Continuum theories of ion-induced pattern formation: A critical introduction

Joachim Krug, Laboratory of Physics, Helsinki University of Technology

Courtesy of Th. Michely

- Instability mechanisms: Bradley-Harper, Villain and all that
- Wavelength selection in the linear regime
- Scenarios of nonlinear evolution: Coarsening, chaos and order
- Recent developments and open issues

Review: In *Collective Dynamics of Nonlinear and Disordered Systems*, ed. by G. Radons, W. Just & P. Häussler (Springer, Berlin 2005), pp. 5–37.

The continuum approach to surface morphology evolution

- Description of the surface by a height function $z = h(\vec{r}, t)$, $\vec{r} = (x, y)$.
- Surface evolution equation:

$$\frac{\partial h}{\partial t} = \mathscr{F}(\nabla h, \nabla^2 h, \dots)$$

with the required symmetries $[h \rightarrow h + c$, rotation in the plane, $h \rightarrow -h$,....]

• Pattern formation: Instability of the flat solution

 $h_0(\vec{r},t) = \vec{m} \cdot \vec{r} + Vt$ \vec{m} : mean inclination V: growth/erosion speed

- Advantages: Compact analytic or numerical treatment of global aspects of the morphology; comparison between different problems (growth vs. erosion, solid vs. sand surfaces....)
- Challenges: (i) Relation to microscopic processes
 (ii) Analysis of nonlinear evolution.

The Bradley-Harper instability

R.M. Bradley, J.M.E. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988)

Larger energy contribution from ions incident near minima implies curvature dependence of the sputtering yield Y:

- lons incident along the x-axis at angle θ from surface normal
- Evolution equation to leading order:

$$\frac{\partial h}{\partial t} = -Y_0(\theta) - \frac{dY_0}{d\theta} \frac{\partial h}{\partial x} + v_{\parallel}(\theta) \frac{\partial^2 h}{\partial x^2} + v_{\perp}(\theta) \frac{\partial^2 h}{\partial y^2}$$

 $Y_0(\theta)$: sputtering yield from flat surface

- Stability requires $v_{\parallel}, v_{\perp} > 0$
- Normal incidence: $v_{\parallel} = v_{\perp} < 0 \Rightarrow pits$
- Near grazing incidence: $v_{\parallel} > 0$, $v_{\perp} < 0 \implies$ ripples **parallel** to the beam
- $0 < \theta < \theta_c$: $v_{\parallel} < v_{\perp} < 0 \implies$ ripples **perpendicular** to the beam
- Ripple rotation well established in experiments on amorphous surfaces and molecular dynamics simulations

Citation statistics

An analogy in growth: Steering

Deflection of incident atoms towards the surface normal due to attractive substrate forces implies enhanced growth flux at maxima:

$$\Rightarrow \frac{\partial h}{\partial t} = F(1 + \delta \kappa) \approx F - F \delta \nabla^2 h$$

F: deposition flux *K*: surface curvature δ : deflection length

H. Park, A. Provata, S. Redner, J. Phys. A 24, L1391 (1991) A. Mazor, D.J. Srolovitz, P.S. Hagan, B.G. Bukiet, Phys. Rev. Lett. 60, 424 (1988)

Rotation of aeolian sand ripples

D.M. Rubin, R.E. Hunter, Science 237, 276 (1987)

• Sand ripples formed under bidirectional wind switch from tranverse to longitudinal as a function of the divergence angle ϕ

• Critical angle $\phi_c = \pi/2$ is determined by maximization of sand transport.

The Villain instability in epitaxial growth

J. Villain, J. Phys. I France 1, 19 (1991)

• Preferential attachment of atoms to ascending steps [Ehrlich-Schwoebel effect] induces an uphill mass current $\vec{j}(\nabla h)$:

• Continuum evolution equation:

$$\frac{\partial h}{\partial t} + \nabla \cdot \vec{j} = F, \quad \vec{j} \approx f \nabla h \implies \frac{\partial h}{\partial t} = -f \nabla^2 h + F$$

instability for f > 0

• Ripple instability on vicinal surfaces [JK, M. Schimschak, J. Phys. I 5, 1065 (1995)]

The Villain instability in erosion: Negative growth

Costantini et al., PRL 86, 838 (2001); Kalff et al., Surf. Sci. 486, 103 (2001)

Net outcome of ion impact: Creation of adatoms and advacancies in correlated positions

- Recombination of vacancy at step edge requires detachment of step atom
 ⇒ generic strong Ehrlich-Schwoebel effect for vacancies
- Complication compared to growth: **Two** mobile species on the surface
- Coexistence with Bradley-Harper type effects at larger scales?

Wavelength selection in the linear regime

• Linear evolution equation is mathematically **ill-posed**:

$$\frac{\partial h}{\partial t} = v \nabla^2 h + F \implies h = Ft + h_0 e^{i\vec{q}\cdot\vec{r} + \omega(\vec{q})t} \text{ with } \omega(\vec{q}) = -v|\vec{q}|^2$$

Unbounded growth of short wavelength modes $(|\vec{q}| \rightarrow \infty)$ when v < 0.

