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Abstract 
This review describes recent progress in the understanding of the emergence of 

scale invariance in far-from-equilibrium growth. The first section is devoted to 
'solvable' needle models which illustrate the relationship between long-range 
competition mediated, for example, through shadowing or a Laplacian field, 
and scale invariance. The following three sections, which comprise the bulk of 
the article, develop the theory of kinetic surface roughening in a comprehensive 
manner. The two large classes of kinetic roughening processes, characterized by 
non-conserved (Kardar-Parisi-Zhang) and conserved (ideal molecular beam 
epitaxy (MBE)) surface relaxation, respectively, are treated separately. For  the 
former case, which has been extensively reviewed elsewhere, the focus is on recent 
developments. For  the case of ideal MBE we give a systematic derivation of the 
various universality classes in terms of microscopic processes, and compare the 
predictions of continuum theory to computer simulations and experiments. 
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1. Introduction 
The study of growth processes has always constituted, explicitly or implicitly, an 

integral part of solid state physics and materials science. Indeed, most properties of 
real materials depend crucially on the presence of imperfections--bulk vacancies, 
dislocations, surface and interface roughness--that are remnants of the non- 
equilibrium conditions under which the material has formed. Over the centuries 
the art and science of crystal growth has progessed to ever more closely approximate 
the ideal of a perfect, crystalline solid, as evidenced impressively by modern 
techniques such as molecular beam epitaxy (MBE), which allow for the engineering 
of solid state devices at the level of individual atomic planes. Nevertheless, the 
success of this and other techniques depends crucially on the ability to control the 
disordering effects of  the non-equilibrium growth conditions, and to assess, at least 
empirically, the relationship between the growth conditions and the resulting structure. 

Apart from its eminent technological significance, the growth of solids is of 
considerable fundamental interest, since it may provide us with important clues to 
the way in which complex structures form in Nature, through the agglomeration of 
simple, microscopic processes operating in a highly disordered, noisy environment. 
This aspect was dramatically brought to the attention of the theoretical physics 
community in 1981, with the invention of the diffusion-limited aggregation (DLA) 
model by Witten and Sander [t], which has since been found to describe a wide 
variety of naturally occurring patterns [2, 3]. To add to the excitement, it was found 
that the structures generated by DLA and related models typically show spatial scale 
invariance, thus requiring for their quantitative characterization the notions of 
fractal geometry pioneered by Mandelbrot [4]. Mandelbrot has presented a vast 
amount of empirical evidence in support of his thesis that fractal structures occur 
quite commonly in Nature, as the outcome of many complex physical, geological, 
biological and even social processes. As has been remarked by Kadanoff  [5] and 
others, Mandelbrot's observation raises a fundamental scientific problem insofar as 
not many mechanisms are known that could account for the genericity of scale 
invariant behaviour. 

The problem was posed in more pointed form in 1987 by Bak, Tang and 
Wiesenfeld [6], who suggested the concept of self-organized criticality (SOC) as a 
framework within which to formulate general principles that are responsible for scale 
invariance in nature. The term is motivated by viewing the ubiquity of scale invariant 
behaviour against the background of equilibrium statistical mechanics, where scale 
invariance is associated, since the advent of the renormalization group, with critical 
point phenomena. Given that in nature no experimenters are available to tune 
systems to their critical points, the argument goes that natural systems can show 
scale invariance only if they tune themselves, as it were, through some kind of self- 
organization mechanism. While this line of reasoning is appealing and has stimulated 
a tremendous amount of work on extended non-equilibrium systems, it should be 
kept in mind that the association of scale invariance with critical point behaviour has 
its roots in a somewhat arbitrary historical development, in which equilibrium 
critical phenomena happened to provide the first example of non-trivial scale 
invariance that could be understood on a fundamental level. There is no guarantee 
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that the analogy with critical phenomena will serve as a reliable guide when 
venturing into the vast unknown territory of scale invariance far from equilibrium. 

With hindsight, it appears rather unlikely that principles of the generality 
originally envisioned by Bak and co-workers [6] will be found at the origin of all, 
or even a significant fraction of, instances where scale invariance is encountered in 
natural processes. Consequently, workers in the field now tend to reserve the term 
SOC to describe a more specific class of mechanisms which produce scale invariance 
through a separation of time scales between driving and relaxation (as, for example, 
in earthquakes; see [7]). Nevertheless, growth processes such as DLA (and other, less 
spectacular examples which will form the main part of this review) come quite close 
to fulfilling the requirements for a robust, ubiquitous mechanism for scale-invariant 
behaviour: non-equilibrium growth processes are involved in the formation of 
virtually any natural structure; they can be classified according to some broad 
characteristics such as the presence of a Laplacian field (as in DLA), the presence of 
a well defined growth interface with approximately local dynamics (in kinetic 
roughening phenomena, see below), symmetries, conservation laws, etc., and for 
many such classes it is possible to formulate simple models and theories that can be 
used to extract quantitative, sometimes universal information about the scale- 
invariant structures that form. 

This article describes some recent progress in our understanding of how scale- 
invariant structures emerge through far-from-equilibrium growth processes. Since 
exhaustive reviews [2, 3, 8-12] and concise summaries [13-17] of various aspects of 
the subject are available, the emphasis here will be on a comprehensive and 
systematic development of a few key concepts. Simplicity is favoured over generality; 
priority is given to elementary arguments based on scaling ideas and dimensional 
analysis, which provide the maximum yield in terms of intuitive insights. No attempt 
has been made to remove the unavoidable bias introduced by the author's interests 
and contributions into the selection and weighting of topics. It is hoped that this 
shortcoming is partly compensated by the extensive bibliography. 

1.1. Outline 
It is evident already from a superficial look at a growth process like DLA that the 

competition between different parts of the growing structure plays a central role in 
developing long-ranged spatial correlations and scale invariance. Of course, it is an 
altogether different matter to turn this qualitative insight into a quantitative theory. 
Section 2 is devoted to a restricted class of needle models for competitive growth 
which allow a detailed analysis of the relation between competition and scale 
invariance. Competition mediated by a Laplacian field (as in DLA) as well as 
through geometric shadowing will be considered, and special attention will be paid 
to the role of fluctuations and the extent of universality of the resulting scaling 
properties. Sections 2.1 and 2.2 mainly summarize results that have been presented in 
detail elsewhere, while the discussion of the shadowing instability (section 2.3) and 
Laplacian needle growth (section 2.4) considerably extends the brief published 
accounts. 

The main part of the article--sections 3, 4 and 5 deals with growth processes 
that can be reduced to the motion of a well-defined interface with approximately 
local dynamics. This explicitly excludes diffusion-limited growth, but includes many 
technologically relevant vapour deposition techniques. In this case scale-invariant 
behaviour appears in the form of kinetically induced surface roughness [8, 10 15]. The 
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Origins of scale invariance in growth processes 143 

underlying mechanism is the interaction of microscopic fluctuations with the slow 
dynamics of the long-wavelength interface degrees of freedom. 

The basic concepts are introduced in section 3, in a (hopefully!) pedagogical 
manner. The starting point is that of macroscopic interface equations of motion, 
derived from thermodynamic and kinetic considerations in the spirit of the classic 
work of Mullins [18]. Special attention is paid to terms in the equations which 
originate from the non-equilibrium character of the process. Two types of terms are 
generally encountered kinematic terms (such as the celebrated Kardar-Parisi- 
Zhang (KPZ) nonlinearity [19]) that appear simply because the interface is moving, 
and dynamic terms that reflect changes in the interface relaxation processes due to 
the non-equilibrium conditions. Terms of the latter type play an important role in 
the description of crystal growth from atomic beams [20]. 

Given a macroscopic interface equation of motion, a continuum theory of kinetic 
roughening is obtained by adding appropriate noise terms that describe the 
(equilibrium or non-equilibrium) fluctuations in the problem. In section 3, this will 
be carried out at the level of linear fluctuation theory. While mathematically 
undemanding, the linear theory already contains most key features of kinetic 
roughening phenomena; moreover, as will be explained in section 3.4, physically 
relevant situations exist in which the linear theory is exact. 

In sections 4 and 5, the discussion is specialized to two broad classes of kinetic 
roughening phenomena, which can be distinguished according to whether or not the 
surface relaxation processes conserve the volume of the growing structure. The 
generic description for non-conserved dynamics is provided by the Kardar-Parisi- 
Zhang equation introduced in 1986 [19]. In view of the extensive accounts that have 
appeared during the last few years [8, 10-12, 14], only the most important properties 
of the equation--tilt invariance, the fluctuatio~dissipation theorem, and the 
mapping to directed polymers in random media--will be presented in section 4. 
The remainder of the section describes some recent developments which have not 
been summarized previously, notably the topics of amplitude universality, finite size 
effects, chaotic interfaces and inhomogeneous growth. 

