
Quantitative analyses of empirical fitness landscapes

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

J. Stat. Mech. (2013) P01005

(http://iopscience.iop.org/1742-5468/2013/01/P01005)

Download details:

IP Address: 134.95.67.124

The article was downloaded on 30/04/2013 at 13:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-5468/2013/01
http://iopscience.iop.org/1742-5468
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.S
tat.M

ech.(2013)
P

01005

ournal of Statistical Mechanics:J Theory and Experiment

Quantitative analyses of empirical
fitness landscapes

Ivan G Szendro1, Martijn F Schenk2,3, Jasper Franke1,
Joachim Krug1,4 and J Arjan G M de Visser3

1 Institute for Theoretical Physics, University of Cologne, Köln, Germany
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Abstract. The concept of a fitness landscape is a powerful metaphor that offers
insight into various aspects of evolutionary processes and guidance for the study of
evolution. Until recently, empirical evidence on the ruggedness of these landscapes
was lacking, but since it became feasible to construct all possible genotypes
containing combinations of a limited set of mutations, the number of studies has
grown to a point where a classification of landscapes becomes possible. The aim of
this review is to identify measures of epistasis that allow a meaningful comparison
of fitness landscapes and then apply them to the empirical landscapes in order
to discern factors that affect ruggedness. The various measures of epistasis that
have been proposed in the literature appear to be equivalent. Our comparison
shows that the ruggedness of the empirical landscape is affected by whether the
included mutations are beneficial or deleterious and by whether intragenic or
intergenic epistasis is involved. Finally, the empirical landscapes are compared to
landscapes generated with the rough Mt Fuji model. Despite the simplicity of this
model, it captures the features of the experimental landscapes remarkably well.

Keywords: models for evolution (theory), models for evolution (experiment),
mutational and evolutionary processes (theory), mutational and evolutionary
processes (experiment)

c© 2013 IOP Publishing Ltd and SISSA Medialab srl 1742-5468/13/P01005+22$33.00

mailto:szendro@thp.uni-koeln.de
mailto:Martijn.Schenk@wur.nl
mailto:jfranke@thp.uni-koeln.de
mailto:krug@thp.Uni-Koeln.de
mailto:Arjan.deVisser@wur.nl
http://stacks.iop.org/JSTAT/2013/P01005
http://dx.doi.org/10.1088/1742-5468/2013/01/P01005


J.S
tat.M

ech.(2013)
P

01005

Quantitative analyses of empirical fitness landscapes

Contents

1. Introduction 2

2. Fitness landscape models 5

2.1. Kauffman’s LK model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Rough Mount Fuji models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Neutral models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4. Models with explicit phenotypes . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Empirical studies of fitness landscapes 7

3.1. Empirical support for global ruggedness . . . . . . . . . . . . . . . . . . . . 7

3.2. Explicit low dimensional fitness landscapes. . . . . . . . . . . . . . . . . . . 8

3.2.1. Quantitative measures of landscape ruggedness and epistasis. . . . . 10

3.2.2. Standardizing the data sets. . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.3. Correlation between different measures of landscape ruggedness. . . . 15

3.2.4. Combining models and empirical data. . . . . . . . . . . . . . . . . . 17

4. Discussion and outlook 17

Acknowledgments 20

References 21

1. Introduction

How genotypes map onto phenotypes is one of the central questions in biology.
Developmental and systems biologists seek to understand the physical, biochemical and
physiological basis of the genotype–phenotype map, while evolutionary biologists study
its evolutionary causes and consequences [1]–[3]. To predict the evolutionary fate of a
genotype it is essential to understand how genotypes map onto fitness—the basic predictor
of an organism’s evolutionary success. This has led to the notion of a fitness landscape [4,
5], which is a mapping from the multidimensional genotype space to a real-valued measure
of fitness. Graphical renderings often depict the fitness landscape as a surface above a
two-dimensional base plane symbolizing the genotype space, but it is clear that such
a low dimensional representation is generally inadequate for providing more than a
rather superficial, metaphoric description of the evolutionary process (for an alternative
visualization see figure 1). The limitations of the two-dimensional representation have
spawned much fundamental criticism of the fitness landscape concept. Here, rather than
abandoning the concept altogether, we take the view that ‘fitness landscapes . . . should be
studied in less picturesque but more quantitative ways’ [6].

Within the fitness landscape metaphor, adaptation is imagined as a hill-climbing
process leading the population to a fitness peak, with distinct roles for both natural
selection and genetic drift [7, 8]. The structure of the fitness landscape can range from
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(a) (b)

Figure 1. The figure shows two examples of empirical fitness landscapes
containing all combinations of mutations at L = 4 loci. Genotypes are represented
by binary sequences, where 0 (1) indicates the absence (presence) of the
corresponding mutation. Arrows point in the direction of increasing fitness, and
underlined nodes correspond to fitness maxima. Colored arrows point towards the
fittest neighbor, forming the basins of attraction of a steepest ascent (‘greedy’)
adaptive walk. (a) Fitness landscape based on four beneficial mutations in the
bacterium Methylobacterium extorquens [26] (landscape A in tables 1 and 2).
(b) Fitness landscape based on four mutations in a malaria drug resistance
gene [27]. The fourfold mutant {1111} confers maximal drug resistance but does
not optimize the growth rate in the absence of the drug, which is the quantity
used here as a proxy for fitness (landscape D in tables 1 and 2).

smooth with few accessible peaks to rugged with multiple peaks separated by valleys of
low fitness. Whether the landscape is smooth or rugged has important consequences for
evolution [9, 10]. For instance, the topography of the fitness landscape affects speciation
via reproductive isolation [11, 12], the evolutionary benefits of sex and recombination [13,
14], the evolution of genetic robustness and evolvability [15]–[17], and the predictability
of evolution [7], [18]–[20].

