
Regimes of asexual evolution
in rugged fitness landscapes

� Macroevolution and microevolution

� The adaptive landscape

� Sequence space, fitness and Fisher-Wright sampling

� Regimes of asexual population dynamics

� Evolutionary trajectories in the quasispecies model
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Macroevolution: Episodic patterns in the fossil record

� Number of extinct families
of known marine organisms
(Sepkoski, 1992)

� Extinction rate is
intermittent with power
law event size distribution

� Decline of the average
extinction rate �

non-stationary dynamics
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Microevolution: Adaptation of viral populations

� Fitness decline induced in
populations of bacteriophage
φ6 by successive population
bottlenecks

� Fitness recovery through
increasing population size

� Step-like fitness changes reflect
single deleterious or beneficial
(compensatory) mutations

� Evidence for ruggedness of the
fitness landscape

C.L. Burch, L. Chao,
Genetics 151, 921 (1999)
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Microevolution: Adaptation of bacterial populations

S.F. Elena, R.E. Lenski, Nature Reviews Genetics 4, 457 (2003)
� 12 populations of E. coli

propagated in identical
environments

� Step-wise increase of cell
size and fitness reflects
selection of rare beneficial
mutations; 4 - 6 steps in
10000 generations

� Fitness increase slows
down, but rate of genetic
change does not

� Parallel and divergent
changes
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Adaptation as a hill-climbing process

S. Wright, 1932

phenotypic trait

fitness landscape

population

� Initial population placed in a new environment



Adaptation as a hill-climbing process
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� Rapid adaptation to a nearby fitness maximum



Adaptation as a hill-climbing process

S. Wright, 1932
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fitness landscape

� Stabilizing selection at the fitness peak; mutation-selection balance



Adaptation as a hill-climbing process

S. Wright, 1932

phenotypic trait

fitness landscape

� Rare, rapid transition through non-adaptive zone to a higher fitness peak:



Adaptation as a hill-climbing process

S. Wright, 1932

phenotypic trait

fitness landscape

� Rare, rapid transition through non-adaptive zone to a higher fitness peak:
Quantum evolution (G.G. Simpson, 1944)



Adaptation as a hill-climbing process

S. Wright, 1932

phenotypic trait

fitness landscape

� Goal: To turn this mental imagery into a theory of adaptation



Sequence space
� Each individual carries a genetic sequence of length L

σ� � σ1� σ2� � � �� σL� with σi

� � ��� ��� �
	 genotype

Simplification: Binary sequences σi

� 0� 1

� Point mutations change individual letters in the sequence:
σi � 1� σi

� The Hamming distance between two sequences σ� σ is the number of
letters in which they differ:

d � σ� σ � �
L

∑
i� 1

� σi

� σ i� 2

� Total number of sequences: S� 2L volume
Maximal distance between two sequences: L� log2 � S� diameter

� infinite dimensionality!



L-dimensional hypercubes/Hamming graphs



Fitness
� The fitness W � σ� of genotype σ is the expected number of offspring of

an individual carrying σ

� The mapping σ � W � σ� is very complicated:

+
genotype phenotype 

environment 
fitness 

� Single peak landscapes: W � σ� � w � d � σ� σ0� � σ0: master sequence

� Maximally rugged fitness landscape: Fitnesses W � σ� are uncorrelated
quenched random variables drawn from a common distribution

� random energy model (REM) of spin glasses (Derrida, 1981)

� house of cards model of population genetics (Kingman, 1977)



Evolution of asexual populations

Basic model: Stochastic Fisher-Wright sampling of a finite population
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� Each individual choses an ancestor from the preceding generation

� Genotype σ is chosen with probability � W � σ�

� Point mutations occur with probability µ per site and generation

� Interplay of disorder with two distinct sources of fluctuations � � 1 � N� µ�



Fixation
� In the absence of mutations � µ� 0� the population becomes genetically

homogeneous (monomorphic) for t � ∞

� When a single mutant σ is introduced into a monomorphic population with
genotype σ , the outcome for t � ∞ is either fixation (all σ ) or loss of the
mutation (all σ )

� Fixation of deleterious mutations (W � σ � � W � σ� ) is exponentially unlikely
for large N

� Beneficial mutations � W � σ � � W � σ� � are fixed with probability

Π � σ � σ� � 1� W � σ�
W � σ �



Neutral evolution and adaptive walks
� In a flat fitness landscape [W� �� � �� � ] the population diffuses randomly in

sequence space (genetic drift)

� Average genetic distance between two individuals: (Derrida & Peliti 1991)

� d � σ� σ � �� L
2

4µN
1 � 4µN

� LµN � 1 � � d � � 1 � population is monomorphic most of the
time and evolves by fixation of rare neutral mutations

� In the presence of selection [W 	� �� � �� � ] the population performs an uphill
adaptive walk by fixation of rare beneficial mutations (Gillespie, 1984)

� Adaptive walks terminate at local fitness maxima



Adaptive walk: L� 15 � N� 1024 � µ� 10 � 5 � 10 � 6 � 10 � 7
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“Clonal interference”: L� 15 � N� 1024 � µ� 10 � 4
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Locally deterministic evolution: L� 6 � N� 16384 � µ� 10 � 4
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Classification of evolutionary regimes

K. Jain, JK, q-bio.PE/0606025

Key parameters: Population size N, mutation probability µ per site &
generation, sequence length L