Conserved growth equations apply to MBE-type vapour deposition processes, 
where desorption of material from the surface, as well as the formation of bulk 
defects can be neglected. They represent a distinct class of kinetic roughening 
phenomena, which has been the focus of much activity over the last five years. 
Section 5 attempts to provide a unified picture of the current understanding of these 
processes. The central goal will be to identify the microscopic mechanisms under- 
lying the relevant dynamic non-equilibrium terms in the large scale description; most 
of the material presented here has not been published previously. Since one of the 
main motivations for these studies has been to more closely approximate the 
conditions under which epitaxial growth is actually conducted in the laboratory, 
section 5 also contains a preliminary assessment of pertinent experiments. A 
remarkable recent development in this area is the discovery of generically unstable 
growth, a non-stochastic disordering mechanism which gives rise to surfaces that are 
rough but not scale invariant (see sections 5.3 and 5.6.2). 

The sections are written such as to be reasonably self-contained. Each main 
section contains a few introductory paragraphs that place it into the general context. 
In particular, section 2 is largely independent of the rest of the article. While section 
3 is a prerequisite for the discussions in sections 4 and 5, readers who have some 
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familiarity with kinetic roughening phenomena should be able to turn directly to the 
last two sections. 

2. Competitive growth 
In this section a sequence of models is introduced, in which one-dimensional (1 D) 

structures ('needles') grow from linear or planar substrates and interact through 
some kind of screening or shadowing mechanism. We shall investigate in detail how 
the competition gives rise to a scale-invariant power law distribution of needle 
heights 

N(h) ~ h-'~, (2.1) 

and, correspondingly, a density profile 

n(h) = dh N(h) ~ h -(~ 1), (2.2) 
h 

both relations being understood to hold for the frozen, stationary structure which 
evolves after a long time; in some cases the power laws are modified by logarithmic 
corrections. The models are discussed in the order of increasing complexity of the 
competition mechanism, which ranges from unidirectional geometric shadowing to 
Laplacian (that is, electrostatic) screening. 

While the models are mainly motivated by their simplicity and should not be 
expected to precisely describe any specific system, physical situations are conceivable 
in which the competing structures are, to a good approximation, linear, and insights 
gained from the study of needle models could prove useful. Examples are patterns of 
linear cracks driven into a solid by thermal shock [21, 22], arrays of dendritic side 
branches [23, 24] and polymer brushes [25]. 

2.1. Ballistic deposition at oblique incidence 
Ballistic deposition is a simple model for the growth of amorphous thin films at 

low temperatures [26]. In this model, particles are released at random positions 
above the surface and move towards the deposit along straight line ('ballistic') 
trajectories which form a fixed angle 0 with the substrate normal. Corresponding to 
the assumption of low temperature and, hence, negligible atomic mobility, the 
particles stick permanently at the point of first contact with the deposit. It has long 
been recognized [27] that the structures grown by this simple rule attain a 
characteristic columnar morphology when the deposition angle 0 is increased towards 
the limit of grazing incidence, 0 ~ 90 ° (figure 1). The deposit breaks up into columns 
which grow more or less independently of each other and interact only through 
geometric shadowing. The columns are needle-shaped in the case of growth from a 
1D (linear) substrate, and have a sheet-like structure when grown from a plane 
[28, 29]. Much experimental interest has focused on the growth angle of the columns, 
which is distinct from the angle of deposition [27]. In fact this angle is related to the 
angular dependence of the deposit density [30], and can be computed in a mean-field 
approximation [31]. 

A closer look at figure 1 suggests the idealization depicted in figure 2: the columns 
are replaced by needles which grow independently by the accretion of flux at their 
tips. In this view, the competition is seen to be noise driven: while the average growth 
rate is the same for all needles, the shot noise in the particle flux makes it possible for 
some needles to temporarily grow ahead of their neighbours. Once a needle has been 
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4 • 

10,000 LATTICE UNITS 
Figure 1. Lattice simulation of ballistic deposition onto a 1D substrate. Particles enter from 

the right, following trajectories which form an angle of 87.5 ° with respect to the 
surface normal. In this particular model the columns (black) grow at an angle of 
about 52 ° relative to the normal. The picture shows part of a larger system. (Courtesy 
of Paul Meakin.) 

completely shaded, it is forever excluded f rom further growth: the competit ion 
mechanism is exclusive in the sense that needles are either completely unaffected by 
the presence of  others (the active state), or else completely shaded. 

These qualitative considerations can be turned into precise predictions by 
exploiting the mapping [32] to coalescing random walks indicated in figure 2. The 
positions of the active needle tips are projected onto a line perpendicular to the 
substrate, and are interpreted as the positions of  point particles. Owing to the growth 
of the needles, the particles have an (unessential) constant upward drift, super- 
imposed by independent random walks. The shading of  one needle by another 
corresponds to the coalescence of the walkers. The crucial advantage of this 
mapping, then, is that the non-local geometric shadowing interaction between 
needles is turned into a local contact interaction among random walkers. 

An elementary property of coalescing random walks is that their average distance 
increases with time t as v/t. This is simply a consequence of  the fact that, apart f rom 
the contact interactions, the walkers are independent: after a time t, aJ~ee walker has 
explored a region of size v/t; in the presence of other walkers, it can survive up to 
time t only if it has depleted a region of  that size around it. Similarly, in the needle 
model, the height fluctuations of  an active needle grow with time t or, equivalently, 
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//l//// 
Figure 2. Schematic of the needle model for oblique incidence ballistic deposition. Active 

(shaded) needles are identified by full (open) tips. The arrow shows the direction of 
the beam incident at an angle 0. The broken lines indicate the mapping of the active 
tip positions onto coalescing particles which are represented by triangles. 

with height h as gh ~ v/h. Through the geometric shadowing mechanism this vertical 
length scale is translated into a horizontal shadowing length ~(h) ~ gh over which a 
surviving needle of height h is expected to have shaded other needles. The density at 
height h can then be estimated as n(h) ~ 1/~(h) ~ h -1/2, so ~ -- 3/2 in equation (2.1). 

More precisely, the mapping to coalescing random walks yields the following 
expression for the asymptotic fraction of surviving needles [32, 33], 

p(t) ~ cot O/(~t) 1/2. (2.3) 

Since shaded needles stop growing entirely, only those which are active at time t 
contribute to the density profile for h >_ ha(t), where ha(t) denotes the average height 
of active needles. We therefore have the identity 

p(t) = n(ha(t)), (2.4) 

and, since ha(t) = t in the present case (unit deposition rate), 

dn cot 0 1 
N(h) - dh 2v/~h3/2. (2.5) 

Equation (2.4) expresses a particularly simple relation between the dynamics of 
competi t ion--as described by the survivor density ~ a n d  the scaling of  the frozen 
structure; the relation is a consequence of the exclusive nature of shadowing in the 
present model, and can only be approximately generalized to other situations. At 
some finite time t the height distribution is a superposition of the distribution of 
shaded needles, which follows equation (2.5) up to h ~ ha(t), and a Gaussian of 
width ~ v/t and total weight p(t), centred around ha(t), which contains the active part 
of the population; of course in a finite system eventually a state is reached in which 
only a single needle is growing [32]. 

Within the idealized needle model, the value ~, = 3/2 is evidently universal, i.e. it 
is independent of deposition angle, growth rate, etc. [33]. The needle model also 
seems to give an accurate description of several versions of the full ballistic 
deposition problem, provided 0 is chosen sufficiently large to ensure the formation 
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of well separated columns [31, 32]. In the full problem it is more natural to consider 
the distribution of column masses s, rather than heights h. The two are related as 
follows [32]. The shape of individual columns is characterized by exponents, ull, u±, 
which describe how their height h and width w scale with mass, h ~ s~ll and w ~ s ~l. 
The mass distribution is therefore given by 

N(s) = ~sN(h)  ~ s -~, (2.6) 

with r =  1 +u l l (3 , -1) .  For  processes like ballistic deposition, where both the 
individual columns and the deposit as a whole are compact, we also have the general 
relation [34] ull = 2 - r. Together these relations imply 

r = 2 - 1/% (2.7) 

so r = 4/3 in the present case. 
In conclusion, unidirectional geometric shadowing in conjunction with deposi- 

tion flux shot noise is an example of competitive growth which gives rise to scale- 
invariant structures, equation (2.1), with robust, universal scaling exponents. To a 
certain extent these ideas also apply to deposition onto a plane, where the coalescing 
objects are lines rather than point particles [28, 29]. 