• Regularisation by surface diffusion: W.W. Mullins, J. Appl. Phys. 30, 77 (1959)

$$\frac{\partial h}{\partial t} = v \nabla^2 h - \mathbf{K} (\nabla^2)^2 h + F \implies \omega(\vec{q}) = -v |\vec{q}|^2 - K |\vec{q}|^4$$

with maximally amplified wavelength $\Lambda^* = 2\pi \sqrt{2K/|v|}$

- Smoothening by surface diffusion requires thermal creation of adatoms
- Mullins term is inappropriate for surfaces with thermally stable steps

Bradley-Harper:

- Importance of ion-induced mobility at low temperature
- Derivation of smoothening term $-K(\nabla^2)^2 h$ as higher order correction to Bradley-Harper theory Makeev et al., Nucl. Instr. Meth. B 197, 185 (2002)
 - \Rightarrow initial wavelength determined by the ion penetration depth

Villain:

- Initial wavelength determined by Λ* only if it is larger than the submonolayer island spacing (weak Ehrlich-Schwoebel effect)
- For strong ES effect wavelength is set by submonolayer processes
- Effective smoothening term $-K(\nabla^2)^2h$ generated by island nucleation ? P. Politi, J. Villain, Phys. Rev. B 54, 5114 (1996)

Nonlinear evolution: Conserved and nonconserved equations

• Villain: Nonlinear contributions to the slope-dependent current

$$\frac{\partial h}{\partial t} = -\nabla \cdot [\vec{j} + K\nabla(\nabla^2 h)] + F = -\nabla \cdot f(|\nabla h|^2)\nabla h - K(\nabla^2)^2 h + F$$

slope selection: $f(m^2) = f(0)[1 - (m/m_0)^2]$ Siegert & Plischke, PRL 73, 1517 (1994) no slope selection: $f(m^2) = f(0)/[1 + (m/m_0)^2]$ Johnson et al., PRL 72, 116 (1994) + crystal anisotropy, up-down symmetry breaking terms,

Bradley-Harper: Nonlinear contributions to the sputtering yield
 R. Cuerno, A.-L. Barabási, PRL 74, 4746 (1995)

$$\frac{\partial h}{\partial t} = v_{\parallel} \frac{\partial^2 h}{\partial x^2} + v_{\perp} \frac{\partial^2 h}{\partial y^2} + \frac{\lambda_{\parallel}}{2} \left(\frac{\partial h}{\partial x}\right)^2 + \frac{\lambda_{\perp}}{2} \left(\frac{\partial h}{\partial y}\right)^2 - K(\nabla^2)^2 h$$

anisotropic Kuramoto-Sivashinsky equation

 Nonlinearities suppress exponential instability of the linear theory, except in the presence of cancellation modes [M. Rost, JK, PRL 75, 389, 1995]

Nonlinear evolution of the isotropic KS-equation: Chaotic bubbling

Courtesy of M. Rost

From chaos to noise

- Description of KS dynamics by an effective **stochastic** interface equation on scales large compared to Λ^* V. Yakhot, PRA 24, 642 (1981)
- Chaotic fluctuations generate (i) effective noise $\eta(\vec{r},t)$ (ii) positive surface tension $\bar{v} > 0$

$$\Rightarrow \frac{\partial h}{\partial t} = \bar{v}\nabla^2 h + \frac{\lambda}{2}(\nabla h)^2 + \eta$$

Kardar-Parisi-Zhang equation (KPZ)

• Asymptotic morphology is a self-affine rough surface with scaling relations

 $\langle |h(\vec{r},t) - h(\vec{r}',t)|^2 \rangle \sim |\vec{r} - \vec{r}'|^{2\alpha}, \quad \langle |h(\vec{r},t) - h(\vec{r},t')|^2 \rangle \sim |t - t'|^{2\beta}$

with $\alpha \approx 0.38$, $\beta \approx 0.24$.

• Large value of \bar{v} implies long intermediate scaling regime Sneppen et al., PRA 46, R7351 (1992); Drotar et al., PRE 59, 177 (1999)

Coarsening behavior of conserved evolution equations

- Coarsening laws: Pattern wavelength $\Lambda \sim t^{1/z}$ Surface width $W = \sqrt{\langle (h - \bar{h})^2 \rangle} \sim t^{\beta}$
- Exact equation for the surface width:

M. Rost, JK, PRE 55, 3952 (1997)

$$\frac{1}{2}\frac{dW^2}{dt} = \langle \vec{j} \cdot \nabla h \rangle - K \langle (\nabla^2 h)^2 \rangle$$