� LNµ : Number of mutants produced per generation

� LNµ � 1: Adaptive walk of a monomorphic population

� 1 � LNµ � L: Stochastic regime with clonal interference

� LNµ � L: Deterministic evolution within a shell of size

d

��
� lnN

� ln µ �

around the dominating genotype

� d

��

� L: Fully deterministic evolution � quasispecies dynamics



The quasispecies model
M. Eigen, Naturwissenschaften 58, 465 (1972); K. Jain, JK, q-bio.PE/0508008

� Unnormalized population fraction Z � σ� t� satisfies linear time evolution

Z � σ� t � 1� � ∑
σ�

W � σ � M � µ � � σ � σ� Z � σ � t�

�

Z � t � 1� � Ê � µ � �
Z � t� � Ê � µ �� Ŵ M̂ � µ �� Ŵ : diagonal, random

� Mutation matrix: M � µ � � σ � σ� � µd � σ � σ� � � 1� µ� L� d � σ � σ� � � µd � σ � σ� �

� Initial condition Z � σ� 0� � δσ � σ0

� after one generation Z � σ� 1� � µd � σ � σ0 �

� population fraction drops to 1 � N at distance

d � d

��
� lnN

� ln µ �



� Evolutionary trajectories are deterministic and independent of µ :
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The strong selection limit

JK, C. Karl, Physica A 318, 137 (2003)

� For µ � 0 mutations are irrelevant after the first generation:

�
Z � t� � �

Ê � µ �
�

t �

Z � 0� �
�

Ê � 0 �
�

t� 1 �

Z � 1�

� Z � σ� t� � W � σ� t� 1W � σ0� µd � σ � σ0 �

� Logarithmic population variables evolve linearly in time:

lnZ � σ� t� � lnW � σ� � t� 1� �
� ln µ � d � σ� σ0�

� Change in µ is compensated by rescaling of time with � ln µ �

� Most populated genotype σ � � t� is determined by maximizing lnZ � σ� t� with
respect to σ



Geometry of the evolutionary race
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lnZ � σ � t �
� lnW � σ � � t � 1 �

� d � σ0 � σ �

� Only the most fit mutant
in each shell of constant
Hamming distance d � σ� σ0�

needs to be considered �

system size 2L � L
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Geometry of the evolutionary race
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� Contenders and
spectators: Contenders
are fitness records σk with
W � σk � 1� � W � σk�

� Not all contenders are
winners; some are
bypassed

� The evolutionary trajectory
is composed of non-
bypassed fitness records;
how many?



Bypassing for i.i.d. shell fitnesses
� Simplification: Replace logarihmic shell fitnesses

Fk

� max
d � σ � σ0 � � k

lnW � σ�

by i. i. d. random variables from a distribution P � F�

� The number of records is lnL with Poisson distribution

� Numerical conjecture: Bypassing probability 1� β with β � 1 depending
on the tail of P � F� JK, C. Karl (2003)

(i) exponential-like: β� 1 � 2
(ii) power law: β� � δ� 1� � � 2δ� 1� P � F� � F� 1� δ

(iii) bounded: β� � 2 � ν� � � 3 � 2ν� P � F� � � F� �� � F� ν

� Fluctuations in the number of non-bypassed records are sub-Poissonian

� Analytic proof by first-passage techniques
C. Sire, S.N. Majumdar, D.S. Dean, J. Stat. Mech. (2006) L07001



Bypassing in sequence space

K. Jain, JK, JSTAT (2005) P04008

� Number of sequences at distance d from σ0 is �

L
d �

� Probability to find a new fitness record at d: (M.C.K. Yang, 1975)

P � d� � �
L
d �

∑d
k� 1 �

L
k �

�

1� 2d � L
1� d � L

for L� d � ∞� d � L � 1 � 2

independent of the fitness distribution

� Total number of records � has mean and variance

� � �� � 1� ln2� N � 0 � 307 � � � N� � � 2 �� � � � 2� � 3ln2� 2� N � 0 � 0794 � � � N

� Bypassing reduces this to � ��� L� for exponential-like fitness distributions,
and to � � 1� for power-law fitness distributions



Distribution of evolution times
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� Global fitness maximum is reached at time T1

� Universal power law tail of distribution of time Tk of the k’th last jump:

Pk � Tk� � T

� � 1 � k �
k

with prefactor depending on fitness distribution and sequence length.

� Expected evolution time is infinite: � T1 �� ∞



� Exponential fitness distribution: P1 � T� � � L � T 2

� Power law fitness distribution: P � F� � F� � δ � 1 � � P1 � T� � � L 2� L
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� Exponential fitness distribution: P1 � T� � � L � T 2

� Power law fitness distribution: P � F� � F� � δ � 1 � � P1 � T� � � L 2� L
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� All intermediate maxima are bypassed in the power law case!



Summary
� Evolutionary biology & population genetics a rich source of stochastic

many-body problems with disorder

� State of the art largely restricted to neutral evolution, small number of sites
(L� 1� 2), non-interacting (=multiplicative) fitness landscapes

� Distinct fluctuations from mutations & sampling noise

� Different kinds of “thermodynamic limits”:
N � ∞ � quasispecies model
L � ∞ � infinite sites model

� Future directions (in SFB 680)
(i) Speed of adaptation in smooth landscapes
(ii) Timing of adaptive events in the infinite sites model
(iii) Modes of reproduction in diploids (sexual, parthenogenetic, selfing)