2.2. Noisy versus deterministic competition 
2.2.1. Nagatani's forest formation model 

Nagatani [35] proposed a modification of the needle model described above, in 
which the growth rate vi of an active needle depends on its height hi a s  v i ~ h ~ .  One 
particular realization of this idea is a model [33] in which all active needles are chosen 
for growth with equal probability, but the height of the chosen needle is incremented 
by an amount proport ional to h~. The scaling approach of  the preceding section is 
directly applicable here. The height fluctuation of a surviving needle increases with 
height as 8h ~ h(l+c~)/2; estimating n(h),,o 1/~(h) ~ 1/Sh, one obtains the height 
distribution exponent 

3+c~ 
"~-- 2 '  (2.8) 

in good agreement with simulations [33]. 
A conceptually interesting feature of  the Nagatani model is the possibility, for 

oe > 0, of purely deterministic competition. Let us consider the following determi- 
nistic growth model [33]. On each site i of  the integer lattice we define a real positive 
height variable hi(t). Each height grows independently, according to 

dhi 
dt - h~, (2.9) 

as long as the needle is not shaded, i.e. as long as the condition 

hi > hj - ( j -  i) cot 0 (2.10) 

is fulfilled for all j > i (figure 2); shaded needles stop growing entirely. The initial 
values hi(O) are drawn at random from some distribution P(h). 

For c~ > 0 the initial height fluctuations are amplified by the growth process, and 
needles of large initial heights are able to shade those which are less fortunate. Due 
to the simplicity of equations (2.9) and (2.10) it is possible to write down an explicit 
expression [33] for the fraction of  surviving needles in terms of P(h), for general c~. 
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Here we sketch the special case o~ = 1, in which the active needles grow exponen- 
tially, hi(t) = hi(O)exp t. From (2.10) the surviving fraction can be written as 

iio oo th+i/l 
p( t )=  dhP(h) i~=lJ ° dh' P(h'), (2.11) 

where l = exp (t) tan 0. 
Consider first a uniform distribution, P(h) = 1 for 0 < h < 1. In this case the 

product in equation (2.11) only extends to/max = l(1 - h). We replace the product by 
the exponential of  a sum and approximate the sum by an integral. A change of 
variables then yields 

l1 ( ~  ~1/2. 
P~ odhexp [ - l (1 -h ) - l (h+ l / l ) l n (h+ l / l )+ l ]~  \2llJ ' (2.12) 

in the last step a saddle point integration was performed. Not  surprisingly, the form 
of the integrand in (2.12) shows that the survival probability is dominated, for large 
l, by the needles with the largest initial heights, around h = 1 - 1/l. Since the average 
height of active needles grows as ha(t)= (1/2) exp t = (l/2)cotO, we can use 
equation (2.4) to conclude that 

N(h) ~ [(re cot 0)1/2/4]h -3/2, (2.13) 

and thus 3' = 3/2 in equation (2.1). 
It is instructive to repeat this calculation for an unbounded initial distribution, 

such as P(h) = exp (-h). Proceeding as before we obtain, in analogy with (2.12), the 
expression 

j0 p ~ dh exp [-h - l exp (-h)]. (2.14) 

Here the integral is dominated by contributions around h ~ in l, and the saddle point 
integration results in p ~ (~/2)1/2(e/)-1. With ha(t) = exp t =- l cot 0, we obtain, from 
equation (2.4), 

N(h)~ ( 2 )  l/2c°tOhe 2, (2.15) 

so in contrast to (2.13), here the height distribution exponent is 3  ̀= 2. 
The important lesson to be learned is that, in deterministic competit ion processes, 

the properties of the emerging scale-invariant structure depend not only on the 
dynamical rule (encoded, for example, in the exponent c~ in (2.9)), but also on the 
statistics of the random initial conditions; in that sense, there is less robustness (or 
universality) than in noisy processes. The reason can be traced to the fact that, in 
contrast to the noisy model discussed in section 2.1, the survivors in the deterministic 
case are not typical; instead, they are recruited from the needles of largest initial 
height [33]. Consequently, the statistics of the active needle population at some given 
time t, which determines the further evolution of the structure, is related to the 
extremal statistics [36] of the initial height distribution P(h), that is, the probability 
distribution of the largest initial height among l(t) independent samples. The 
sensitivity of deterministic growth processes to the statistical properties of initial 
conditions has been noted before in various contexts [8, 37, 38], and will be a 
recurrent theme throughout section 2. 
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2.2.2. Self-thinning in plant populations 
Competit ion for sunlight is believed to play an important r01e in the dynamics of 

plant populations. Through a process referred to as self-thinning, larger plants cause 
increased mortality among smaller ones by depriving them of  light. Empirically, this 
process is observed to proceed according to a universal scaling law relating the mean 
weight of survivors m to their number density per unit area p as [39] 

m ~ p-3/2. (2.16) 

If we plausibly assume that plant weight is related to plant height as m ~ h 3, we see 
that this implies the lateral distance between plants, ~ = p-a~2 increasing in 
proport ion to h. In the traditional explanation of (2.16), ~ is identified with the 
crown diameter which, on dimensional grounds, is also assumed to scale a s  m 1/3, and 
therefore ~ ~ h. The weakness of  this argument lies in the complicated allometry of 
real plants, i.e. in the fact that different linear size measures such as stem diameter, 
crown diameter, or height, empirically scale with different powers of plant weight 
[40]. 

It is therefore of some interest to attempt a dynamical explanation based on 
simple screening models of  the kind discussed in the previous section. Following 
Nagatani [35], we consider a 1D geometry, as in figure 2, with sunlight streaming in 
from the right at a fixed angle 0. We further assume that shadowing is exclusive, i.e. 
fully shaded plants die instantaneously while those which still receive some light 
grow as if there were no shading at all. 

As a first step in the modelling procedure, the growth dynamics of  individual 
(non-interacting) plants has to be ascertained. There is empirical evidence [41] that 
the increase in plant height can be characterized by a (possibly time-dependent) 
relative growth rate r, such that 

dhi 
- -  r E  dt r(t)hi. (2.17) 

The essential point is that the growth rate is proportional to the height; the time 
dependence of r(t) can be eliminated through a redefinition of time, which reduces 
equation (2.17) to the deterministic Nagatani model, equation (2.9), with ~ = 1. 

Next it has to be decided whether the competition process is noise-driven, i.e. due 
to random fluctuations of the growth rate r, or whether it is primarily deterministic 
and merely expresses the exponential amplification of randomness in the initial 
conditions (that is, the sizes of seedlings). In the first case the stochastic version of 
Nagatani's model described briefly in the previous section (model II of Meakin and 
Krug [33]) would provide an appropriate starting point. With c~ = 1, equation (2.8) 
gives 7 = 2, which implies that the lateral distance between survivors scales as 

= 1In ~ h, in agreement with the empirical law (2.16). If, on the other hand, the 
competition were mainly deterministic, the initial distribution of  seedling heights 
would have to be known. Heuristically, one expects the distribution to be unbounded 
but rapidly decaying, such as a Gaussian or exponential distribution. For such 
distributions the calculation sketched in the previous section shows that, again, 

~ h, possibly with logarithmic corrections [33]. Thus, in this particular case, noisy 
and deterministic competit ion leads to similar results. 

The relative success of these simple, 1D models should not be overinterpreted; for 
example, the relation ~ ~ h is equivalent to the empirical rule (2.16) only if the 
conventional, and questionable [40], allometric relation m ~ h 3 is used. However, 
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they do show that the shadowing length ~ need not be related, as is traditionally the 
case, to the allometry of individual plants (indeed, in the model no lateral length 
scale is associated with individual needles), but rather can emerge from the 
competitive interaction between individuals. 

2.3. The shadow instability 
In the ballistic deposition model described in section 2.1, the deposition flux is 

assumed to be collimated and unidirectional. While this is a reasonable approxima- 
tion in some situations, other growth processes such as sputter deposition are 
characterized by particle trajectories approaching the surface from a wide range of 
directions. It was first pointed out by Karunasiri, Bruinsma and Rudnick (KBR) [42] 
that this leads to a deterministic shadow instability in that valleys receive less flux 
than hills and are therefore left behind. Subsequent studies [4348] have explored 
various aspects of the instability. 

2.3.1. The grass model 
A needle model for the shadow instability is illustrated in figure 3. We focus on 

the simplest nontrivial case, neglecting both roughening through shot noise and 
smoothening by surface relaxation processes. The growth rate of  the ith needle is 
given by [46] 

dhz 
dt - V(Oi), (2.18) 

where the exposure angle Oi, 0 <_ Oi <_ ~, describes the range of directions in which 
straight lines can be drawn from the tip of needle i without intersecting any of the 
other needles (figure 3), and V is a monotonically increasing function with V(0) = 0. 
As in section 2.2, the initial values hi(O) are drawn independently from a distribution 
P(h). 

Some insight into the competit ion process is gained from the distribution Pt(O) of 
exposure angles at time t (figure 4). As the growth progresses, the distribution 
becomes increasingly bimodal. The peak close to 0 = 0 contains needles which are 
essentially excluded from further growth, while the (diminishing) peak close to 0 = 
contains those which have not yet been subject to shadowing; only a small fraction of 
needles resides between the peaks. The structure of  the distribution allows us to 

hi 

Ii II 

X 
\ 
\ 

I I 

Oi 
X 

// 

,,llll ,ll 
Figure 3. The grass model for the shadow instability. 
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o/~ 
Figure 4. Distribution of exposure angles at time t - 20, from simulations using V(O) = O. 

