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We study biological evolution in a high-dimensional genotype space in the regime of rare mutations and

strong selection. The population performs an uphill walk which terminates at local fitness maxima.

Assigning fitness randomly to genotypes, we show that the mean walk length is logarithmic in the number

of initially available beneficial mutations, with a prefactor determined by the tail of the fitness distribution.

This result is derived analytically in a simplified setting where the mutational neighborhood is fixed during

the adaptive process, and confirmed by numerical simulations.
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The adaptation of a population to a novel environment is
a fundamental process of evolutionary biology, which con-
tinues to attract considerable attention from theoretical [1]
as well as experimental [2] perspectives. Adaptation is
driven by the occurrence of mutations that are beneficial
in the new environment and therefore spread in the popu-
lation, leading to an increase of fitness over time. This
process displays a variety of dynamical patterns [3] that
depend on the supply of beneficial mutations (governed by
the product of population size M and mutation rate U) as
well as on the structure of the fitness landscape, which
encodes how the genetic configuration of an organism (its
genotype) affects the number of offspring it will leave in
the next generation.

A particularly simple, yet biologically relevant limit of
adaptive dynamics is the regime of strong selection and
weak mutation (SSWM), where mutations are sufficiently
rare to be treated as independent events, MU � 1, and
selection is strong enough for deleterious mutations (which
decrease fitness) to be unable to spread [4–6]. In the
SSWM regime the population is genetically homogeneous
most of the time, and its dynamics can be described by a
point in the space of genotypes which performs an adaptive
walk towards higher fitness. Because of the low mutation
rate such a walk is constrained to move by single muta-
tional steps, and it terminates when a local fitness maxi-
mum is reached, where no nearest neighbor genotypes are
available that would confer higher fitness. Despite its
strongly simplified nature, the adaptive walk model is, in
principle, amenable to quantitative tests in microbial evo-
lution experiments [7–10].

In the present Letter, we study the length of such adaptive
walks in a simple model of a rugged fitness landscape,
where fitness values Fi of genotypes i are assumed to be
independent random variables drawn from a common
probability density �ðFÞ. The genotype space is a general-
ized hypercube formed by sequences of L letters drawn
from an alphabet of size a, such that each genotype hasN ¼
ða� 1ÞL single mutant neighbors [11]. The walk is then
specified by the transition probability Pij from genotype i to

a neighboring genotype j of higher fitness, Fj > Fi. In the

SSWM regime Pij is proportional to the fixation probability

of the corresponding beneficial mutation, i.e., the probabil-
ity that it will become dominant rather than going extinct
due to demographic fluctuations [12,13]. When the fitness
difference �Fij ¼ Fj � Fi between the initial and final

genotype is small in absolute terms, j�Fijj � 1, while still

maintaining the strong selection condition, Mj�Fijj � 1,

the fixation probability is proportional to �Fij and normal-

ization leads to the expression [4–6]

Pij ¼
�FijP

k:Fk>Fi

�Fik

: (1)

After the transition the population has fitness Fj and en-

counters a new set of random fitness values (apart from the
fitness Fi of the preceding genotype, which is however
inaccessible because Fi < Fj).

Assuming that n fitter neighboring genotypes are avail-
able at the starting point of the adaptive walk, we ask for
the mean number of steps ‘ðn;NÞ that are required to reach
a local fitness maximum. Since most mutations available to
a viable genotype are expected to be deleterious or neutral
[14], we are mainly interested in the behavior of ‘ when
N � n � 1. Simplified variants of this problem have been
considered in previous work. In the random adaptive walk
the dependence of the transition probability on fitness
differences is ignored, and all available fitter neighbors
are chosen with equal probability, which leads to ‘random �
lnnþ crandom with crandom � 1:1 [11,15,16]. On the other
hand, for greedy walks which always move to the neigh-
boring genotype of highest fitness, the walk length remains
finite forN, n ! 1 and attains a limiting value of ‘greedy ¼
e� 1 � 1:71 [17].
For the full problem defined by the fitness-dependent

transition probability (1) we show below that the asymp-
totic behavior of the mean walk length is generally loga-
rithmic, with a coefficient that depends on the form of the
tail of the fitness distribution �ðFÞ. According to extreme
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value theory (EVT), the tail can be represented by the
generalized Pareto form [18–21]