Little is known about the factors that determine the topography of a fitness landscape,
beyond the general notion that epistasis is involved. The term epistasis as defined by
Fisher [21] includes all deviations from the additive effects of alleles at different loci, and
is usually considered for two alleles only. To understand the role of epistasis in shaping
the structure of fitness landscapes we need to distinguish between magnitude and sign
epistasis [22]. Magnitude epistasis is present when the fitness effect of a mutation at a
given locus has a definite sign (beneficial or deleterious) irrespective of the alleles at other
loci, while the magnitude depends on the genetic background. Magnitude epistasis does
not constrain accessibility of mutational trajectories in an absolute sense and only affects
the curvature of a landscape, which can be quantified by a quadratic regression of mean
fitness on the mutation number. On the other hand, sign epistasis occurs when mutations
are beneficial in some genetic backgrounds, but not in others. Hence, the sign (positive or
negative) of an allelic effect changes with the presence of an allele at another locus. Sign
epistasis causes pathways to become inaccessible by natural selection and thus introduces
ruggedness into the landscapes [17, 22]. A special case of sign epistasis, called reciprocal
sign epistasis, occurs when the sign of both alleles’ fitness effects changes with a change
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of alleles at the other locus. Reciprocal sign epistasis is a prerequisite for the occurrence
of multiple fitness peaks [23, 24].

A related but distinct classification of epistatic interactions discerns between
unidimensional and multidimensional epistasis [2, 12]. In the unidimensional case, fitness
can be written in terms of a scalar function of the genotype, such as the number of loci
carrying a mutation, whereas multidimensional epistasis includes all allelic interactions.
Generic fitness landscapes are expected to display both sign epistasis and multidimensional
epistasis. Nevertheless, in empirical studies a unidimensional fitness function has often
been assumed by averaging over different allelic combinations carrying the same number
of mutations. Such an approach can be misleading, because a seemingly additive
unidimensional fitness landscape may result from the cancelation of multidimensional
epistatic interactions [25].

In theory, with full knowledge of a fitness landscape, one overlooks all possible
evolutionary pathways connecting two genotypes, and would be able to determine the
likelihood that particular pathways are taken. This would render evolution predictable in
a restricted (i.e., a posteriori) sense. However, these predictions are valid for a specific
combination of genotype and environment, and also depend on population dynamic
parameters such as population size and mutation rate. Another limitation is that one
can only study a tiny part of sequence space explicitly, because the number of genotypes
grows beyond comprehension with the number of loci considered. Even for a single gene of
1000 base-pairs and when allowing only point mutations, the number of possible genotypes
(41000) is larger than the total number of particles in the universe, as Sewall Wright [5]
realized. This scale problem has two immediate implications. First, it emphasizes the
fundamentally stochastic nature of evolution, given how little of genotype space has
been probed by life since it has existed. Second, if we are to use the growing amount of
information about the genetic make-up of organisms to understand and ultimately predict
evolution, we need to invoke models of fitness landscapes parameterized by empirical
observations.

The purpose of this review is to compare the topographies of empirical fitness
landscapes that have recently been published. Before doing so, we briefly survey the main
models of fitness landscapes in which ruggedness can be tuned, as well as the different
approaches used to study fitness landscapes empirically. Recent efforts have been directed
towards constructing all 2L possible genotypes containing combinations of a limited set
of L mutations, and measuring their fitness or a proxy thereof [2]; see figure 1 for two
examples. First, we compare different measures of ruggedness and sign epistasis derived
from the available landscapes, and find that these correlate well and thus appear to
be equivalent. Second, using these robust measures of ruggedness we can compare the
ruggedness of different empirical landscapes despite methodological differences and the
variety of biological systems involved. We find that those landscapes built from mutations
that are known to have a combined beneficial effect are less rugged than those built
from mutations that are selected without regard to their combined effect, in particular
when they are deleterious. Third, we compare the empirical fitness landscapes to a simple
statistical one-parameter model, the rough Mt Fuji model, which combines a linear fitness
trend with uncorrelated random fitness variations. We find that this model captures the
features of the empirical landscapes surprisingly well.
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2. Fitness landscape models

Until recently, empirical information about the structure of fitness landscapes was largely
unavailable, and the number of studies is currently still small. Therefore, past studies of
fitness landscapes have been mostly restricted to theoretical work. The models proposed in
this context are based on very different—and sometimes even contradicting—intuitions.
In this section, we give a brief overview of the most popular models. Throughout we
represent genotypes by binary strings ~σ = (σ1, σ2, . . . , σL) of length L, where σi = 0 (1) if
the mutation at the ith locus is absent (present); compare to figure 1.

2.1. Kauffman’s LK model

If a given gene A, when expressed, produces an essential protein that requires the presence
of another protein produced by gene B to function properly, these two genes interact
epistatically. When gene A is expressed independently of gene B, an organism with a
defective mutation in gene B incurs the cost of producing the protein from gene A without
experiencing its beneficial effect. The mutation in gene B can thus change the fitness
contribution of gene A from beneficial to deleterious, resulting in sign epistasis. The main
motivation for the LK model5 as proposed by Kauffman and Weinberger [28, 29] is to
capture such strong, sign epistatic effects of single mutations in interacting genes on fitness
in a statistical sense, without attempting a detailed biochemical description.

The interactions are modeled as evenly spread across the entire genome. The genome
is represented as a binary sequence of length L and the interactions take the form of a
set of sites called interaction partners, ~νi ≡ {i, νi,1, νi,2, . . . , νi,K}, associated with each site
i of the genome. The number K of interaction partners is kept constant. How partner
sites are assigned has implications for search strategies for the global optimum on the
landscapes [31], but most often the interaction partners are chosen by picking them
uniformly and independently at random (making sure that no site appears twice in a
given set ~νi). The fitness of an organism with genome ~σ is then the sum of the individual
fitness contributions,

f(~σ) =
L∑
i=1

fi({σj}j∈νi
). (1)

The single-site contributions fi are independent and identically distributed random
variables (iid RVs) associated with each of the 2K+1 possible states of the argument.
If a mutation hits part of the sequence that does not appear in the argument of fi, i.e. if
the mutation does not involve the site i or any of the associated partner sites in ~νi, the
fitness contribution fi remains unchanged; otherwise it is replaced by an independent
random number.

For K = 0, each contribution fi can only take two possible values, corresponding to
σi = 0 or 1, respectively. Thus each site has one state that is more beneficial than the
other6 and since the fitness of a sequence is the sum over the site contributions, the global

5 The model was originally introduced under the name ‘NK model’. The present designation, first adopted in [30],
is motivated by the fact that the letter N denotes population size in much of the population genetic literature.
The number of loci is therefore more appropriately named L.
6 Provided the fitness values are drawn from a continuous distribution, the probability of a tie is zero.
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optimum is at the state with all sites in their ‘beneficial’ position. The global optimum can
be reached from any initial configuration by mutating sites into their beneficial state in a
random order, which implies that all mutational pathways are accessible and sign epistasis
is absent. Conversely, when K = L−1, the entire sequence appears in the argument of each
single-site contribution. Thus any mutation replaces the sum (1) by a sum over a different
set of iid RVs, which is equivalent to replacing one iid RV by another. The number of
sites in the partner set, denoted by K, thus allows one to tune the strength of epistatic
interactions from the non-epistatic limit K = 0 to the maximally epistatic case K = L−1.