 \Rightarrow determination of scaling exponents by estimating the two terms

- In-plane isotropy without slope selection: $\beta = 1/2, 1/z = 1/4$ L. Golubovic, PRL 78, 90 (1997)
- In-plane isotropy with slope selection: β = 1/z = 1/3
 D. Moldovan, L. Golubovic, PRE 61, 6190 (2000); R.V. Kohn, X. Yan, Comm. Pure Appl. Math. 56, 1549 (2003)
- In-plane anisotropy of low symmetry (fourfold) destroys simple scaling
 M. Siegert, PRL 81, 5481 (1998)

Coarsening on Pt(111)

Courtesy of Th. Michely

Steepening without coarsening

• One-dimensional evolution equations for surface steps often show unbounded amplitude growth without coarsening $(1/z = 0, \beta > 0)$

J. Kallunki, JK, PRE 62, 6229 (2000)

 Steepening with/without coarsening is the only available scenario for conserved, one-dimensional evolution equations
 P. Politi, C. Misbah, PRL 92, 090601 (2004)

Breaking the symmetry between hills and valleys

• The conserved KPZ (CKPZ) term

[J. Villain, 1991]

$$\frac{\partial h}{\partial t} = -\nabla \cdot \left[\vec{j} + \frac{\lambda_c}{2} (\nabla h)^2 - K \nabla (\nabla^2 h)\right] + F$$

reflects slope dependence of the concentration of mobile species

- Influence on coarsening behavior appears to be minor (?)
 Stroscio et al., PRL 75, 4246 (1995); P. Politi, PRE 58, 281 (1998)
- Nonconserved terms arisising from slope-dependent flux or desorption rate

$$\frac{\partial h}{\partial t} = -\nabla \cdot [\vec{j} - K\nabla(\nabla^2 h)] + F(\nabla h)$$

speed up coarsening: $t^{1/3} \rightarrow t^{1/2}$ in the presence of slope selection

• Growth with desorption: $F(\nabla h) = F(0) - A/[1 + (\nabla h)^2]$

P. Šmilauer, M. Rost, JK, PRE 59, R6263 (1999)

From coarsening to chaos

- How does the transition occur from conserved (coarsening) to nonconserved (chaotic) dynamics ?
- Convective Cahn-Hilliard equation in one dimension: Golovin et al., PRL 86, 1550 (2001); Watson et al., Physica D 178, 127 (2003)

$$\frac{\partial h}{\partial t} = -\frac{\partial}{\partial x} \left[\frac{\partial h}{\partial x} - \left(\frac{\partial h}{\partial x} \right)^3 \right] - \frac{\partial^4 h}{\partial x^4} - \rho \left(\frac{\partial h}{\partial x} \right)^2$$

 $\rho = 0$: slow coarsening $\Lambda \sim \ln t$ $\rho \rightarrow \infty$: Kuramoto-Sivashinsky equation

- Fast coarsening $\Lambda \sim \sqrt{\rho t}$ for $\rho \ll 1$ on time scales $1/\rho \ll t \ll 1/\rho^3$
- Onset of spatiotemporal chaos at $\rho_c \approx 3.5$
- Stable or propagating fixed wavelength, fixed amplitude solutions for intermediate ρ

Recent developments

- Coupled equations for height and concentration of mobile atoms T. Aste, U. Valbusa, Physica A 332, 548 (2004)
- Mechanisms for stable periodic patterns:
 (i) Damped Kuramoto-Sivashinsky equation

$$\frac{\partial h}{\partial t} = -\nabla^2 h - (\nabla^2)^2 h + \frac{\lambda}{2} (\nabla h)^2 - \alpha h$$

breaks $h \rightarrow h + c$ symmetry

Facsko et al., PRB 69, 153412 (2004)

(ii) KS-equation with CKPZ term

$$\frac{\partial h}{\partial t} = -\nabla^2 h - (\nabla^2)^2 h + \frac{\lambda}{2} (\nabla h)^2 - \frac{\lambda_c}{2} \nabla^2 (\nabla h)^2$$

shows transition from coarsening to chaos Castro et al., PRL 94, 016102 (2005)

• Ion-induced step propagation

Hansen et al., PRL 92, 246106 (2004)

Ordered nanodots on GaSb(100)

S. Fascko et al., Science 285, 1551 (1999)

Grazing incidence erosion of Pt(111)

H. Hansen et al., PRL 92, 246106 (2004)

Outlook

- Continuum height models of surface evolution are fundamentally limited by their neglect of the discrete atomic structure in the *h*-direction.
- At least in situations without nucleation or coalescence, an attractive alternative is provided by step dynamics, which is continuous in the plane (*r*) but discrete in height (*h*)
- Simplest assumption: Ion erosion shifts illuminated steps at constant speed
- Progress has been made in deriving continuum height equations from step dynamics in relaxation [D. Margetis, submitted] and step flow [JK et al., PRB 71, 045412 (2005)]
- Treatment of nucleation of adatom- or vacancy clusters in a continuum framework remains a challenge