The data constitute an average over 100 runs for a system of 500 needles [46]. 

extend the distinction between active and shaded needles, developed in the 
unidirectional case, to the present, more involved situation in which no needle ever 
entirely ceases to grow. We define a surviving (active) needle through the condition 
Oi(t ) > 0th , for some arbitrary threshold angle 0th , say, 0th = g / 2 .  The surviving 
fraction p(t) can then be written as 

p(t) - -  dO Pt(O). (2.19) 
0th 

While the simple identity (2.4) between the surviving fraction and the density 
profile does not hold here, a similar, approximate relation can be derived as follows. 
Note first that averaging the equations of  motion (2.18) over initial conditions yields 

d 
= dh hNt(h), (2.20) o dO Pt(O) V(O) = dt (h) dtt o 

where a time index has been added to the height distribution N(h) to express the fact 
that we are considering the transient behaviour. Using the definition (2.2) of  the 
density profile and performing a partial integration, the right hand side of  equation 
(2.20) can be written as 

d d fv(~)t fv(~)t 
dt (h) = ~ J0/ dh nt(h) V(n)nt(V(n)t) + J0 dh Ontot ' (2.21) 

introducing explicitly the maximal height V(n)t. On the other hand, from its 
definition (2.19) the surviving fraction can be bounded by 

p(t) < dO Pt(O)[V(O)/V(Oth)] < V(0th) -1 dO Pt(O)V(O) (2.22) 
0th 0 

(recall that V(O) is monotonic!). Inserting equations (2.20) and (2.21) we see that p(t) 
is bounded by IV(n)/V(Oth)]n(V(~)t)provided the term arising from the explicit time 
dependence ofnt in equation (2.21) can be neglected; as we shall see below, this is not 
always true. We will nevertheless assume a relation of the form 

p(t) N n(ha(t)), (2.23) 

with ha(t) ~ V(n)t the typical height of active needles, to relate the dynamics of 
competition to the frozen structure. 
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Figure 5. Periodic needle array used in the analysis of the shadowing model. 

The analysis [46] focuses on the transfer of the needle population from the 'active' 
to the 'shaded' peak in figure 4. We consider a late stage in the process, when the 
typical distance between active needles is ~ >> 1. For  the sake of simplicity we use a 
periodic array of active needles (figure 5), with spacing ~ and alternating heights 
h l  = hmax = V(rc)t and h2 = hi - A, with A << ~; any effect from the shaded needles 
will be disregarded. In the course of time the shorter of the active needles 
increasingly lag behind the longer ones and eventually join the shaded majority. 
For a quantitative description one introduces an exponent u to characterize the 
behaviour of  V(O) close to 0 = re, V (~ ) -  V(O)N (re- O) ~ for 0---+ re. Elementary 
geometry then yields 

dA- -v (~) -V(O)~" (~-O)~(~)  ~ ' d t  (2.24) 

The solution of this equation is 

z ~ ( t )  = [ / ] t (O)  1 - ~  -f- (1  - -  Y)t/~v] 1/(1-~) (2.25) 

for u ¢ 1 and A(t) = A(0) exp (t/{) for u = 1. As a measure for the time scale of 
shadowing we introduce t* through A( t * )=  {; in our simplified situation, the 
exposure angle of the shorter needles has decreased to O(t*) = 0th = re/2 at time 
t*. From equation (2.25) we obtain 

t * - - l - u {  { 1 -  [ ~ 0 ~ ]  1 ~} (2.26, 

f o r u 7  L 1, and 

t* = { In [{/A(0)] (2.27) 

for u = 1. In the relevant limit A(0)/~ << 1, equation (2.26) behaves as t* ~ { for 
u < 1, and t* ~ ~"/A(0) ~ a for u > 1. 

The origin of scale invariance in this class of competitive growth processes lies in 
the fact that the shadowing time t* increases with ~: further shadowing is slowed 
down as active needles become scarce. This is analogous to the coarsening of a 1D 
phase separating system, where the interaction between domain walls, providing the 
thermodynamic driving force for coarsening, decreases (exponentially) with increas- 
ing domain size; Langer's treatment of spinodal decomposition [49] is in fact similar 
to the present approach in that it is based upon an estimate of the lifetime t* of 
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metastable periodic order parameter profiles, which decay via the disappearance of 
every second domain. 

The analogy with coarsening gives an important clue on how to proceed. Since, in 
the simplified periodic configuration analysed here, the active needle spacing doubles 
when the shorter needles are shaded, we may interpret l / t* as the growth rate of  the 
needle spacing ~, and write 

d ~  ~ (2.28) 
dt t*(~) " 

In evaluating this relation we are faced with the problem that t* depends, for u > 1, 
on the initial height difference A(0) as well as on the needle spacing. In the 
deterministic process considered here, A(0) generally acquires a ~ dependence due 
to the fact that the active needles which survive up to a time t are those with the 
largest initial height in a region of  size ~(t) (see section 2.2). The estimate of A(0) for 
a given distribution of  initial values is an exercise in extremal statistics [46, 33, 36]. 
The result is a relation of the type 

t*(~) ~ ~z, (2.29) 

where the dynamic exponent z > 1 depends, for u > 1, both on u and on the initial 
distribution; for example, for uniform, bounded initial distributions, z = 2 u -  1, 
while for unbounded, rapidly decaying distributions, z = u [46]. This is another 
instance of the lack of robust universality in deterministic growth processes alluded 
to previously. For u = 1 we always have t* ~ ~ in ~ and the initial distribution merely 
affects the prefactor. 

Integrating equation (2.28) we obtain the coarsening law 

~(t) ~ t p, (2.30) 

where p takes the universal value p = 1 for u < 1 and p = 1/z for u > 1. In the 
borderline case u - 1, equation (2.30) is replaced by 

~(t) ~ t/In t. (2.31) 

The density of  survivors is p(t) ~ 1/~(t) and, using equation (2.23), we have 

~/= 1 + p .  (2.32) 

In particular, we obtain the universal result -y = 2 for u _< 1, with a logarithmic 
correction 

in h 
N(h) ~ h2 (2.33) 

for u - 1. These predictions are in excellent agreement with simulations carried out 
for a range of values of u, 1/2 < u < 5, and a variety of initial distributions [46]. 

2.3.2. Shaded needles 
Two examples of  numerically determined height distributions are shown in figure 

6. The graphs nicely illustrate the decomposit ion into a t ime-independent ( 'frozen') 
power law part  and a peak at h ~ ha(t) which contains the active needles. However, 
figure 6 (b) indicates that this is not the whole story: a second peak is seen to develop 
and to move towards increasing height at a sublinear rate. This peak is associated 
with the dynamics of the shaded needles. 
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Figure 6. Height distributions of the needle model for shadowing, with growth rate function 

(a) V(O)= ~3 /2  (~_ 0)3/2 and (b) V(O)= (1 -  cos 0) 3/8. In both cases the initial 
heights were drawn from a uniform distribution. The broken lines indicate the 
theoretical predictions for the height distribution exponent % 
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Suppose that the growth rate behaves as V(O)~  07 for 0---+ 0. We need to 
estimate the typical exposure angle 0s characteristic of  the shaded needles. An upper 
bound on 0s is obtained by taking into account only the shadowing due to the 
highest, active needles; their spacing being ~, we have 0s _< ~/ha(t) ~ ~/t,  and hence 
the typical height hs(t) of the shaded needles evolves as 

dhs/dt  = V(0s) < (~/t) v ~ t -~(1-p). (2.34) 

The height of the shaded needles remains bounded for all times if ~/> 1/(1 - p ) ;  in 
general, however, we may only conclude that hs ~ t u with 

# < 1 - ~1(1 - p )  _< 1. (2.35) 

Numerically, it appears [46] that this bound overestimates the value of #, in 
particular in the case p = 1 where the bound becomes trivial; this implies that 
considerable shadowing must also go on within the population of  shaded needles. 
Nevertheless, in most cases # is found to be positive, e.g. # ~ 0.3 when V(O) = O. 
Consequently, the t ~ c~ limit of the height distribution N(h)  is trivial for any fixed 
h, since for sufficiently long times all needles have grown beyond height h. Instead, 
the scaling behaviour (2.1) is encountered in the scaling range hs(t) < h < ha(0, as is 
clearly seen in figure 6 (b). In other words, the typical form of the density profile is 

= 1, 0 < h < h s ( t ) ~ t  ~, 

nt(h) ~ h P, hs(t) <_ h <_ ha(t) ~ t, (2.36) 

= o, h > ha(t). 

Note that there is a sharp drop in n(h) at h ~ hs, corresponding to the peak seen in 
N(h) (figure 6 (b)). 