�ðFÞ ¼ ð1þ �FÞ�½ð�þ1Þ=��; (2)

where the shape parameter � serves to distinguish between
the different universality classes of EVT [22]. For � > 0 the
density (2) is defined for all F > 0 and decays as a power
law, representing the Fréchet class of EVT, whereas for � <
0 its support is restricted to the interval [0;���1] and the
distribution belongs to the Weibull class. The Gumbel class,
comprising distributions of unbounded support that decay
faster than a power law, is recovered in the limit � ! 0. In
previous work [20] it has been shown that the adaptive walk
with the fitness distribution (2) reduces to the random
(greedy) limit for � ! �1 (� ! 1). For � ! �1 the
density (2) develops a �-function singularity at the upper
boundary of its support, which implies that all available
mutants have the same fitness and (1) reduces to a random
choice. On the other hand, for � ! 1 the density (2)
becomes extremely broad, such that the fitness of the most
fit mutant in a neighborhood is typically much larger than all
other fitness values and (1) reduces to the greedy rule.

In terms of the parametrization (2), our main result for
the mean walk length reads

‘ � � lnn with � ¼ 1� �

2� �
for � � 1: (3)

This expression recovers the random limit (� ¼ 1) for � !
�1, and shows that the greedy limit (� ¼ 0) is attained at
� ¼ 1, where the density (2) ceases to have a finite first
moment. The result � ¼ 1=2 for the Gumbel class was
previously obtained numerically by Orr [6] (see below),
and analytically by Jain and Seetharaman [23] using an
approach along the lines of [16]. Surprisingly, the expres-
sion (3) also appears in the context of a completely differ-
ent evolution model of quasispecies type, which applies in
the limit of infinite populations [24–26]. The reason for this
coincidence will be discussed at the end of the paper.

The Gillespie approximation.—Our analysis is based on
an approximation first introduced by Gillespie [4]. The key
idea is to ignore the change in available fitness values that
occurs after a jump of the adaptive walk, which implies
that the entire adaptive process proceeds in a single, fixed
neighborhood (Fig. 1). The expected length of the walk is
then equal to the first passage time (or absorption time) of
the Markov chain defined by the transition probability (1)
for a fixed set of fitness values Fk. For the following
discussion it will be convenient to label the fitness values
by their rank, such that F1 > F2 > � � �>FN . The mean
absorption time to the final state of maximal fitness F1,
starting from fitness rank n, is then given by [4]

tn ¼ Hn�1 �
Xn�1

i¼1

�i

�nðn� 1Þ �
Xn�1

i¼1

Xn�1

j¼iþ1

�i

�jjðj� 1Þ ; (4)

where Hk ¼ P
k
i¼1

1
i is the k-th harmonic number, and

�i ¼
Xi�1

k¼1

kðFk � Fkþ1Þ ¼
Xi�1

k¼1

k�k; (5)

with �1 ¼ 0 and fitness gaps �k ¼ Fk � Fkþ1. Because
fitness only increases during the process, the absorption
time is obviously independent of the fitness values
Fnþ1; Fnþ2; . . . ; FN above the starting rank.
Within the Gillespie approximation, the adaptive walk

length ‘ is obtained by averaging the absorption time (4)
with respect to the fitness distribution �ðFÞ. Gillespie
observed that the problem simplifies significantly if �ðFÞ
is assumed to fall into the Gumbel universality class of
EVT. Taking the limit N ! 1 at fixed n, the n superior
fitness values lie in the tail of the distribution, and it is
known that the scaled fitness ranks k�k converge to inde-
pendent, identically distributed exponential random varia-
bles [22]. It then follows by symmetry that the average

ratios in (4) are h�i

�j
i ¼ i�1

j�1 , and evaluation of the sum

yields the simple result [4,6] htni ¼ 1
2 ðHn�1 þ 1Þ � 1

2 �
lnnþ 1

2 ð�þ 1Þ, where � � 0:577 215 . . . denotes Euler’s

constant. Simulations of the full problem show that the
mean walk length differs from this approximate result only
by an offset in the constant correction term, which is given
by c0 � 1