2.2. Rough Mount Fuji models

The K = 0 limit of the LK model can be compared to a smooth (though not necessarily
symmetric) mountain much like the Mt Fuji volcano in Japan. This type of fitness
landscape is therefore sometimes referred to as a ‘Mt Fuji’ landscape. The other extreme
(K = L − 1) corresponds to a maximally rugged landscape of independent fitness
contributions and is referred to as a ‘house of cards’ (HoC) landscape [32]7. Intermediate
values of K correspond to an intermediate degree of ruggedness. An alternative way to
obtain landscapes with intermediate ruggedness is to pick one genotype ~σ0 as a point of
reference and then impose an external ‘fitness field’ of strength c favoring this reference
configuration on top of random iid contributions. Then the fitness of a genotype ~σ is
given by

f(~σ) = η(~σ)− cd( ~σ0, ~σ), (2)

where d( ~σ0, ~σ) denotes the Hamming distance between the two configurations and η(~σ) is a
random variable picked independently for each genotype. This is a simplified version of the
rough Mount Fuji model as originally introduced in [34], which has also been used in [30]
(see also [18]). If the iid part of the fitness fluctuates on a scale a, the landscape will be
dominated by the external field and appear like a smooth landscape for c/a� 1, while the
random contributions will dominate for c/a� 1, making the landscape appear maximally
rugged. Note that the model assumes that the mean fitness profile (averaged over the
random fitness component η(~σ)) is linear, and thereby ignores unidimensional magnitude
epistasis. However, since our main interest is in measures of landscape ruggedness, the
mean curvature of the landscape is not relevant. In section 3.2, we will compare measures
of epistasis and landscape ruggedness for empirical data to those obtained for landscapes
constructed with the RMF model (2), choosing a Gaussian distribution with standard
deviation a for the iid random variables η(~σ).

2.3. Neutral models

An intuition different than that used for the LK and RMF models is that the actual
fitness matters little compared to the question of whether or not a given organism is
viable at all. The genome is composed of a large number of mutually interacting elements,
and a random mutation in any given gene can alter gene function up to the point where
a gene does no longer function. It has therefore been postulated that fitness landscapes
are dominated by large valleys of lethality and extended ridges of viability [11]. In the

7 Interpreting the genotype sequences as spin configurations, the HoC landscape becomes equivalent to Derrida’s
random energy model of spin glasses, and the LK model is a close relative of the p-spin model [33].
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simplest setting each genotype ~σ has either fitness 1 (i.e. is viable) with probability p or has
fitness 0 (not viable) with probability 1− p, independently of other states. The resulting
fitness landscape is then equivalent to a realization of the site percolation problem [35] on
an L-dimensional hypercube [36]. This type of model can be combined with the models
described in the preceding subsections by introducing a fraction of non-viable genotypes
in addition to the epistatically interacting viable genotypes; see [30].

2.4. Models with explicit phenotypes

The models described so far are intended to incorporate known aspects of the biochemical
or biological interactions shaping the fitness of a given organism while keeping the
number of parameters to a minimum. Another strategy is to explicitly incorporate
physical, chemical and biological mechanisms underlying epistasis into an explicit
genotype–phenotype map [37]. Such models have been based on, for example, the
thermodynamics of RNA secondary structure [38] or the biophysics of binding between
a transcription factor and its binding site [39]. While the development of such models
constitutes an active branch of research, they are too complex and specific for the type of
analyses that are of interest in the context of this review.

3. Empirical studies of fitness landscapes

Several approaches have been used to infer topographical properties of real fitness
landscapes from empirical observations; these can be roughly classified into three
categories. Studies in the first category use the repeatability of adaptation observed in
microbial evolution experiments to qualitatively assess the local ruggedness of fitness
landscapes. Studies in the second category focus on detecting sign epistasis between
mutations to infer local ruggedness. The third category includes a limited, but growing
number of studies that explicitly quantify the multidimensional fitness landscape by
considering all 2L combinations of a small set of L mutations. The topographical
information revealed by the first two approaches is necessarily limited, but reflects the
contribution of a large number of mutations, while the third category yields more detailed
information, but from a tiny predefined part of genotype space. In section 3.1, we will
briefly review several studies from the first two categories, and then present a more
extensive analysis of available studies from the third category.

3.1. Empirical support for global ruggedness

By allowing replicate populations of microbes to evolve under identical conditions in the
laboratory, the dynamics and repeatability of adaptation can be quantified and used to
infer the general ruggedness of the fitness landscape involved [20, 40]. One expectation
is that a rugged landscape leads to a stronger and more sustained divergence of fitness
trajectories than a smooth landscape. This has been found when comparing bacteria
evolving in a structured and in a non-structured habitat [41], or in a complex relative to a
simple nutrient environment [42]. Another expectation is that only on rugged landscapes
will the ability to adapt depend on the local mutational neighborhood of a genotype.
In contrast, all genotypes except the globally optimal genotype are able to adapt on a
smooth single-peaked landscape. Support for this expectation comes from a study with
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RNA bacteriophage φ6, where only one of two related genotypes was able to adapt
under identical conditions [43], and from a study with HIV-1 where adaptation to one
host-cell type could only be realized indirectly through adaptation to another host-
cell environment [44]. Another prediction for rugged landscapes is that higher levels of
adaptation diminish the ability to adapt to different niches, which was found in a study
with biofilm-producing bacteria [45]. Finally, the short adaptive walks found in recent
experiments with fungi [46, 47] also suggest that their fitness landscape is rugged [48, 49].

Attempts to infer topographical information from the dynamics and repeatability of
adaptation necessarily suffer from being non-systematic. Because such studies reveal only
those parts of the fitness landscape that have actually been probed, they are unable to
quantify the ruggedness of the landscape. For instance, the observed adaptive dynamics
may suggest that there are no strong epistatic constraints, while the population may have
traveled along a rare ridge of high fitness within a rugged landscape. Conclusions also
depend on the types of mutation used by evolution, which are specific for the population
dynamic regime that prevailed. For instance, in large populations where clonal interference
plays a major role, large-effect mutations will dominate [50] and their epistatic properties
may be different from smaller-effect beneficial mutations, or even neutral or deleterious
mutations that may contribute under different conditions [2]. On the other hand, these
approaches may probe a more extended area of genotype space than the more systematic
approach of mutant construction involving a predefined and small set of mutations, which
is discussed in section 3.2.

