

Clonal interference in large populations

Joachim Krug Institute of Theoretical Physics, University of Cologne

- Introduction: Muller-Fisher hypothesis, Wright-Fisher model
- Clonal interference and the rhythm of microbial adaptation PNAS 104, 18135 (2007)
- House-of-cards model in finite and infinite populations arXiv:0711.1989

Joint work with Su-Chan Park

The Muller-Fisher hypothesis for the advantage of sex

Muller 1932; Crow & Kimura 1965

The Muller-Fisher hypothesis for the advantage of sex

LARGE POPULATION

Experimental evolution with microbial populations

S.F. Elena, R.E. Lenski, Nature Reviews Genetics 4, 457 (2003)

Issues:

- Speed of adaptation
- Statistics of adaptive events
- Fitness advantage of fixed beneficial mutations
- Structure of the fitness landscape
- Deterministic vs. stochastic evolution

fit: Sibani, Brandt & Alstrøm (1998)

Evolution of asexual populations

Basic model: Wright-Fisher sampling of a finite population of size N

- Each individual choses an ancestor from the preceding generation
- Individual *i* is chosen with probability $\sim w_i$ Wrightian fitness
- Mutations occur with probability U per individual and generation
- Two distinct sources of fluctuations $(\sim 1/N, U)$

Fixation

- In the absence of mutations (U = 0) the population becomes genetically homogeneous (monomorphic) for $t \rightarrow \infty$
- When a single mutant of fitness w' is introduced into a monomorphic population of fitness w, the outcome for $t \to \infty$ is either fixation (all w') or loss of the mutation (all w)
- Fixation probability for the Wright-Fisher model (Kimura, 1962)

$$\pi_N(s) \approx \frac{1 - e^{-2s}}{1 - e^{-2Ns}}, \quad s = \frac{w'}{w} - 1$$
 selection coefficient

- Under strong selection $(N|s| \gg 1)$ deleterious mutations (s < 0) cannot fix, while beneficial mutations (s > 0) fix with probability $\pi(s) = 1 e^{-2s}$
- Mean time to fixation of a beneficial mutation: $t_{\rm fix} \approx \ln N/s$

Mutation and fitness models

- Infinite sites approximation: Each mutation creates a new genotype
- Multiplicative model: Fitness of offspring w' related to parental fitness w by

$$w \rightarrow w' = w(1+s)$$

with selection coefficient s chosen randomly from a distribution p(s)

• Standard choices for beneficial mutations (s > 0):

 $p(s) = s_b^{-1} e^{-s/s_b}$ this work J.H. Gillespie, 1983; H.A. Orr, 2003 $p(s) = \delta(s - s_b)$ Rouzine et al., 2003; Desai & Fisher, 2007

• House of cards model:

J.F.C. Kingman, 1978

Fitness of offspring w' is chosen randomly and independently from a probability distribution g(w')

A criterion for clonal interference

C.O. Wilke, Genetics 167, 2045 (2004)

- Probability of beneficial mutations U_b per individual and generation
- Beneficial mutations arise in the population at rate NU_b and fix with probability $\pi(s_b) \approx 2s_b$ when $s_b \ll 1$.
- Compare typical time to fixation $t_{\text{fix}} \approx \ln N/s_b$ to the time interval between fixed beneficial mutations $t_{\text{mut}} = 1/(2NU_b s_b)$
- Beneficial mutations interfere when $t_{\text{fix}} \gg t_{\text{mut}}$ or

 $2NU_{b}\ln N \gg 1$

 \Rightarrow clonal interference is inevitable for large N if U_b is constant

• Deleterious mutations with probability U_d and strength s_d reduce supply of beneficial mutations by e^{-U_d/s_d} (ignored in the following)

The rate of adaptation

- Population mean fitness $\bar{w}(t) = N^{-1} \sum_{i} w_i(t)$
- Rate of adaptation

H.A. Guess, 1974

$$R = \lim_{t \to \infty} \frac{1}{t} \langle \ln \overline{w} \rangle = \langle \ln(1+s) \rangle + \frac{1}{N} \langle \sum_{i} (w_i/\overline{w} - 1) \ln(w_i/\overline{w}) \rangle$$

is finite for finite N

• In general $R = E[r]\ln(1 + E[s]) \approx E[r]E[s]$ C.O. Wilke, 2004

E[r]: rate of substitution E[s]: expected selection coefficient of fixed mutations

- For small populations $E[r] = 2s_b U_b N$ and $E[s] = 2s_b \Rightarrow R = 4s_b^2 U_b N$
- Clonal interference decreases E[r] but increases E[s]

Experimental evidence for clonal interference (E. coli)

de Visser et al., Science **283** (1999)

Perfeito et al., Science 317 (2007)

Finite vs. infinite populations [$U_b = 10^{-6}, s_b = 0.02$]

• Top curve: Infinite population limit

$$\ln \overline{w} \approx t [\ln(s_b t) - 1] + \frac{1}{2} \ln(2\pi U^2 t) + \frac{1}{s_b} \sim t \ln t \implies R = \infty$$

The Gerrish-Lenski theory of clonal interference

P.J. Gerrish, R.E. Lenski, Genetica 102/103, 127 (1998)

Fixation of a beneficial mutation requires

- Survival against genetic drift with probability $\pi(s) = 1 e^{-2s} \rightarrow \text{contenders}$
- Survival against clonal competition:

