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The Muller-Fisher hypothesis for the advantage of sex

Muller 1932; Crow & Kimura 1965



The Muller-Fisher hypothesis for the advantage of sex



Experimental evolution with microbial populations

S.F. Elena, R.E. Lenski, Nature Reviews Genetics 4, 457 (2003)

Issues:

� Speed of adaptation

� Statistics of adaptive events

� Fitness advantage of fixed
beneficial mutations

� Structure of the fitness
landscape

� Deterministic vs. stochastic
evolution
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Evolution of asexual populations

Basic model: Wright-Fisher sampling of a finite population of size N

N
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generations

� Each individual choses an ancestor from the preceding generation

� Individual i is chosen with probability � wi Wrightian fitness

� Mutations occur with probability U per individual and generation

� Two distinct sources of fluctuations �
� 1 � N � U �



Fixation
� In the absence of mutations � U � 0 � the population becomes genetically

homogeneous (monomorphic) for t � ∞

� When a single mutant of fitness w� is introduced into a monomorphic
population of fitness w, the outcome for t � ∞ is either fixation (all w� )
or loss of the mutation (all w)

� Fixation probability for the Wright-Fisher model (Kimura, 1962)

πN � s ���

1� e� 2s

1� e� 2Ns � s � w�
w

� 1 selection coefficient

� Under strong selection (N � s �	� 1) deleterious mutations (s 
 0) cannot fix,
while beneficial mutations (s � 0) fix with probability π � s �

� 1� e� 2s

� Mean time to fixation of a beneficial mutation: tfix� lnN � s



Mutation and fitness models
� Infinite sites approximation: Each mutation creates a new genotype

� Multiplicative model: Fitness of offspring w� related to parental fitness w by

w � w� � w � 1 � s �

with selection coefficient s chosen randomly from a distribution p � s �

� Standard choices for beneficial mutations � s � 0 � :

p � s �
� s� 1
b e� s � sb this work J.H. Gillespie, 1983; H.A. Orr, 2003

p � s �
� δ � s� sb � Rouzine et al., 2003; Desai & Fisher, 2007

� House of cards model: J.F.C. Kingman, 1978

Fitness of offspring w� is chosen randomly and independently from a
probability distribution g � w

�
�



A criterion for clonal interference

C.O. Wilke, Genetics 167, 2045 (2004)

� Probability of beneficial mutations Ub per individual and generation

� Beneficial mutations arise in the population at rate NUb and fix with
probability π � sb ��� 2sb when sb� 1.

� Compare typical time to fixation tfix� lnN � sb to the time interval between
fixed beneficial mutations tmut

� 1 � � 2NUbsb �

� Beneficial mutations interfere when t �� � t � �� or

2NUb lnN� 1

� clonal interference is inevitable for large N if Ub is constant

� Deleterious mutations with probability Ud and strength sd reduce supply of
beneficial mutations by e� Ud � sd (ignored in the following)



The rate of adaptation
� Population mean fitness w̄ � t �
� N� 1 ∑i wi � t �

� Rate of adaptation H.A. Guess, 1974

R � lim
t � ∞

1
t�

lnw � � � ln � 1 � s � � �

1
N� ∑

i

� wi � w̄� 1 � ln � wi � w̄ � �

is finite for finite N

� In general R � E � r � ln � 1 � E � s � �� E � r � E � s � C.O. Wilke, 2004

E � r � : rate of substitution E � s � : expected selection coefficient of fixed mutations

� For small populations E � r � � 2sbUbN and E � s � � 2sb � R � 4s2
bUbN

� Clonal interference decreases E � r � but increases E � s �



Experimental evidence for clonal interference (E. coli)

Rate of adaptation Distribution of mutational effects

de Visser et al., Science 283 (1999) Perfeito et al., Science 317 (2007)



Finite vs. infinite populations [Ub

� 10 � 6 � sb

� 0� 02]
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� Top curve: Infinite population limit

lnw� t � ln � sbt �
� 1 � �

1
2

ln � 2πU2t � �

1
sb

� t ln t � R � ∞



The Gerrish-Lenski theory of clonal interference

P.J. Gerrish, R.E. Lenski, Genetica 102/103, 127 (1998)

Fixation of a beneficial mutation requires

� Survival against genetic drift with probability π � s �
� 1� e� 2s � contenders