Epistasis has a clear link to ruggedness of fitness landscapes. Several studies confirmed
the role of epistasis in causing adaptive constraints and local ruggedness by using isolated
or constructed mutants in replay experiments to test their evolutionary consequences [51,
19, 52]. Studies which examine pairwise interactions within sets of mutations often detect
sign epistasis, and also provide information regarding its frequency [2], implying that local
ruggedness is not uncommon. For example, a study on beneficial mutations that increase
the growth rate of the ssDNA microvirid bacteriophage ID11 found significant evidence
for sign epistasis in six out of 18 constructed combinations [53]. A study by Sanjúan et al
[54] on vesicular stomatitis virus identified five out of 15 cases in which the combination of
two mutations was less fit than either of the single mutants. Apart from studies that focus
on a relatively small number of well-characterized mutations, the ubiquity of (pairwise)
epistatic interactions has also been documented in recent genomewide surveys [1, 55].
Mutation combinations for which sign epistasis is identified point to the local ruggedness
of the fitness landscape, but do not reveal the global structure of the landscape [12].

3.2. Explicit low dimensional fitness landscapes

The existence of sign epistatic interactions between mutations reveals that landscape
topography can be rugged, but a more systematic approach is required to quantify the
degree of ruggedness of fitness landscapes, and to determine how this constrains evolution.
Given the large number of publications on fitness landscapes, the number of studies on
empirical fitness landscapes is remarkably small. Full information is available when the
fitness of all 2L combinations of a set of L mutations is known. At present, available
empirical landscapes stem from a variety of systems and involve small numbers (i.e., 4–9)
of mutations (see table 1). In reality, adaptation proceeds by selection on all possible
mutations in the genome and is not necessarily limited to such a small subset. These
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Table 1. General characteristics of the empirical fitness landscapes included
in this review. The table lists the number of loci involved, the number of
available genotypes, the fitness (proxy) that is measured for each combination,
and the mutation types included in the landscapes. The organism is indicated
(in italics) when landscapes are based on genomewide mutations or the gene
name is provided (in upright letters) when mutations are located on a single
gene. Columns 6 and 7 indicate whether the included mutations were known or
expected to be beneficial or deleterious, individually and/or in combination. The
results of our quantitative analyses for the landscapes A–J are shown in table 2.

ID
System
(organism/gene) L

Available
combinations

Fitness
(proxy)

Direction of
mutations

Known
effects Ref.

A Methylobacterium
extorquens

4 16/16 Growth rate Beneficial Combined [26]

B Escherichia coli 5 32/32 Fitness Beneficial Combined [56]
C–D Dihydrofolate

reductase
4 16/16 Resistance/

growth rate
Beneficiala Individual/

combined
[27]

E β-lactamase 5 32/32 Resistance Beneficial Combinedb [57]
F β-lactamase 5 32/32 Resistance Beneficialc Combinedc [58]
G Saccharomyces

cerevisiae
6 64/64 Growth rate Deleterious Individual [59]

H Aspergillus niger 8 186/256d Growth rate Deleterious Individual [30]
I–J Terpene synthase 9 418/512d Enzymatic

specificitye
— — [60]

— Dihydrofolate
reductase

5f 29/48d Resistance/
growth rate

Beneficial Individual/
combined

[61]

— Dihydrofolate
reductase

5f 29/48d Resistance/
growth rate

Beneficial Individual/
combined

[62]

— HIV-1 envelope
glycoprotein gp120

7 56/128g Infectivity Beneficial Individual/
combined

[63]

— Isopropylmalate
dehydrogenase

6f 164/512g Performance/
fitness

— — [64]

a The mutants were chosen to maximize drug resistance but do not optimize the growth rate in
the absence of the drug.
b The highly resistant genotype resulted from gene shuffling, which implies that an accessible
pathway between the wild type and this mutant did not necessarily exist.
c The same mutants as in [57] were studied with respect to piperacillin + inhibitor resistance.
Due to the strong negative correlation between cefotaxime and piperacillin + inhibitor resistance
the wild type was expected to be exceptionally fit.
d The remaining combinations were missing, either by chance or because the corresponding
phenotypes are not viable. The studies [61, 62] were excluded from further analysis because of
the large number of missing combinations.
e The study considers mutational pathways connecting two terpene synthases, TEAS and HPS.
Enzymatic specificity is the relative proportion of the natural product of TEAS (landscape I)
and HPS (landscape J) among the total catalytic output of the mutated enzymes.
f More than one mutation was included for at least one locus; hence the number of possible
combinations is larger than 2L.
g The remaining combinations were not engineered. These studies were excluded from further
analysis because of the large number of missing combinations.
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landscapes thus only offer a glimpse of the ruggedness within the immense genotype
space. Given this limitation, we cannot compare ruggedness between different empirical
fitness landscapes without a clear view on which mutations are involved and which part of
genotype space is being mapped. As it turns out—despite their low number—the available
landscapes are rather different in several respects, and include mutations in single genes
versus whole genomes, with fitness effects that in some cases are known a priori to be
beneficial or deleterious (for individual mutations or for the combination studied) and in
other cases emerge only a posteriori. For each of the empirical landscape studies included
in our analyses (and a few which we did not include), table 1 summarizes the main
characteristics.

3.2.1. Quantitative measures of landscape ruggedness and epistasis. Various statistical
measures have been proposed to quantify the ruggedness of fitness landscapes. Most
studies focused on different aspects of landscape topography and a variety of measures
have consequently been applied. Here, we aim to analyze all landscapes using a common
and standardized selection of measures. This enables a comparison between landscapes,
but also allows us to verify whether model landscapes actually capture the topography of
the empirical landscapes. Furthermore, we explore the correlations between the different
measures of ruggedness to see whether they are equivalent or yield complementary
information about the topography of real fitness landscapes. In total, we use six measures
for our analyses.