To delineate the limits of consistency of  our approach, we now use the 
approximate form (2.36) of  the density profile to evaluate the right hand side of 
equation (2.21). We find two contributions to the averaged growth rate, one of  the 
order dhs(t) /dt  ~ t ~ 1 from the shaded needles and one of the order t -p from the 
active ones. The fundamental assumption of  our approach has been that the 
dynamics is dominated by the active needles. This requires # < 1 - p ;  using the 
bound (2.35), a sufficient condition is 

~1 > p / (1  - p). (2.37) 

One can also derive this condition by evaluating the left hand side of  equation (2.20) 
with the following simple Ansatz for the exposure angle distribution Pt(0): 

Pt(O) = [1 - p(t)]8[O - 0s(t)] + p(t)~5(O - ~). (2.38) 

Again, this gives rise to two competing contributions to the average growth rate, and 
with the bound 0s _< ~/ t  the peak at 0 = rc is found to dominate if (2.37) is fulfilled. 
Surely, the condition (2.37) is too restrictive to be useful; for example, it is only 
marginally satisfied in the case depicted in figure 6 (a) (p = 1/2 and ~/= 1), although 
in this case the shaded needles are seen to play no significant role. 

2.3.3. The effect o f  noise 
Consider adding random forces J~(t) on the right hand side of equation (2.18). 

The shadowing dynamical equation (2.24) then becomes 
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dA ( @ ) ~  
dt = + f (t), (2.39) 

where we take f to be Gaussian with zero mean and covariance 

( f ( t ) f ( t ' ) )  = DS(t - t'). (2.40) 

The solution of this equation is straightforward in the linear case u = 1 (compare 
with section 3.2.2). In a situation where initially all active needles have the same 
height, A(0) = 0, the height difference grows according to 

= ~ f  [exp (2t/~) - 1], (2.41) (zX(t) 2) 

and the shadowing time, obtained by equating equation (2.41) to ~2, is 

t*({) = (~/2) In (1 + 2{/D). (2.42) 

For large ~ this is of the form (2.27), with an effective initial height difference 
A(0)e ff ~ D. 

The comparison indicates how equation (2.39) may be approximately solved for 
arbitrary value of u. Equation (2.41) describes two distinct regimes. For t << ~/2, the 
process is noise dominated and (A(t) 2} ~ Dt, while for t >> ~/2 the deterministic 
term in equation (2.39) takes over. It is plausible that the succession of a noise- 
dominated early time regime and a late time regime dominated by deterministic 
shadowing should be a general feature of equation (2.39). We can therefore match 
the early time behaviour, A ( t ) =  (Dt) I/2, to the deterministic solution (2.25), 
requiring continuity of A and d A / d t  at the crossover time to; such an approach 
was first suggested by Rossi [50] in the context of Laplacian needle growth (see 
section 2.4). The two conditions serve to fix &, as well as the initial condition 
A(0) = A(0)eff in equation (2.25), thereby selecting a particular trajectory from the 
one-parameter family of deterministic solutions. The result is 

1 u 2 u  

t~ = (1 /2 ) (D /Z) rT~  (2.43) 
and 

A(0)e e- = [(1 + u)/2]l/(1-U)(D/2)l/(l+u){ u/(l+u) . (2.44) 

The first important observation is that A(0)efr/{ --+ 0 for { --+ co, for any value of u. 
This implies that the prediction p = 1 in the universal regime u < 1 is unaffected by 
the noise, since t*(~) = ~/(1 - u) for large {, as before (equation (2.26)). On the other 
hand, for u > 1, insertion of equation (2.44) into equation (2.26) yields the 
shadowing time 

t* u + l  2~ tc ~ {l~, (2.45) 
u - -1  

for large ~. The coarsening exponent is 

l + u  
< 1. (2.46) P =  2v 

Somewhat remarkably, the shadowing time in equation (2.45) is of the same order 
(though always greater than) the crossover time tc from the noise-dominated regime, 
which might raise doubts concerning the consistency of the approach. Nevertheless, 
Rossi [50] found good agreement with equation (2.46) from an exact enumeration 
analysis of a discrete version of equation (2.39). 
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2.3.4. Beyond the needle model 
We conclude this section by commenting on numerical work on the shadowing 

instability that includes fluctuations (due to the shot noise in the deposition flux) and 
surface tension effects. These studies have considered either discretized continuum 
equations, or lattice models in which particles are deposited ballistically from a range 
of directions. The most general continuum equation is of the form 

~h(x,  t) = o-~72h - t~V4h + (Vh) 2 + O[h(x, t)] +f(x,  t), (2.47) 

where h(x, t) is the continuous version of  the height variables hi(t), and the exposure 
angle 0 is defined as before, in figure 3, as a functional of the instantaneous surface 
configuration; it is assumed that the vertical local growth rate is proportional to the 
exposure angle, with a factor of proport ionali ty (the deposition flux) that has been 
set to unity. The coefficients cr, t~ > 0 are related to the surface tension; the cr term 
describes surface relaxation due to evaporation-condensation processes, while the 
term captures smoothening through surface diffusion (see section 3). The (Vh) 2 
nonlinearity was first proposed in the celebrated work of Kardar, Parisi and Zhang 
(KPZ) [19], and will be thoroughly discussed in section 4. Finally, f(x, t) is a 
Gaussian random force with short-range correlations in space and time, and 
variance D (see equations (2.40) and (3.16)). The needle model discussed in the bulk 
of this section corresponds to the simplest case where cr = ~ =- A = D ---- 0, and the 
linear appearance of  0 in equation (2.47) implies that one is dealing with the 
'borderline' situation u = 1. 

A serious deficiency of  equation (2.47) lies in the fact that all coupling terms 
appearing in the equation are the result of  a small gradient expansion (see section 3), 
which is clearly inappropriate in view of  the large modulations caused by the shadow 
instability. A more satisfactory continuum description, in which the local normal 
growth rate is proportional to the normal projection of the incident flux, integrated 
over the exposure angle, was proposed by Bales and Zangwill [44]. The surface 
morphology generated by this model is quite different from that obtained with needle 
models and continuum equations of the type (2.47), which assume a single-valued 
height function at all times; in fact, the surface develops a structure of domed 
columns, separated by deep narrow grooves that occasionally close, due to the 
formation of overhangs, and leave chains of vacancies in the bulk. However, because 
of the high computational cost associated with the Bales-Zangwill model, it has not 
been possible so far to quantitatively study its scaling and coarsening properties. 

In their original paper [42] on the shadow instability, KBR studied equation 
(2.47) with cr = A = D = 0, i.e. the deterministic problem with surface diffusion 
relaxation. For  small values of ~, ~ _< 10 -4, they found a power law density profile 
with an exponentp = 7 - 1 increasing f romp ~ 1 for ~ = 0 top  ~ 1.5 for ~ = 10-4; 
for larger values of ec an abrupt transition, from compact growth with a flat interface 
to a spiky morphology, is observed at a critical height h* ~ ~1/3, but the spikes do 
not appear to have a power law height distribution. The result p > 1 is very 
surprising in view of  our interpretation o fp  as a coarsening exponent, as in equation 
(2.30); indeed, p > 1 would correspond to superlinear coarsening, and it is hard to 
see how such a behaviour could arise from a local coupling as in equation (2.47) (it is 
not due to the shadowing interaction because then it should appear also in the needle 
model). It is possible that KBR in fact observed the steep transition region between 
the constant plateau and the power law decay in the density profile (2.36), which may 
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give rise to large, spurious values of p; another possibility is that the coupling by the 
n term enhances the growth of the shaded background of needles to such an extent 
that, at least for larger values of ~, the power law regime disappears altogether. 
Clearly this case requires further investigation. 

Yao, Roland and Guo [45] considered equation (2.47) with ~ = 0, ~r > 0 and 
3~ ¢ 0. They found linear coarsening, p = 1, both in the presence and absence of 
noise. Apart from the logarithmic correction in (2.31), which may have been too 
weak to detect, this result agrees with our analysis of the needle model. On the other 
hand, a subsequent study of the case A = 0, cr > 0, reported by Yao and Guo [47], 
resulted in a smaller coarsening exponent p ~ 0.7. The main contribution of Yao 
and Guo [47] was an extension of equation (2.47), with A = 0 and cr > 0, to two- 
dimensional (2D) surfaces, where the coarsening was found to progress surprisingly 
slowly, with p ~ 0-33. 