� Survival against clonal competition:
Probability that no superior mutation s� arises and survives genetic drift
during time to fixation of s is π � s � exp �� λ � s � � with

λ � s �
� NUb tfix

∞

s
ds� π � s

�
� s

� 1
b e

� s� � sb � N lnNUb

s

∞

s
ds� π � s

�
� s

� 1
b e

� s� � sb

� analytic expression for the rate of adaptation

Key assumption of GL theory: All mutations occur relative to the current
wildtype, which is replaced by fixation of the most fit of the contending
mutations � no multiple mutations, adaptation is a renewal process



The Gerrish-Lenski approximation illustrated



GL-theory vs. simulations: Rate of adaptation
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� Transition from “periodic selection” to clonal interference at N� 104

� Predicted asymptotics: R �� � s2
b ln � NUb ��� 0 � 0028 at N � 109

� True asymptotics: R � sb ln � NUb �
� 50 � R �� !



Extremal statistics estimates
� Largest selection coefficient in one generation smax � sb ln � NUb �

� Associated fixation time

tfix�

lnN
smax

� 1
sb

for N � ∞

� GL-theory suppresses multiple mutations

� E � r � � sb � R � smaxE � r � � s2
b ln � NUb �

� In the presence of multiple mutations limN � ∞ E � r � � �

� : Maximum number of mutations per individual and generation

� Here � � 1 � R � smax � sb ln � NUb �



GL-theory vs. simulations: Mean mutational effect
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� Fit: E � s � � A lnN� B with A � 0 � 014 and B � 0 � 11

� Expected asymptotics: E � s � � sb ln � NUb � � A � sb

� 0 � 02, B � 0 � 276



The rhythm of microbial adaptation

P.J. Gerrish, Nature 413, 299 (2001)
� GL-theory predicts universal, sub-Poissonian fluctuations of the number of

substitution events ns � t � up to time t:

� � ns� � ns � �
2

� ns �

� 2e

� γ� 1� 0 � 123 for t � ∞ (index of dispersion)

� But: When mutations are not restricted to the wild-type, the notion of a
substitution event becomes ambiguous, because multiple mutations can
be fixed at the same time (Gillespie, 1993)



Fixation of multiple mutations

Fixation: Change in the genotype of the most recent common ancenstor

fixed fixed

t t+1



Mutation and fixation processes (N � 109)
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Distribution of the number of simultaneously fixed mutations
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� Data are well fitted by a geometric distribution: J � k �
� q � 1� q �

k� 1

� 1 � q: mean number of simultaneously fixed mutations, q � N � � 0 for N � ∞

� Geometric distribution with q � N �
� 2 � � 2 � NU � is exact in the neutral case
(Watterson, 1982)



The rhythm of origination and fixation
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� E � r � � 1: Origination process becomes regular for large N

� Index of dispersion of fixation process� 1� q � 1 for N � ∞



The house of cards model
� Mutant fitness w � 0 is drawn independently and randomly from probability

distribution g � w �
� e� w � maximally epistatic fitness landscape

� In the limit N � ∞ the population fitness distribution evolves according to
(Kingman, 1978)

ft � 1 � w �
�

� 1� U �

w ft � w �

w̄ � t �

� Ug � w �

� w̄ � t �� w0 � 1� U � t for large t

� Finite population asymptotics: w̄ � t � � � 1� U � m � τ � with τ � NUt and m � τ �

is the solution of

dm
dτ

� C
mem

with C� 8 � m � ln � τ �
� � � ln � lnτ � �

� Clonal interference is irrelevant asymptotically because Ub � 0, Ud � U



Finite vs. infinite populations
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Asymptotics for finite populations
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Bimodality of fitness distribution (N � ∞)

exponential g � w � Gaussian g � w �
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� Asymptotic decomposition:

ft � w ��� Ug � w � � � 1� U � Tt � w �

Tt � w � : broadening or sharpening “traveling wave”, independent of U



Summary

Multiplicative model

� Gerrish-Lenski theory of clonal interference works surprisingly well for
reasonable population sizes

� Multiple mutations have a qualitative effect on the temporal statistics of
substitution events

� How large is a large population? (in the sense of N � ∞)

House of cards model

� Clonal interference is asymptotically irrelevant in a rugged fitness
landscape

� Asymptotic expression for fitness available from records statistics