2 ð�þ 1Þ þ 0:44 [6]. A similar calculation for the

model with a random choice of fitter neighbors yields a
mean absorption time of htni ¼ Hn�1 � lnnþ � [6],
which again differs from the mean walk length of the full
model [15,16] (quoted above) only by a small shift in the
constant term. We will show below that the close agree-
ment between the Gillespie approximation and the full
model extends to general fitness distributions, and provide
a qualitative explanation for this behavior.
General fitness distributions.—We now turn to the ap-

proximate evaluation of the absorption time (4) for the
other EVT classes. As a representative of the Fréchet class

we choose the Pareto distribution �ðFÞ ¼ �F�ð�þ1Þ, F 	
1, which is a shifted and rescaled version of (2) with � ¼
1=�. A straightforward calculation shows that the expected
value of the k-th out of N fitness values is given by

F F F F Fi j 3 2 1

Pij

old

F ′3 F ′2 F ′1
new

F ′j ′

FIG. 1 (color online). Illustration of the two processes in-
volved in a step of the adaptive walk. Starting from a genotype
of fitness rank i in its current mutational neighborhood (upper
fitness axis), the population moves to rank j < i with probability
Pij. In the new neighborhood (lower fitness axis) the rank of the

current genotype is j0. In the Gillespie approximation the old and
the new neighborhoods are the same.
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hFki ¼
�ðN þ 1Þ�ðk� 1

�Þ
�ðN þ 1� 1

�Þ�ðkÞ
�

�
N

k

�
1=�

(6)

for N � k � 1. To estimate the fitness gap we take the

derivative with respect to k [27], h�ki � � @
@k �

hFki 
 N1=�k�1�1=�. Approximating the sum in (5) by

an integral we then find �i 
 N1=�i1�1=�, and hence

�i=�j 
 ði=jÞ1�1=�. Inserting this into (4) and replacing

sums by integrals we see that the first sum converges to a
constant for n ! 1, while the second, double sum di-
verges logarithmically as �

2��1 lnn. Thus, to leading order

we find htni � ð1� �
2��1Þ lnn ¼ ��1

2��1 lnn, which is identi-

cal to (3) with � ¼ 1=�.
The calculation for the Weibull class of distributions

with bounded support is similar. We consider distributions
on the unit interval of the form �ðFÞ ¼ ð�þ 1Þð1� FÞ�
with � 	 �1, corresponding to (2) with � ¼ � 1

�þ1 . The

mean of the k-th out of N values drawn from this distribu-

tion is given by hFki � 1� ðkNÞ1=ð�þ1Þ for N � k � 1, and

along the same lines of reasoning used previously we find

that �i=�j 
 ði=jÞð�þ2Þ=ð�þ1Þ. Again, this implies that the

first sum on the right hand side of (4) converges, whereas
the second double sum diverges logarithmically, leading
finally to htni � ð1� �þ1

2�þ3Þ lnn ¼ �þ2
2�þ3 lnn, in agreement

with (3). The result ‘ � 2
3 lnn for the uniform distribution

(� ¼ 0) was also obtained in [23].
Simulations.—Next we compare the prediction (3) to

simulations, using both the full adaptive walk model and
the simplified Gillespie model in a fixed mutational neigh-
borhood. In the simulations of the full model, we avoided
an explicit representation of the genotype space by creating
the fitness values encountered during the walk ‘‘on the fly.’’
This ignores the possibility of the same genotype being
encountered more than once during the walk, which is
however negligible for large N [16]. The total size of the
neighborhood was N ¼ 4000 in all cases, the starting rank
was varied from n ¼ 22 ¼ 4 to n ¼ 211 ¼ 2048 in factors
of 2, and results were averaged over 1000 independent
realizations. As can be seen in Fig. 2, the asymptotic
prediction (3) is well satisfied in both kinds of simulations.

To rationalize the observed close agreement between the
Gillespie approximation and the full adaptive walk, we
analyze the effect that the two processes involved in a
single step of the walk have on the rank of the current
genotype (Fig. 1). In the first process, the choice of a fitter
neighbor according to the transition probability Pij, the

rank of the genotype changes by an amount that is propor-
tional to the initial rank; to be specific, the expected new
rank j conditioned on the original rank i is given by hji ¼
1
2�i for i � 1 [20]. The change of rank due to the sub-

sequent change of the mutational neighborhood (which is
omitted in the Gillespie approximation) can be deduced
from the classic analysis of the number of exceedances