Lattice models for the shadow instability were introduced by Roland and Guo 
[45, 51] and by Tang and Liang [48]. The model of Roland and Guo is subject to the 
solid-on-solid (SOS) constraint, i.e. overhangs and bulk vacancies are not allowed to 
form; surface sites are selected for deposition by launching particles towards the 
surface along randomly directed ballistic trajectories, but the success of the 
deposition attempt is decided by energetic considerations, thereby bringing surface 
tension and temperature into play. In contrast, the model of Tang and Liang is very 
close in spirit to standard ballistic deposition (section 2.1), i.e. particles stick 
permanently at the site of first impact, and the deposit is highly defective. In both 
models the maximal exposure angle 0max is treated as a control parameter, and both 
models show evidence of a phase transition from a 'flat' phase at small Ornax, in which 
the surface roughens as predicted by KPZ theory (see section 4), to a grooved, 
columnar phase dominated by shadowing at large 0max. However, the scaling in the 
grooved phase is quite different in the two models. While Tang and Liang [48] find a 
column mass distribution exponent "r ~ 1.47, consistent, via the relation (2.7), with 
the needle model prediction 3' = 2, Roland and Guo [45, 51] report a coarsening 
exponent p ~ 0-56. These results suggest that the Tang-Liang model might be 
appropriately described by the continuum equation (2.47) with cr > 0 and A ~ 0, 
while the Roland-Guo model corresponds, roughly, to the case A = 0. It is obvious, 
however, that we are still far from a coherent picture of the various approaches to 
modelling the shadow instability, let alone an understanding of universality classes 
of possible asymptotic behaviours. 

2.4. Laplacian needles 
Diffusion-limited needle growth was considered independently by Meakin [52] 

and Rossi [50, 53] as a simplification of the notoriously difficult DLA problem. In 
this model, needles grow perpendicular to a d-dimensional substrate plane by the 
accretion of individual random walkers. The walkers are released, one by one, from 
randomly chosen lateral positions at the height of the highest needle (figure 7). 
Growth occurs only if the walker hits the tip of a needle. In the original version [50, 
52, 53] of the model, walkers that hit the side of a needle are reflected. Here we shall 
also discuss a version [55] referred to as model A, in which walkers are absorbed at the 
sides of needles, this boundary condition being, as will be argued below, somewhat 
more faithful to DLA; the original version with reflecting boundary conditions then 
constitutes model R. A typical configuration generated by model R is shown in figure 
8. Since the positional probability distribution of the random walker satisfies the 
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/// / / /  / 

R 

Figure 7. Illustration of the two versions of Laplacian needle growth. In model A, the 
random walker is absorbed at the sides of the needles, while in model R the walker is 
reflected. 

. 64 part ic le d iameters  • 

,4 2048  par t ic le  d iameters 

Figure 8. Needle forest generated in a 2D off-lattice simulation of Laplacian growth, with 
reflecting boundary conditions at the sides of the needles. The forest consists of 
20 000 particles. The inset shows a magnification of the lower left corner. (Courtesy 
of Thomas Rage.) 
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Laplace equation, with appropriate (absorbing or reflecting) boundary conditions at 
the sides of the needles, this model is a simple example of Laplacian growth [2, 3]. 

Rossi [50] proposed to analyse the problem within a two-absorber approxima- 
tion, which is closely analogous to the approach applied to the shadow instability in 
section 2.3. He considered the initial stage of screening for a configuration of two 
needles in the plane (i.e. growth occurring from a line, d = 1) with lateral spacing 
and heights hi and h2 = h~ - A ,  with A/~ << 1, and supplemented with periodic 
boundary conditions (see figure 5). The quantity of interest is the probability ~(~, A) 
that the next walker to be launched onto this configuration is absorbed by the tallest 
needle hi. Rossi observes that, in the continuum limit where ~ and A are large 
compared to the lattice spacing (or particle size), the scale invariance of the Laplace 
equation implies that ~' should depend only on the ratio A/~ and, since 
N(~, 0) = 1/2, one expects an expansion of the form 

~ ( ~ , A ) ~  I + C  ~- (2.48) 

for A/~ << 1. The rate at which the height difference A increases due to screening is 
proportional to 2N - 1, and hence A satisfies an equation of the form (2.24), or 
rather, since the process is manifestly noisy, its stochastic counterpart (2.39). The 
analysis of section 2.3 can then be taken over, and a prediction for the height 
distribution exponent 7 (equivalently, the coarsening exponent p) follows in terms of 
the (unknown) exponent u in equation (2.48). For example, under the plausible 
assumption that a walker launched at a random lateral position and height hi will 
invariably be absorbed at the needle tip that is closer to its starting point, one has 

= 1/2 + A2/2~ 2, (2.49) 

so u = 2 and equation (2.46) would predict that p = 3/4, which is close to (but 
smaller than) the early numerical estimate [50, 52] p ~ 0-83. It is interesting to note 
that the value p = 0.78 4- 0.02 was obtained numerically in a model of 'shortest- 
path' aggregation, for which equation (2.49) is exact [54]. 

Krug, Kassner, Meakin and Family [55] extended Rossi's analysis in two 
directions. First, they pointed out that, for model A in d = l, the probability 
N(~, A) can be computed using the conformal mapping technique. The calculation, 
which will be sketched shortly, shows that in fact u = 1, and therefore the density 
profile is found (from equations (2.2) and (2.33)) to decay as 

In h 
n(h)~ h (2.50) 

(see figure 9); while the conformal mapping calculation applies only to model A, 
scaling arguments and numerical simulations [55] indicate that equation (2.50) holds 
for model R as well. Second, the breakdown of the two-absorber picture in high 
dimensions--more precisely, above an upper critical dimension dc--Was predicted. 
This breakdown is expected to occur because, in high dimensionalities, the needle 
deposit becomes increasingly transparent to the random walkers and the screening 
capacity of an individual needle becomes small. For d _> dc, screening is a collective 
effect involving many needles. This regime can be described by a continuum theory 
of mean field type [56, 57], which will be discussed in section 2.4.3. Presently we focus 
on d = 1, which is below do both for model R and A. 
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1 0  .2 

~(h) 

10  4 

10  ~ 

1 0  ° I O  r 1 0  2 1 0  3 1 0  4 

h 

Figure 9. Density profiles obtained by averaging 50 independent off-lattice simulations of 
model A, in d = 1, for a system size of L = 2048 particle diameters. The figure shows 
a series of curves obtained at different stages of growth. At the latest stage, when 
20 000 particles (per run) have been deposited, the plateau in the density indicates 
that only a single needle remains. The bold curve represents the best fit of the form 
n(h) ~ In h/h -(~ 1), with -~ = 2.1, which is only slightly better than the predicted 
decay law (2.50) with -~ = 2. (Courtesy of Thomas Rage.) 

2.4.1. Screening efficiency 
Before taking a closer look at the conformal mapping approach, we should issue 

one word of  caution. Even in the regime d < dc, in which screening is dominated by 
individual needles, it is far from clear that the two-absorber approximat ion captures 
the essence of the full problem. The tacit assumption of  the approximat ion is that the 
screening interaction between the dominant, tallest needles can be isolated f rom the 
influence of the background of shorter needles that have been screened previously. In 
the shadowing model of section 2.3 this assumption was, to some extent, justified by 
the observation that the needle populat ion naturally decomposes into a group of 
'shaded' and a group of 'active' individuals, as evidenced by the two peaks in the 
exposure angle distribution (figure 4). In the Laplacian case there is no evidence that 
the distribution of growth probabilit ies has a similar, bimodal structure. 

An impression of the dynamic significance of the background of 'screened' 
needles is gained by comparing the time evolution of the height distribution Nt(h), 
as shown for model R, for example in figure 2 of [52], with the corresponding 
behaviour in the shadowing model (figure 6 (a)). While in the latter case a clear 
distinction between the frozen bulk of  the deposit, and a small subpopulat ion of 
active needles, is seen to evolve, in the Laplacian model growth appears to occur 
simultaneously at all levels (all values of  h), indicating that a considerable flux of 
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random walkers penetrates the deposit far below the height of  the tallest, 'active' 
needles. Model A seems to be better behaved in this respect--the time evolution of 
the density profile shown in figure 9 indicates that the bulk of the deposit is 
essentially frozen once several particles per site have been deposited. 

For a preliminary assessment of  screening effects in the two versions of the 
Laplacian needle model, we consider the penetration of a random walker into a 
periodic needle array in d = 1 lateral dimensions. Let the needle spacing be ~, and 
denote by P~(r) the probability that a walker released at the height of the needle tips 
penetrates at least a distance r into the deposit before being absorbed. For model A, 
we can invoke the well-known electrostatic analogy [58], which replaces the needles 
with grounded conductors and relates the density of random walkers to the 
electrostatic potential, to conclude that the penetration probability (and therefore 
the growth rate of a screened needle) decays exponentially, as 

P~(r) ~ exp ( -~r/~),  (model A). (2.51) 

For model R, absorption can occur only when the walker returns to the plane 
r = 0 (the height of the needle tips). We can analyse the vertical motion using 
standard results for (discrete) 1D random walks in the presence of a single weak 
absorber at the origin. The tail of P~(r) is dominated by walkers that return to the 
origin many times. Asymptotically for long walks the lateral positions of the walker 
at subsequent returns are uncorrelated, hence the absorption probability per return 
ispa ,-~ 1/~ (Pa ~ 1/~ a in d lateral dimensions). The probability for a walk of length t 
to return exactly n times is [59] 2n - t ( t -  n) ! / [ ( t /2 ) ! ( t /2 -  n)!], and consequently the 
survival probability in the presence of  an absorber of strength Pa can be estimated as 

t/2 ( t  --  n) !  
~p(t) ---- ~ (1 - pa)"2" * 

n=0 ( t /2)!( t /2 - n)! 

