mmax with bel = 0.35 and (from top to bottom)
g = 0.00, 0.01, 0.02, 0.05, and 0.09.
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Fig. 4. (Color online) Dependence of the globally maximal
slope mmax on the number of steps M for g = U = 0.04,
bel = 0.2 and for large and small noise amplitude in the random
initial condition.

Finally, in Figure 4 we plot the behavior of the maxi-
mal slope as a function of the number of steps for two dif-
ferent amplitudes of the initial disturbance, g = U = 0.04,
and bel = 0.2. Here mmax is the global maximal slope,
measured as its largest value for the last 500 t.u. of the
simulation. We see that mmax generally increases with M ,
but this behavior is interrupted by downward jumps every
time the number of bunches that can fit into the system in-
creases by one. This shows that the existence of stationary
solutions with multiple bunches can be seen as a conse-
quence of the fact that, in the presence of non-conservative
processes, the maximal slope is bounded from above [14].
Near the transition between different numbers of bunches
the system behavior depends very sensitively on the am-
plitude of fluctuations in the initial configuration, an effect
that is particularly pronounced around M = 70.

8 Conclusion

In this work we have extended the non-conservative step
bunching model presented in [14] to include the effect of
electromigration. The model applies to the first of the ex-
perimentally observed temperature regimes on the Si(111)
surface, where step transparency can be neglected. The
general step equations of motion incorporating sublima-
tion, the Ehrlich-Schwoebel effect, electromigration and
step-step interactions were derived from the classical BCF
model in the quasistatic approximation. For the case of
attachment-detachment limited kinetics we compared the
equations for growth and sublimation. In previous publi-
cations [9–11,31] non-conservative contributions were ne-
glected, because of the experimentally small prefactor
g [2,14]. Those terms were now taken into account and
some important consequences were identified. First, on the
level of linear stability analysis, they shift the instability
condition on the dimensionless asymmetry parameter b by
6g, as was first pointed out in [12]. This shift is present in

the case of sublimation, but not in the case of growth [14].
Moreover, in the case of sublimation the structure of the
non-conservative terms differs depending on the underly-
ing mechanism inducing the asymmetry between ascend-
ing and descending steps. This leads to different contin-
uum equations for step bunching caused by an ES-effect
or by electromigration, respectively.

Nevertheless, the numerical integration of the discrete
step equations for the case with sublimation and electro-
migration reproduces qualitatively the results of [14]. The
non-linear, non-conservative terms supply a richness of
dynamical behaviors in this simple one-dimensional step
model. There are steady solutions which contain more
than one bunch, periodic switching between step trains
of different numbers of bunches, and a sensitive depen-
dence on the initial condition. This shows that the notion
of universality between different types of step bunching
mechanisms, which was originally formulated on the basis
of conservative continuum equations [9,35], can be applied
also in the presence of non-conservative dynamics.

In previous work on the conservative version of (6) a
dynamical phase transition was identified which separates
two qualitatively different regimes of step bunching dis-
tinguished by the presence or absence of crossing steps
between bunches [11]. In our units this transition occurs
at bel = 1/2, and experimental evidence for its existence
in the Si(111) system has recently been reported [26].
In order to clearly bring out the effects due to the non-
conservative nature of the dynamics, in the present study
we have restricted ourselves to the parameter range bel ∈
[0, 0.5], but the influence of non-conservative terms on the
phase transition reported in [11] is clearly an interesting
topic for future work.

We thank V. Popkov for useful discussions.
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