[28,29], which shows that the expected new rank j0 con-
ditioned on the old rank j is jþ 1, with a variance of order
j. Thus, for i, j � 1 the change in rank due to the change in
neighborhood is a small perturbation (of relative size 1ffiffi

j
p ) of

the change that occurs in the first process, which explains
the quantitative accuracy of the Gillespie approximation.
The fact that the change of neighborhood, on average,
increases the rank is consistent with the numerical obser-
vation that the adaptive walks in the full model are always
slightly longer than in the Gillespie approximation (Fig. 2).
Relation to quasispecies models.—The quasispecies ap-

proach to evolution assumes very large populations,
MU ! 1, such that demographic fluctuations are absent
and the adaptive process is completely deterministic [30].
In an uncorrelated random fitness landscape the most
populated genotype then performs a kind of ‘‘adaptive
flight’’, which is essentially constrained to move between
local fitness maxima and terminates only when the global
fitness maximum is reached [24,25]. In the simple case of a
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FIG. 2 (color online). Simulation results for the full adaptive
walk model (full symbols and lines) and the Gillespie approxi-
mation (open symbols and dashed lines). Slopes of lines are
given by (3) and intercepts have been fitted to the numerical data.
(a) Fréchet class with � ¼ 1

� ¼ 10
7 , 2, and 5. The fitted intercepts

are c� ¼ c7=10 ¼ 1:60, c1=2 ¼ 1:39, and c1=5 ¼ 1:25 for the full

model and ~c7=10 ¼ 1:27, ~c1=2 ¼ 1:00, ~c1=5 ¼ 0:84 for the

Gillespie approximation. (b) Weibull class with � ¼ �ð1þ 1
�Þ ¼

�0:75, �0:5, and 0.5. Fitted intercepts are c�2=3 ¼ 1:18,
~c�2=3 ¼ 0:66, c�2 ¼ 1:12, ~c�2 ¼ 0:61, c�4 ¼ 1:00, and ~c�4 ¼
0:56. In all cases c� > ~c�.
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one-dimensional genotype space, the length of such an
adaptive flight depends logarithmically on the number of
genotypes with a prefactor given precisely by the expres-
sion in (3), a behavior that was first observed numerically
[24] and subsequently derived analytically in [26]. The
formal relation to the adaptive walk problem can be traced
back to the fact that the transition probability of the adap-
tive flight, which describes the rate at which the most
populated genotype jumps from one fitness peak to the
next, depends linearly on the fitness difference between the
two peaks in the same way as the fixation probability (1)
[26]. This structure also appears in the analysis of the
collision statistics of a one-dimensional gas with quenched
random velocities [31].

Employing a completely different mathematical ap-
proach, Sire et al. [26] computed the mean length of the
adaptive flights as well as the corresponding variance (see
also [31]). Using their result one finds that the index of
dispersion I (defined as the ratio of the variance to the mean)
depends on the EVT parameter � according to the simple

expression I ¼ 1þð1��Þ2
ð2��Þ2 , which takes its minimal value I¼ 1

2

for the Gumbel class (� ¼ 0) and approaches unity for � !
�1 as well as for � ! 1. This formula reproduces the
results obtained in [23] for � ¼ 0 and � ¼ �1, and we
have checked numerically that it applies to the full adaptive
walks problem for general �. Thus, while the walk length
has a Poisson distribution in the case of random dynamics
[16], in general the fluctuations are sub-Poissonian.

Conclusions.—We have analyzed a simple, paradig-
matic model for the evolution of populations subject to
rare mutations and strong selection, and derived a precise
asymptotic relation between the length of adaptive walks
and the tail of the underlying fitness distribution. While the
predicted asymptotics may be difficult to observe in experi-
ments, the EVT shape parameter � can be estimated ex-
perimentally [19], and examples with � ¼ 0 [32], � < 0
[33] and � > 0 [34] have been identified.

An important restriction of our model is the assumption
that fitness values of different genotypes are uncorrelated.
Indeed, a recent study comparing the distributions of bene-
ficial fitness effects encountered during the first and second
steps of an adaptive walk found strong evidence for fitness
correlations between neighboring genotypes [10]. Such
correlations are likely to significantly affect the results
presented here, and will be addressed in the future.

This work was supported by DFG within SFB 680 and
the Bonn Cologne Graduate School of Physics and
Astronomy. We thank Kavita Jain and Henrik Flyvbjerg
for useful correspondence.

Note added in proof.—A derivation of the result (3) for
the full model has recently been presented in [35].
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