(2/r@/2t -1/2 dn (1 - p a )  ~ exp ( -n2/2t)  ~ (2/n)l /2t- l /2pal. (2.52) 
0 

Since the maximal vertical displacement of a walk of length t is r ~ t 1/2, we can 
rewrite this as 

P~(r) ~ ~/r, ( model R) (2.53) 

in d = 1, and P~(r) ,.o ~d/r in general. 
We see that the screening capacity of a periodic array of  needles is dramatically 

different in the two models. In particular, only model A features exponentially small 
growth probabilities in deep fjords, which presumably is an important property of 
DLA. This is why we expect the needle model A to be more closely related to the full 
DLA problem. 

Using (2.51) together with the predicted density profile (2.50), we can also give a 
rough estimate of the growth probabilities in the screened bulk of the model A needle 
forest. Let us assume, in the spirit of the two-absorber approach, that we can identify 
a set of  'active' needles of reasonably uniform height ha(t) and spacing 
~(ha) = 1/n(ha) ~ cha/ln ha, with some constant c. Suppose now that we want to 
probe the growth probability at some height h = o~ha, 0 < o~ < 1. Under the 
(admittedly questionable) hypothesis that the screening is dominated by active 
needles at any height h, we can estimate the growth probability Pc(h) from equation 
(2.51), with r = ha - h. The result is of the form 
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PG(h) ~ ha ~(l'c~)/c. (2.54) 

The growth probabil i ty decays as a power law with the 'deposit thickness' ha, but 
with a height-dependent exponent. In DLA, the dependence of the smallest growth 
probabil i ty on the cluster size has been a hotly debated issue for some time, and 
functional relations ranging from stretched exponentials to power laws have been 
proposed [60, 61]. Here, we have a simple but nontrivial prediction, which should be 
accessible to numerical verification. 

For  a comparison with the shadowing model we may identify P~(r) with the 
growth rate V(O), and ~/r (or, in d dimensions, ~d/r) with the exposure angle 0. Our 
considerations then show that model A corresponds to a shadowing model with 
V(O) ~ exp ( -  1/0) for 0 ~ 0 (7 = c~ in the notation of  section 2.3.2), while model R 
corresponds to the standard case V(O) ~ 0, 0 --~ 0 ( r /=  l). We have seen in section 
2.3.2 that the two-absorber approximation--equivalent ly,  in the shadowing model, 
the sharp distinction between active and shaded needles--becomes more accurate for 
large values of r/(see, for example, equation (2.37)). Thus, it is no surprise that the 
assumption of  a frozen background of shaded needles is more closely realized for 
model A, as displayed in figure 9, than for model R. 

2.4.2. Conformal mappings 
The analytic transformation [62] 

~2 
kLog  1 (2.55) 

z, ¢ C C, maps the real axis of the ¢ plane onto a pair of semi-infinite needles that lie 
parallel to the real axis of the z plane (figure 10). To see this, we evaluate equation 
(2.55) for real ¢, noting that Log ¢ = in ¢ for ¢ > 0 and Log ¢ = In I¢1 + ire for ¢ < 0. 
With z = x + iy it follows that y = Im ¢ = 0 for ¢ > 0 and y = ~ for ¢ < 0. Thus, the 
positive real axis maps onto a needle that lies on the real axis of the z plane, and the 
negative real axis maps onto a needle that runs parallel to the real axis, at a distance 
y - ~. The real part x(¢) has two maxima, at ¢ = -1  and ¢ = k, where x ( -  1) = 0 and 

A=x(k )=~ ( k+ lnk  - 1 )  
7; 

(2.56) 

A 

Figure 10. Sketch of the complex z plane. The bold lines indicate the image of the real axis 
of the ~ plane under the mapping (2.55). 
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respectively. The maxima correspond to the needle tips, and the parameter k 
determines the height difference A or, rather, the ratio A/~. In the relevant limit 
A/~ << 1, equation (2.56) can be inverted as 

k ~ 1 + 0z/2)A/~. (2.57) 

To compute the electrostatic potential close to the tips, we expand equation (2.55) to 
second order around ¢ - -1  and ¢ = k, obtaining 

z(¢) ~ i~ - ~_~, (1 + k)(¢ ÷ 1) 2, ¢ ~ -1,  
(2.58) c 

z(0 ~ a -  2 - ~ ( 1  + k ) ( ¢ - k )  2, ¢ k. 

In the ¢ plane, the electrostatic potential is simply q5 = Im ¢. Setting ¢ = ¢0 ÷ kb in 
(2.58), with if0 = -1  and k, respectively, and solving for q~ we find 

+(x, y = ~) ~ \ ~ ) , x -~ 0, 
(2.59) 

O ( x , y = 0 ) ~  k l + k J  , x - ~ A .  

The behaviour of the potential near the tips gives rise to the familiar square root 
divergence of the electric field. Here we are interested in the ratio of the fields at the 
two tips, which equals the ratio of the fluxes of random walkers onto the two needles. 
From equation (2.59) we have the simple result 

E1/E2 = v / k ,  (2 .60)  

with E1 (E2) denoting the field at the taller (shorter) needle, and hence the 
fundamental quantity ~(A,  ~) of the two-absorber approximation is given by 

E~ v/k 1 ( r c A )  (2.61) 
~(A,~)  E I . ÷ ~ - - I . ÷ v / k ~  1 - t -~ -  , 

which confirms the expansion (2.48) and proves that u = 1, at least for this particular 
configuration of absorbers. 

It is also of interest to consider variants of model A in which all walkers that are 
absorbed on the sides of the needles contribute to the growth [24]. In that case the 
electrostatic quantity that determines ~(A, ~) is the normal electric field--that is, the 
flux of random walkers--integrated over the sides of the needles. For the two-needle 
configuration considered here, it only makes sense to integrate over the inner sides of 
the needles, since the outer sides are not subject to screening. It is immediately clear 
from the definition of the mapping that the ratio of the integrated fluxes is simply k, 
SO 

k 1 1 ÷ (2.62) 
~(A,  ~) -- 1 + ~  ~ 2 

and u = 1 as before. 
While the mapping (2.55) has the virtue of being simple to analyse, the collective 

screening effects of the full needle forest are more faithfully represented by a periodic 
needle array, with spacing ~ and alternating heights hi and h2 = hi - A (see figure 5). 
A conformal mapping that allows one to compute the electrostatic potential around 
such an array was presented and analysed in [55]. The results are equivalent to those 
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derived here: ~(A,  ~) behaves as in (2.48), with u = 1, and C = re/4 when only the 
flux onto the needle tips is considered, and C = 1 in the case of the integrated flux. 

2.4.3. High dimensionality behaviour and mean f ield theory 
We now generalize the discussion of  a single random walker penetrating into a 

periodic needle array to d-dimensional substrates. Our objective is to estimate the 
distance Ra that the walker is able to venture into the forest before being absorbed, 
in terms of the needle spacing ~. We have already seen that Ra ~ ~ for both models in 
d = 1 (equations (2.51) and (2.53)). Moreover, the estimate of  the penetration 
probability P~( r )~  ~a/r  for the d-dimensional model R, derived after equation 
(2.53), allows us to determine R~ from (say) P~(R~) -- 1/2, and hence 

Ra ~ ~d, ( model R). (2.63) 

For model A we employ an opacity argument [55]. In the d + 1-dimensional space, 
the sites visited by a random walk of length t form a cloud of radius R ~ t 1/2 and 
density pw ~ t / R  d+l ~ R ~-a (figure 11). When this cloud is placed inside the needle 
forest, the number of absorbing sites Na within the cloud is Na ~ R(R/~)  a. In order 
to have at least one absorption event we require pwNa ~ 1, or R ~ Ra with 

Ra ~ ~d/2, (model A, d > 1). (2.64) 

These estimates immediately provide us with bounds on the height distribution 
exponent 7. Note first that a density profile n(h) ~ h -(~-1) implies that the spacing 
between needles increases with h as ~ ~ h p with 

p = (~ / -  1) /d (2.65) 

(this is the d-dimensional version of equation (2.32)). The absorption length for a 
needle forest of height h therefore scales as Ra ~ h  z 1 for model R, and as 
R~ ~ h (~-1)/2 for model A. Consistency clearly requires that Ra < h, otherwise the 
walkers would be able to reach the substrate and fill up the deposit until the 
inequality is restored. We conclude 

7 -< 2, (model R), (2.66) 
7-< 3, (model A). 