(1) The roughness to slope ratio, r/s, was introduced in [65] and used in [6, 18]. This
ratio measures how well the landscape can be described by a linear model, which
corresponds to the purely additive (non-epistatic) limit. It is obtained by fitting a
multidimensional linear model to the empirical fitness landscape by means of a least-
square fit. The linear model is

ffit(~σ) = a(0) +
L∑
j=1

a
(1)
j σj, (3)

where the parameters a(0) and the a
(1)
j s are fitted. The mean slope is

s =
1

L

L∑
j=1

|a(1)
j | (4)

and the roughness is defined by

r =

√
2−L

∑
~σ

(f(~σ)− ffit(~σ))2. (5)

The higher r/s, the higher the deviation from the linear model and the greater the
level of epistasis present in the landscape. For example, a purely additive landscape
has r/s = 0, while for the HoC model r/s→∞ for L→∞.

(2) A versatile set of measures is provided by the Fourier analysis of fitness landscapes
introduced in [66]. Here, the fitness landscape is expanded in terms of the eigenvectors
of the Laplacian on the underlying genotype network (in our case, the L-dimensional
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hypercube). The Laplacian is defined as ∆ = A − L1, where A is the adjacency
matrix and 1 is the unit matrix of dimension 2L × 2L. Note that this matrix has 2L

eigenvalues, and thus eigenstates, but that the nth non-negative eigenvalue comes with

a multiplicity given by the binomial coefficient
(
L
n

)
, such that the eigenvalues take

only L+1 different values. The expansion of the fitness landscape into the eigenvectors
Λjn of ∆ is equivalent to an expansion in terms corresponding to epistatic interactions
of different orders, i.e.

f(~σ) = b
(0)
1 Λ10

~σ +

(L
1 )∑
j=1

b
(1)
j Λj1

~σ +

(L
2 )∑
j=1

b
(2)
j Λj2

~σ + · · ·+ b
(L)
1 Λ1L

~σ

= ã(0) +
L∑
j=1

ã
(1)
j σ̃j +

L∑
j,k=1

j>k

ã
(2)
jk σ̃jσ̃k + · · ·+ ã(L)σ̃1σ̃2 · · · σ̃L, (6)

where the bs and the ãs are the coefficients of the expansion, and we have introduced
symmetric ‘spin’ variables σ̃j = 2σj − 1 = ±1 for convenience [67]. Note that the nth
sum in the upper expression is equal to the nth sum in the lower one. The term

b
(0)
1 Λ10

~σ = ã(0) is a constant which yields no information about epistasis. The second
term sums the contributions in the directions of the eigenvectors corresponding to
the second-smallest eigenvalue and describes the additive, non-epistatic, part of the
fitness landscape. The remaining terms describe epistatic interactions of increasing
order. Defining

Fn =
βn∑L
j=1 βj

with βn =

(L
n )∑
j=1

(b
(n)
j )2, n = 1, . . . , L, (7)

we obtain measures for the contributions of epistatic interactions of different order to
the fitness landscape. The Fn are normalized to add up to 1,

∑L
n=1Fn = 1. If one is

only interested in the total contribution of epistasis one should take the sum over all
terms corresponding to the interaction part, yielding the epistasis measure

Fsum =
L∑
j=2

Fj. (8)

For a purely additive landscape F1 = 1, and thus Fsum = 0. For a completely random
(HoC) landscape F1 → 0 for L → ∞. When interested in the contributions of
interactions of second, third or higher order, one can analyze the terms F2, F3, etc
separately. Note that the Fourier analysis described here is equivalent to an analysis
of variance (ANOVA) commonly used by biologists, which was employed in [25] to
estimate the contribution of main effects (F1) and all possible interactions (F2, F3, F4

and F5 summing up to Fsum) among two sets of five mutations in the fungus Aspergillus
niger.

(3) A frequently used measure of landscape ruggedness is the number of local fitness
maxima Nmax, which exceeds unity only in the presence of reciprocal sign epistasis [24].
For the HoC model it is easy to see that Nmax = 2L/(L+ 1) on average [68, 29], while
the maximal possible value for any (binary) fitness landscape is Nmax = 2L−1 [4, 69].
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Asymptotic expressions for the mean number of local maxima have been derived for
the LK model [70]–[72] as well as for the RMF model [73]. Note that, like all quantifiers
that only depend on the ordering of fitness values, Nmax is insensitive to magnitude
epistasis.

(4) While the quantities introduced so far are global measures of ruggedness, it is also of
interest to characterize epistatic interactions locally. We examined as a convenient local
measure of epistasis all pairs of genotypes in the landscape with a Hamming distance
of 2, and counted the fraction fs of local motifs showing ‘simple’ sign epistasis (i.e.,
the effect sign of a mutation at locus i depends on the state of locus j but not vice
versa), and the fraction showing reciprocal sign epistasis, fr [23]. For a HoC landscape,
the expected values for these quantities are fs = fr = 1/3, while for a purely additive
landscape, both vanish.

(5) Several recent studies apply measures of epistasis which are based on the notion of
selectively accessible pathways, which are connected paths of single-step mutations
along which fitness increases monotonically [22, 57, 23, 30, 18]. Of particular interest
are the direct (shortest) paths to the global fitness maximum, since they provide a
clear signature for the presence of sign epistasis: in a landscape without sign epistasis,
all paths from an arbitrary genotype to the global maximum are accessible, while at
least some of these paths become inaccessible in the presence of sign epistasis [22].
Following [57, 30] we count the number of crossing accessible paths Ncp that lead to
the fittest genotype starting from the reversal (antipodal) genotype at distance L.
For purely additive landscapes, Ncp = L!, while Ncp = 1 on average for a landscape
compatible with the HoC model, independently of the size L of the landscape [30].

