Islands in the Stream:

Electromigration-Driven Shape Evolution with Crystal Anisotropy¹

P. Kuhn, University of Duisburg-Essen J. Krug, University of Cologne Supported by DFG within SFB 616 *Energy Dissipation at Surfaces*

¹cond-mat/0405068

Surface Electromigration

electromigration force: $F = eZ^*E$ Z^* : effective valence

- relation to surface resistance and electronic friction
- relevance for reliability of integrated circuits

Surface Electromigration

electromigration force: $F = eZ^*E$ Z^* : effective valence

- relation to surface resistance and electronic friction
- relevance for reliability of integrated circuits

General goal: To bridge the gap between atomistic processes and large scale morphological evolution through the study of simple step and island configurations on single crystal surfaces

Continuum Model of Shape Evolution

- mass transport along island edges
- anisotropic mobility and stiffness

• normal edge velocity v_n satisfies

$$v_n + \partial j / \partial s = 0, \quad j = \sigma(\theta) \left[F_t - \frac{\partial}{\partial s} \tilde{\gamma}(\theta) \kappa \right]$$

s: arc length $\sigma(\theta)$: adatom mobility $\tilde{\gamma}(\theta)$: step stiffness F_t : tangential force

 θ : edge orientation κ : edge curvature

• electromigration dominates on length scales $\gg l_E = \sqrt{\tilde{\gamma}/|F|}$

Local vs. Nonlocal Evolution

- local model: $F_t = F_0 \cos(\theta + \phi) \phi$: field direction single layer islands (Pierre-Louis & Einstein 2000) dislocation loops (Suo 1994)
- nonlocal model: $F_t = -\partial U/\partial s$ with $\nabla^2 U_{\text{outside}} = U_{\text{inside}} = 0$ insulating voids in metallic thin films (Kraft & Arzt, Gungor & Maroudas, Mahadevan & Bradley, Schimschak & JK...)
- interpolation by general conductivity ratio $\rho = \sum_{\text{inside}} / \sum_{\text{outside}} \in [0, 1]$

Results for the isotropic case

- The circle is a stationary solution for any ρ (Ho, 1970)
- Linear instability at critical radius $R_c^{(1)} = \hat{R}_c^{(1)} l_E$ for $\rho > 0$ (Wang, Suo, Hao 1996)
- Nonlinear instability for $\rho = 0$ (Schimschak & JK, 1998)
- No non-circular stationary shapes for $\rho = 0$ (Cummings, Richardson, Ben Amar 2001)
- $\rho = 1$: Slightly distorted circles approach non-circular stationary shapes for

$$\hat{R}_{c}^{(1)} \approx 3.26 < R/l_{E} < \hat{R}_{c}^{(2)} \approx 6.2$$

Non-circular stationary shapes

- Effective radius $R/l_E = 3.3, 4, 5, 6$
- Shapes approach finger solution of width $W \approx 4.8 l_E$ (Suo, Wang, Yang 1994)

Island breakup

• Effective radius $R/l_E = 7$

• Breakup mediated by outgrowth of finger

Void breakup in the nonlocal model

M. Schimschak, J.K., J. Appl. Phys. 87, 695 (2000)

• Splitoff of circular void, no finger solution

Island breakup in kinetic Monte Carlo simulations

O. Pierre-Louis, T.L. Einstein, Phys. Rev. B 62, 13697 (2000)

Stationary shapes without capillarity

- Stationarity condition: $v_n = V \sin(\theta) \Rightarrow Vy = j + \text{const.}$ (Suo 1994)
- In the absence of capillarity $(\tilde{\gamma} = 0)$ this implies

$$y(\theta) = \frac{F}{V}\sigma(\theta)\cos(\theta + \phi), \ x(\theta) = -\int_0^\theta d\theta' \frac{dy}{d\theta'}\cot(\theta')$$

• Mobility model: $\sigma(\theta) = \sigma_0 \{1 + S \cos^2[n(\theta + \alpha)/2]\}$ S: Anisotropy strength *n*: Number of symmetry axes α : Orientation of symmetry axes

Conditions on physical shapes:

(i) $x(\theta)$ finite $\Rightarrow dy/d\theta = 0$ at $\theta = 0$ and π

(ii) no self-intersections $\Rightarrow dy/d\theta \neq 0$ for $\theta \neq 0, \pi$

(iii) closed contour: $x(\theta + 2\pi) = x(\theta) \Rightarrow \tan(n\alpha) \tan(\phi) = n$ for odd *n*

Consequences:

- No stationary shapes for odd *n* !
- For even n smooth stationary shapes exist in a range $0 < S < S_c$ of anisotropy strengths
- Condition (i) selects direction of island motion which is generally different from the direction of the field

Formation of self-intersections

• n = 6, $\alpha - \phi = 0$, $S_c \approx 0.35$:

• For $\alpha = \pi/n$ and $\phi = 0$ self-intersections appear at $\theta = 0$ and π with

$$S_c = \frac{1}{n^2/2 - 1}$$

Stationary shapes for sixfold anisotropy

Direction of island motion

For $S > \tilde{S}_c = 2/n^2$ the direction of motion changes **discontinuously** at the angle $\alpha - \phi = \pi/n$ of minimal mobility

Anisotropic stationary shapes for the nonlocal model

M. Schimschak, J.K.

J. Appl. Phys. 87, 695 (2000)

Anisotropic stationary shapes for the local model

 $\hat{R} = 2.5$

 $\sigma(\theta)$ for n = 6

• "Facet" orientations are close to orientations of maximal linear stability:

Obliquely moving stationary shapes (n=6, S=2)

• "Spontaneous" breaking of symmetry w.r.t. field & anisotropy direction

Oblique oscillatory motion

• Initial radius $\hat{R} = 4$, anisotropy strength S = 1, maximal mobility at $\theta = 0$

• Upper edge is linearly stable, lower edge linearly unstable

Zig-zag motion

Oscillatory behavior in the nonlocal model

M.R. Gungor, D. Maroudas, Surf. Sci. 461 (2000), L550

• Propagation of edge voids with crystal anisotropy

- Onset of oscillations at a critical void size
- Divergence of oscillation period at onset

Tentative phase diagram for n = 6, $\alpha = 0$

Angle of motion as an order parameter (S = 2)

Divergence of the oscillation period at the oo \rightarrow os transition

- N: Number of discretization points
- Best fit: $\tau \sim (R_0 R_c)^{-2.5}$

Outlook

• Nature of bifurcations (low-dimensional truncation)?

• Oscillatory behavior in kinetic Monte Carlo simulations?

 Different kinetic regimes of Pierre-Louis & Einstein? (with F. Hausser & A. Voigt, *caesar*)