Probability that no superior mutation s' arises and survives genetic drift during time to fixation of s is $\pi(s) \exp[-\lambda(s)]$ with

$$\lambda(s) = NU_b t_{\text{fix}} \int_s^\infty ds' \ \pi(s') s_b^{-1} e^{-s'/s_b} = \frac{N \ln NU_b}{s} \int_s^\infty ds' \ \pi(s') s_b^{-1} e^{-s'/s_b}$$

 \Rightarrow analytic expression for the rate of adaptation

Key assumption of GL theory: All mutations occur relative to the current wildtype, which is replaced by fixation of the most fit of the contending mutations \Rightarrow no multiple mutations, adaptation is a **renewal process**

The Gerrish-Lenski approximation illustrated

LARGE POPULATION

GL-theory vs. simulations: Rate of adaptation

- Transition from "periodic selection" to clonal interference at $N \approx 10^4$
- Predicted asymptotics: $R_{\rm GL} \rightarrow s_b^2 \ln(NU_b) \approx 0.0028$ at $N = 10^9$
- True asymptotics: $R \rightarrow s_b \ln(NU_b) = 50 \times R_{GL}$!

Extremal statistics estimates

- Largest selection coefficient in one generation $s_{max} = s_b \ln(NU_b)$
- Associated fixation time

$$t_{\rm fix} \approx \frac{\ln N}{s_{\rm max}} \rightarrow \frac{1}{s_b} \quad {\rm for} \ N \rightarrow \infty$$

• GL-theory suppresses multiple mutations

$$\Rightarrow E[r] \rightarrow s_b, \quad R \rightarrow s_{\max}E[r] = s_b^2 \ln(NU_b)$$

• In the presence of multiple mutations $\lim_{N\to\infty} E[r] = \ell$

 ℓ : Maximum number of mutations per individual and generation

• Here
$$\ell = 1 \implies R \rightarrow s_{\max} = s_b \ln(NU_b)$$

GL-theory vs. simulations: Mean mutational effect

• Fit: $E[s] = A \ln N - B$ with A = 0.014 and B = 0.11

• Expected asymptotics: $E[s] \rightarrow s_b \ln(NU_b) \Rightarrow A \rightarrow s_b = 0.02, B \rightarrow 0.276$

The rhythm of microbial adaptation

P.J. Gerrish, Nature 413, 299 (2001)

 GL-theory predicts universal, sub-Poissonian fluctuations of the number of substitution events n_s(t) up to time t:

$$\frac{\langle (n_s - \langle n_s \rangle)^2}{\langle n_s \rangle} \to 2e^{-\gamma} - 1 \approx 0.123 \text{ for } t \to \infty \quad \text{(index of dispersion)}$$

• But: When mutations are not restricted to the wild-type, the notion of a substitution event becomes ambiguous, because multiple mutations can be fixed at the same time (Gillespie, 1993)

FIG. 1. A diagram of the trajectories of mutations that ultimately fix in the population.

Fixation of multiple mutations

Fixation: Change in the genotype of the most recent common ancenstor

Mutation and fixation processes ($N = 10^9$)

Distribution of the number of simultaneously fixed mutations

- Data are well fitted by a geometric distribution: $J(k) = q(1-q)^{k-1}$
- 1/q: mean number of simultaneously fixed mutations, $q(N) \rightarrow 0$ for $N \rightarrow \infty$
- Geometric distribution with q(N) = 2/(2 + NU) is exact in the neutral case (Watterson, 1982)

The rhythm of origination and fixation

- $E[r] \rightarrow 1$: Origination process becomes regular for large N
- Index of dispersion of fixation process $\approx 1 q \rightarrow 1$ for $N \rightarrow \infty$

The house of cards model

- Mutant fitness w > 0 is drawn independently and randomly from probability distribution $g(w) = e^{-w} \Rightarrow$ maximally epistatic fitness landscape
- In the limit $N \rightarrow \infty$ the population fitness distribution evolves according to (Kingman, 1978)

$$f_{t+1}(w) = (1 - U)\frac{wf_t(w)}{\bar{w}(t)} + Ug(w)$$

$$\Rightarrow \bar{w}(t) \approx w_0(1-U)t$$
 for large t

• Finite population asymptotics: $\bar{w}(t) \rightarrow (1-U)m(\tau)$ with $\tau = NUt$ and $m(\tau)$ is the solution of

$$\frac{dm}{d\tau} = \frac{C}{me^m} \quad \text{with} \quad C \approx 8 \quad \Rightarrow \quad m \sim \ln(\tau) - \mathcal{O}(\ln(\ln\tau))$$

• Clonal interference is irrelevant asymptotically because $U_b \rightarrow 0$, $U_d \rightarrow U$

Finite vs. infinite populations

 $U = 0.01, N = 10^3, 10^5, 10^7, 10^9, \infty$

Asymptotics for finite populations

Bimodality of fitness distribution ($N = \infty$)

Gaussian g(w)

exponential g(w)

• Asymptotic decomposition:

 $f_t(w) \approx Ug(w) + (1 - U)T_t(w)$

 $T_t(w)$: broadening or sharpening "traveling wave", independent of U

Summary

Multiplicative model

- Gerrish-Lenski theory of clonal interference works surprisingly well for reasonable population sizes
- Multiple mutations have a qualitative effect on the temporal statistics of substitution events
- How large is a large population? (in the sense of $N \rightarrow \infty$)

House of cards model

- Clonal interference is asymptotically irrelevant in a rugged fitness landscape
- Asymptotic expression for fitness available from records statistics