(6) Besides the number of crossing paths Ncp introduced above, there are other estimators
of ruggedness and epistasis that rely on counting the number or length of accessible
paths, e.g., the length and number of paths with a monotonic increase in fitness from
the genotype with the lowest fitness to the global optimum [74]. Some measures allow
for detours while others do not. Measures that include neutral or double mutations
into paths have also been applied [75]. Other definitions do not take the location of
the starting or ending points into account, but ask for the length of the longest path
that always leads from a state to its fittest neighbor (greedy walks) [48, 69, 76] or that
only admits states with exactly one fitter neighbor along the path [77]. While these
path measures can yield interesting information about evolutionary dynamics, they are
often less suitable for quantifying epistasis because they correlate non-monotonically
with conventional measures of landscape ruggedness. We consider, as an example, the
ratio fmm between the number of accessible paths from the least fit to the fittest state
of the landscape divided by the number of such paths accessible on purely additive
landscapes, allowing for arbitrary detours. In figure 2 we plot fmm obtained from
simulations of the RMF model (section 2.2) for a range of values of the slope c, while
fixing the fluctuation parameter a = 0.1. Recall that the increase of c from 0 to ∞
corresponds to the transformation from a completely rugged to a perfectly additive
landscape. Thus, the amount of epistasis in the landscape decreases monotonically
with increasing c, while fmm shows a pronounced maximum at an intermediate value
of c, i.e., the dependence of fmm on the amount of epistasis is non-monotonic. We
nevertheless include fmm in our analyses to emphasize that epistasis does not only
imply adaptive constraints, and may sometimes even promote evolvability by allowing
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Figure 2. The number of fitness monotonic (selectively accessible) paths from
the global fitness minimum to the global fitness maximum, divided by the
corresponding number in a non-epistatic landscape, fmm, is plotted versus the
slope of the RMF model landscape (2), c. Measurements were carried out on
landscapes of size L = 4 and averaged over 10 000 realizations of the landscape
for each choice of c. Note that fmm depends non-monotonically on c.

detours. Such detours are not accessible in purely additive landscapes, and may lead
to fmm > 1 (see also [74, 75]). In contrast, the other path-dependent quantity Ncp does
have a monotonic dependence on epistasis parameters like c in the RMF model, or K
in the LK model [30].

3.2.2. Standardizing the data sets. Before presenting the data, one should note that the
expected values of the above quantities, for a given amount of epistasis, may depend on
the size of the underlying landscape. In general, we lack analytical predictions on how
landscape size affects our measures, and we therefore restrict the analysis to subgraphs
of the same size. Subgraph analysis of fitness landscapes was introduced in [30] as a
means for probing the effect of the mutational distance scale within a fitness landscape.
Here a subgraph of size m is the hypercube spanned by all 2m combinations of m out
of L mutations. For landscapes of size L > 4 we calculated the topographic measures for
all subgraphs of size m = 4 that contained at least eight viable and known states and
averaged the values over the subgraphs. For the landscapes of size L = 4 (A, C, and D)
the calculated values refer to the complete landscape.

Furthermore, one should keep in mind that the fit to the multidimensional linear
model and the Fourier analysis presume that mutations interact additively in the absence
of epistasis. How the effects of mutations add up in the interaction-free case will, however,
depend on the quantity that one measures as a proxy of fitness. For example, when the
linear model is fitted to the landscape E of [57], which is based on measures of the minimal
inhibitory concentration (MIC) of an antibiotic, systematic deviations from the measured
landscape result. A much better fit was obtained by considering the logarithms of the
same MIC values, implying that, in this case, the interaction-free landscape is closer to
a multiplicative than an additive model (see figure 3). Since there is no general theory
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Figure 3. The measured fitness values, fi, for the β-lactamase resistance
landscape E [57] are plotted versus the fitness values obtained from the fit with
the model described by equation (3), ffit

i . For a perfect fit, all dots would lie
on the straight line with slope 1. The upper panel uses the measurements taken
directly from [57]. A systematic deviation from the straight line is observed. The
lower panel uses the logarithms of the measurements; no systematic deviations
are observed.

predicting how mutational effects should combine for the different proxies of fitness, we
consistently applied the logarithmic transformation. For all fitness measurements based
on concentrations of drugs or toxins that limit growth or survival, like MIC values, the
logarithms greatly improve the fit to the linear model. In the other cases, the logarithms at
least did not worsen the fit. Note that the MIC values for the combination of piperacillin
and an inhibitor listed in [58] are already the logarithms of the measurements.

In the data sets H–J, fitness proxies are missing for several genotypes (table 1). The
cause is either non-viability of those genotypes (data set H) or unobserved genotypes
(data set I–J). In the latter case, we assume that the unobserved genotypes were missed
by chance [60]. We therefore replaced the missing measurements by values obtained from
the fitted multidimensional linear model and subsequently performed the logarithmic
transformation. The presence of non-viable genotypes poses a problem for the log
transformation of the fitness measurements. Data set H was shown to contain non-viable
A. niger genotypes on the basis of a statistical analysis [30]. A non-viable genotype would
imply a logarithmic fitness equal to minus infinity. To circumvent this issue, we did not
perform the log transformation for this data set. Because the fitness values of viable
genotypes (expressed in terms of relative growth rates) were fairly close to unity, taking
the logarithm of the fitness values of viable genotypes would not substantially alter the
results.

The results of the standardized analyses are presented in table 2. In short, we observe
that landscapes obtained by combining genomewide mutations with a known collectively
beneficial effect are more smooth. In fact, the landscapes A and B share these two
characteristics and have the lowest ruggedness for all four measures (see figure 4). The
landscapes obtained by combining mutations with a known beneficial effect from a single
gene (data sets C–F) are more rugged, while the highest degree of ruggedness is measured
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Table 2. Quantitative measures of ruggedness and epistasis for ten empirical
fitness landscapes. Except for the landscapes of size L = 4, the reported values are
averages over all possible four-locus subgraphs. The last two lines show reference
values obtained from simulations of the house of cards model with L = 4 (HoC),
and for a perfectly additive landscape (PA).

ID Ref. L r/s F1 F2 Fsum Nmax Ncp fr fs fmm

A [26] 4 0.122 0.989 0.009 0.011 1 24 0 0 1
B [56] 5 0.290 0.942 0.040 0.058 1.10 16.80 0.013 0.150 1.92
C [27]a 4 0.517 0.267 0.400 0.733 2 16 0.083 0.250 0.67
D [27]b 4 0.986 0.537 0.197 0.463 2 10 0.125 0.458 0.67
E [57] 5 0.418 0.894 0.064 0.106 1.50 6.53 0.025 0.150 1.09
F [58]c 5 0.380 0.921 0.061 0.079 1.30 8.75 0.050 0.250 3.03
G [59] 6 1.180 0.658 0.179 0.342 2.13 2.10 0.229 0.358 3.16
H [30] 8 1.304 0.547 0.269 0.453 2.61 2.31 0.154 0.262 2.19
I [60]d 9 1.317 0.376 0.368 0.624 2.66 2.02 0.240 0.292 1.71
J [60]e 9 1.199 0.383 0.372 0.617 2.48 2.51 0.227 0.300 1.92

• HoC 4 2.423 0.267 0.402 0.733 3.20 1 0.333 0.333 2.20
� PA 4 0 1 0 0 1 24 0 0 1
a Pyrimethamine resistance measurements.
b Growth rate measurements.
c Data for piperacillin resistance in the presence of a β-lactamase inhibitor;
these mutations were originally selected for their beneficial effect on
cefotaxime resistance [57].
d Relative 5-epi-aristolochene output (main product of TEAS terpene
synthase).
e Relative premnaspirodiene output (main product of HPS terpene
synthase).

in landscapes constructed from genomewide mutations with deleterious (data sets G and
H) or unknown (data sets I and J) effects. Before turning to the biological implications of
these trends in section 4, we find it useful to establish the correlation between the different
measures (section 3.2.3) and the fit to the RMF model (section 3.2.4).

3.2.3. Correlation between different measures of landscape ruggedness. To investigate
how well the different measures (except fmm) correlate with one another, we first rank
all landscapes for each measure separately; i.e., if a landscape has the nth-lowest value
for a quantity, it is assigned rank n with respect to that quantity. In figure 4, we make
pairwise plots of these ranks for the different measures. For a perfect rank correlation
between the measures, the symbols should lie on a straight line. In general, the different
measures of ruggedness correlate well, suggesting that these quantities all reflect the
relative contribution of epistasis in a similar way8. The number of maxima Nmax even has
a perfect rank correlation with the roughness to slope ratio r/s. The number of crossing

8 This conclusion differs from that of a related analysis in [18], where little or no correlation between different
roughness measures was found for a family of landscapes based on protein folding.
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Figure 4. The ranks of the fitness landscapes specified in table 2 with respect to
the quantifiers of epistasis studied are plotted against each other. In general, the
quantities seem rather well correlated (see the main text for a detailed discussion).

paths, Ncp, correlates somewhat less well with the other quantities. We will examine this
deviation when we compare the measured values with expectations from model landscapes.

It is also instructive to compare data sets that measure different quantities using
the same set of genotypes. Landscapes C and D are based on measurements of drug
resistance and growth rate, respectively. The mutations in this set of genotypes were
selected for their beneficial effects on resistance. Increased resistance is expected to have
a trade-off in the absence of the drug and, since growth rates were determined under
these conditions, the included mutations are no longer beneficial. Given the tendency for
landscapes from beneficial mutations to be more smooth, it is not surprising that the
growth rate landscape D is more rugged than the resistance landscape C. Landscapes E
and F are based on a genotype with multiple mutations that is selected because of the
increased resistance to a particular β-lactam antibiotic, cefotaxime. The fitness proxy
used to construct landscape E is cefotaxime resistance, whereas in landscape F it is
resistance to another antibiotic, piperacillin, which was not involved in the selection of the
genotypes. However, the reason why they were measured in the piperacillin environment
(with inhibitor) is because resistance in this environment showed an overall trade-off with
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cefotaxime resistance. Hence, the included (reverse) mutations were collectively beneficial
for this environment. In contrast to landscapes C and D, the landscapes E and F turn out
to be almost equally rugged.

3.2.4. Combining models and empirical data. To compare the measurements for the
empirical landscapes with expectations calculated for model landscapes, we use the
predictions generated from the RMF model (2). We thereby fixed the parameter
controlling the roughness of the landscape to a = 0.01, and calculated all measures for
various choices of the slope c. For each pair of a and c, the calculated values were averaged
over 10 000 realizations of the four-locus landscape. Recall that the case c = 0 corresponds
to a completely random landscape, i.e. to the house of cards model. The opposite extreme
of a purely additive landscape was also considered by setting a = 0 for an arbitrary value
of c 6= 0.

In figure 5, we plot all pairwise combinations of the four epistasis measures previously
included in the rank analysis of figure 4. The black line corresponds to the range of possible
outcomes for the model landscapes, one limit corresponding to the house of cards case
(marked by a filled circle) and the other limit being the purely additive case (marked by an
empty square). The letters represent the measurements from the experimental landscapes
(see table 2). The close correspondence between the letters and the line indicates that the
RMF model captures the different ruggedness measures and their correlations observed
for the experimental landscapes surprisingly well. The relatively large deviations for
landscapes C and D from [27] are most likely due to the fact that this is a four-locus
landscape and measurements are thus based on a single observation, rather than being
an average over multiple subgraphs of size m = 4 as is the case for the larger landscapes.
We also note that the number of crossing paths Ncp observed in the empirical landscapes
appears to be systematically smaller than predicted by the RMF model, a deviation which
coincides with the relatively low rank correlation of this measure compared to the other
measures (figure 4).

4. Discussion and outlook

In this review, we have first established a set of standardized measures for determining the
ruggedness of fitness landscapes. We then use these measures to compare the degrees of
ruggedness for ten available empirical landscapes, and to compare the empirical landscapes
to predictions generated from the rough Mount Fuji (RMF) model, a model with tunable
ruggedness. Our rank analyses show that the selected measures correlate very well, and
thus appear to capture the same underlying feature of the landscape. In a sense, they all
capture the amount of epistasis in a particular landscape. What is quite remarkable is
that not all measures are sensitive to all types of epistasis. The Fourier analysis and the
r/s ratio are sensitive to magnitude epistasis, sign epistasis and reciprocal sign epistasis.
The local epistasis measure, fr + fs, and measures of accessible pathways are insensitive
to magnitude epistasis, while the number of local fitness maxima is only sensitive to
reciprocal sign epistasis. The fact that the rank correlations between the different measures
are still high could either mean that the effects of sign epistasis dominate the measures
that are sensitive to magnitude epistasis or that the three types of epistasis co-occur.
The above also implies that the measure of epistasis among two loci (fr + fs) contains
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Figure 5. The measured values for the quantifiers of epistasis studied are plotted
with respect to each other for the fitness landscapes specified in table 2. The black
line corresponds to values obtained numerically for RMF landscapes interpolating
between a non-epistatic (open square) and a completely random (filled circle)
landscape.

similar information to the more global measures of epistasis (involving four loci). Sampling
local interactions can be done by detection of pairwise interactions between mutations,
which is experimentally more straightforward than building multidimensional landscapes
of connected genotypes. On the other hand, the Fourier analysis shows that interactions
of higher order between mutations (F3, F4, etc) play a significant role, especially in the
more rugged landscapes. This information can only be detected by the construction of
such landscapes.

Before we discuss which characteristics of mutations are linked with smooth or rugged
landscapes, we need to emphasize that the small number of available landscapes only
allows for preliminary conclusions and that the comparison is complicated by differences in
the methodologies involved in measuring fitness. Nevertheless, general patterns do emerge
as well as gaps in our knowledge. All empirical landscapes are relatively small in size
and a specific set of mutations are used to construct the genotypes. These mutations fall
into different classes. Unfortunately, few representatives are available per class, and—even
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worse—we lack any data for other classes. For example, no landscapes are available using
mutations known to be beneficial by themselves in a particular wild type, nor do we know
of any studies that constructed landscapes from deleterious mutations in a single gene.
This necessarily limits the interpretation and generality of our findings.

A first characteristic of a mutation which affects ruggedness is whether the mutation is
deleterious [30, 59] or beneficial [27, 26, 56, 60, 57]. Among the available landscapes, those
that are constructed using beneficial mutations (A–C and E–F in table 2) are smoother
than those using deleterious mutations (G–H). Although beneficial mutations are much
rarer than deleterious ones [54, 78], most studies focus on beneficial mutations. This seems
justified given that beneficial mutations do account for a large fraction of the mutations
that contribute to long-term evolution [79, 80]. The two types of mutation are intrinsically
linked, since each fixed beneficial mutation becomes a potential deleterious mutation when
the direction of selection reverses. In that global sense, it does not matter which type we
are dealing with. However, there is the possibility that deleterious and beneficial mutations
have intrinsically different statistical properties, including epistatic interactions, because
they sample different parts of the local fitness landscape. Similarly, the position of the
wild type is of influence. For example, the beneficial mutations in the TEM-1 β-lactamase
fitness landscape E increase resistance to the antibiotic cefotaxime [57]. The TEM-1 wild
type incurs a very low resistance towards this antibiotic, and the fittest genotype has
approximately a 100 000-fold higher resistance. This clearly differs from the case studied by
Chou et al [26] (landscape A) in which a new metabolic pathway is introduced into a strain
of Methylobacterium extorquens and the fittest genotype displays a 94% (i.e. ∼2-fold)
fitness increase. Note also that the empirical fitness landscapes include mutations that are
known to alter fitness (individually or collectively), and mutations with an individually
neutral effect are excluded. Still, neutral mutations make up a significant portion of all
available mutations [81], and are known to contribute to long-term adaptation [8].

A second characteristic that appears to influence the degree of ruggedness is whether
the individual or the combined effect (beneficial or deleterious) is known. For example,
the mutations that were studied by Chou et al [26] and Khan et al [56] (landscape
B) collectively produced a well-adapted genotype after many generations of evolution,
whereas the mutations studied by [30] (landscape H) were a priori only known to have
a deleterious effect in the wild type background. In the first category, all intermediates
are constructed between two points in genotype space that are connected by at least
one accessible pathway (otherwise the genotype with higher fitness would not have been
found). In the second category, the genotype that combines all mutations is not necessarily
accessible from the wild type, and does not even have to be better adapted. Consistently
with an expected greater bias against (sign) epistasis in the first category, the landscapes
based on genomewide collectively beneficial mutations show less epistasis than those
based on individually deleterious mutations (see table 2). A better direct test would be
a comparison between mutations with known collective or individual effects of the same
fitness sign (all beneficial or all deleterious) within the same biological system, but we
currently lack such data.

A third distinction that affects ruggedness of empirical fitness landscapes is the level
at which the mutations interact. The included mutations can for example affect fitness [30,
56], can operate in a common genetic pathway [26], and can even be located in the
same gene [27, 58, 57]. The landscapes constructed from beneficial mutations located
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in different genes (A–B) are smoother than those from beneficial mutations located in
the same gene (C and E–F). When epistasis is detected between mutations in different
genes, this information has traditionally been used to infer their combined contribution to
a metabolic pathway. The reverse is also true: when empirical fitness landscapes combine
mutations that operate in a common genetic pathway, finding epistasis becomes more
likely. This effect becomes even more pronounced when mutations are located in a single
gene. Epistasis among mutations in different genes can result from functional constraints
caused by interactions in a metabolic network [82, 83], whereas intragenic epistasis can
also result from structural constraints when nucleotide positions in a single gene have a
combined effect on protein shape, enzyme activity, or folding stability [84, 85]. This relates
to the type of epistasis that one expects to find. Magnitude epistasis is often associated
with mutations in different genes in a metabolic network [54, 86, 87], whereas sign epistasis
is expected to occur more often between positions in a single gene [88]. The expectation
of a greater contribution of epistasis to landscapes based on mutations in a single gene
versus that in different genes is supported by our analysis (see table 2). Note, however,
that compensatory mutations are often located in different genes [53, 89], and that sign
epistasis between deleterious mutations has also been shown to occur at a genomewide
scale [30].

Having in mind all complicating differences between the various fitness proxies and
the diverse set of biological organisms used for testing, it is all the more surprising how
well the simple model (2) seems to capture features of the real landscapes. However, we
emphasize that we studied averaged quantities of small (i.e. four-locus) subgraphs of the
landscapes in order to standardize our measures and compare them to model predictions.
Hence information contained in the full landscape might have been overlooked in these
analyses. For example, the considerations in the previous paragraph suggest that the
level of interaction between mutants should be distributed very inhomogeneously on large
enough landscapes, which is consistent with predictions from metabolic models [1, 83].
This means that the landscapes can be decomposed into subgraphs, some of which contain
much, and others little or no epistasis. Such a decomposition would reflect the strength of
interactions between specific combinations of mutations. For instance, one would expect
that mutations changing the same functional part of one protein should greatly influence
the impacts of one another on the function. On the other hand, the impact of mutations
altering different proteins, which do not interact, should be independent of each other.
Searching for such patterns by looking at distributions of epistasis measures instead of
their mean is a promising direction for future study.

If the existence of genetic modules with different levels of epistasis can be established
empirically, it will be a challenge for future models of fitness landscapes to take this
realism into account, and study its evolutionary consequences. In fact, the LK model [27,
28] was introduced with the idea of incorporating such structures. However, these models
make very specific assumptions about the distribution of the size and coupling of
different epistatic modules, and these should be compared to measures based on empirical
landscapes. Where systematic deviations are observed, the empirical information may then
be used to adapt the models. Much of the progress in understanding fitness landscapes
and their evolutionary implications, therefore, depends on the availability of additional
empirical landscapes from various systems—particularly from those classes for which we
lack any information.
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