R 

Figure 11. A 'ghost' walker released into a periodic needle array. 
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Next, we observe that the estimates (2.63) and (2.64) imply a qualitative change 
in the screening behaviour at an upper critical dimensionality dc = 2 for model R, and 
do = 3 for model A, in the sense that Ra >> ~ for d _> dc. In this high dimensionality 
regime the random walker effectively averages over many needles before being 
absorbed, and the two-absorber approximation is clearly inappropriate. Instead, one 
may attempt a continuum description, in which the lateral structure is ignored and 
the needle forest is represented by a continuous density function n(h, t). Likewise, the 
density of  walkers is given by a function u(h, t), and the two are coupled through the 
equations of motion 

On On 
Ot  = O-RPtipU = --O'R ~ U, (2.67) 

Ou 02u ( On) 
Ot - -  Oh 2 CrAn -- ~p ,~  U. (2.68) 

Equation (2.67) describes the growth by accretion of walkers at the needle tips, and 
we have used the fact that the tip density is ptip = -On/Oh [53]; O-R is an absorption 
coefficient. Equation (2.68) is a balance equation for the walker density. The 
absorption term has two parts, one describing the absorption at the sides of needles, 
which occurs only in model A (model R has O- A = 0 ) ,  and the other accounting for 
the loss of walkers due to needle growth (this part is the negative of the right hand 
side of equation (2.67)). These 'mean field' equations, with O- A = 0, were first written 
down by Cates [56], and further analysed by Kassner [57]. 

To extract the essence of these equations, we make a scaling ansatz for the needle 
density as 

n(h, t) = h ('~ 1)f(h/t~). (2.69) 

Inserting this into equation (2.67), we find that the walker density must be of the 
form 

u(h, t) = t (1 ~)g(h/t~). (2.70) 

The exponent 3' can now be determined by inserting equations (2.69) and (2.70) into 
equation (2.68) and balancing the diffusion and the absorption terms on the right 
hand side. With ~A -- 0, this results in [56, 57] 

3'Mr = 2, (model R). (2.71) 

Clearly if erA > 0, the absorption on the sides of the needles dominates that at the 
tips, and the On/Oh term on the right hand side of  equation (2.68) can be neglected. 
Therefore 

3'MF = 3, (model A). (2.72) 

The mean field exponents saturate the bounds (2.66), as was already noted by Cates 
[56] for model R. 

To fix the dynamic exponent ~ we need to invoke the left hand side of equation 
(2.68). Not  surprisingly, one obtains ~; = 1/2, corresponding to the diffusive 
advancement of the deposit thickness, ha(t) ~ t 1/2. Of course, these values for 3" 
and ~ provide only necessary conditions for scaling solutions of  the form (2.69) and 
(2.70); to actually establish their existence, it must be shown that the resulting 
equations for the scaling functions f and g admit solutions with physically reason- 
able behaviour. Kassner's detailed analysis [57] shows that all scaling solutions have 
the property that the walker density u vanishes for h --+ oe. Indeed, Cares [56] had 
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noted that the scaling forms (2.69) and (2.70) do not admit constant flux boundary 
conditions, Ou/Oh =- const, for h --+ ec; such a boundary condition requires that the 
scaling variable h/t ~ be replaced by h/exp (At), i.e. the deposit thickness grows 
exponentially with time, as is obvious from mass balance considerations. 

In summary, we have arrived at the following picture for Laplacian needle 
growth from d-dimensional substrates. In low dimensionalities, d < dc, screening is 
dominated by individual needles and a two-absorber approximation in the spirit of 
Rossi [50, 53] should be applicable. For model A in d = 1, the two-absorber 
approach was put on a firm basis using the conformal mapping technique; thus 
we showed that u = 1 in equation (2.48), and hence the density profile behaves as 
equation (2.50). There is considerable numerical, and some analytic evidence [55], 
that these results extend to model R in d -- 1. In high dimensionalities, d >> dc, we 
expect the mean field equations (2.67) and (2.68) to provide a reasonable description. 
This is confirmed by simulations of Rossi [50], who found that 7 = "~MF = 2 for 
model R, both in d = 2 and d = 3. For model A, dc = 3, so the case d = 2 (growth 
from a plane) should still be in the low dimensionality regime covered by the two- 
absorber approach. It has been conjectured [55] that u = 2 in this case, which would 
imply, according to equation (2.46), a coarsening exponent p = 3/4 and hence, from 
equation (2.65), 7 = 5/2. This prediction, as well as the prediction 7 = ~'MF ----- 3 for 
model A in d > 3, still has to be verified by numerical simulations. Here, we merely 
remark an interesting consequence if indeed 7 > 2 in d >_ 1" the fact that the average 
needle height remains bounded (the density profile (2.2) being integrable) even if an 
infinite amount of mass is added to the deposit; almost all the mass is absorbed on 
the sides of the needles where it does not contribute to the growth. This scenario is 
not possible for model R, where all absorbed walkers eventually contribute to the 
mass of the deposit, as is reflected in the bound (2.66) as well as in the mean field 
exponent (2.71) which corresponds to a (marginally) non-integrable density profile. 

These results do not easily carry over to the full DLA problem [24, 63]. The two 
problems are fundamentally different in that the needle models possess, due to the 
effective transparency of needle forests in high dimensionalities, an upper critical 
dimension, while DLA does not [58]. On the other hand, the two-absorber approach 
with its emphasis on the binary competit ion between branches of comparable height 
(or mass) provides an appealing picture of the elementary screening process, which 
should be applicable to DLA as well. We may note in this context that Halsey and 
Leibig [64] and Halsey [65] have recently presented a quantitative, predictive theory 
of DLA built precisely on an analysis of the elementary process of binary branch 
competition. 

3. Fundamentals of kinetic roughening 
Kinetic roughening phenomena are encountered whenever an interface is set into 

motion in the presence of fluctuations, be it of  thermal, kinetic, or chaotic origin, or 
due to quenched disorder. The earliest theoretical investigations of  surface roughness 
in growth processes [6(~68] were concerned with the Eden model [69], originally 
proposed to describe the shape of  cell colonies, and [70] with the ballistic deposition 
model introduced in the previous section. Following the progress in understanding 
the universal aspects of these processes which was achieved through the seminal work 
of Kardar, Parisi and Zhang (KPZ) [19] in 1986, a wide variety of  more or less exotic 
instances of kinetic roughening have been suggested and experimentally investigated. 
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Vicsek, Cserz6 and Horvfith [71], realizing the original intent of Eden's work, studied 
the roughening edge of a growing bacterial colony; several groups investigated the 
roughening of a stable two-fluid interface in a porous medium [72-74]; and Zhang, 
Zhang, Alstrom and Levinsen [75] considered the roughening edge of a sheet of 
paper as it is consumed by fire [76]. Curiously, while all of these experiments were 
motivated by the KPZ theory, none of them was able to quantitatively confirm its 
predictions. The discrepancy between theory and experiment has spurred consider- 
able theoretical activity involving modifications of the KPZ theory through the 
introduction of, for example, correlated [77], non-Gaussian [78-80] and quenched 
noise [81-84]; a review of these developments has been given by Halpin-Healy and 
Zhang [11] and by Tang [14]. 

Here, we shall adopt a somewhat conservative point of view, and introduce the 
basic concepts of kinetic roughening within the 'classic' context of a moving interface 
separating two isotropic thermodynamic phases. The reader with some background 
in statistical mechanics may visualize, for concreteness, an Ising model below its 
critical temperature, with an interface separating domains of positive and negative 
magnetization, and subject to an external magnetic field that favours one of the 
phases, thereby setting the interface into motion. (Strictly speaking, the permanence 
of a well-defined interface in such a situation requires a careful tuning of temperature 
and magnetic field to avoid bulk nucleation of the favoured phase [85].) We are going 
to derive effective, nonlinear equations of motion for the interface, appropriate for 
different types of interfacial relaxation mechanisms, and then proceed to analyse the 
roughening process within the linear approximation. While not always quantitatively 
correct, the linear theory already contains the essential ingredients of kinetic 
roughening phenomena, and provides us with a firm foundation for explorations 
into the realm of nonlinear theories. As a first step towards a nonlinear theory, the 
effect of nonlinearities on large scales is estimated using power counting arguments. 
Retaining only nonlinear terms which are relevant in this sense, one arrives, for a 
particular but broad class of conditions to be specified below, at the KPZ equation, 
some aspects of which will be treated in section 4. 

3.1. Interface equations of  motion 
Consider an interface oriented on average parallel to a d-dimensional 'substrate' 

hyperplane in (d + 1)-dimensional space. On a somewhat coarse-grained level we 
may describe the interface position by a height function Xd+l = h(x, t), where 
x = (xb . . . ,  xd) is the substrate coordinate. In the presence of an external field 
S0 > O, which favours the phase occupying the half space Xd+l < h over the phase in 
Xd+l > h (figure 12), the free energy of the system can be written as 

~-[h(x, t)] = ~7 J ddx[1 + (Vh)2] ' / 2 -  S0 J ddxh, (3.1) 

where the interfacial tension a is assumed, for simplicity, to be independent of 
orientation. The interfacial free energy in equation (3.1) corresponds to the 'drum- 
head' model [86] which neglects the intrinsic interface width (expected to be of the 
order of the bulk correlation length). 

The driving force for morphological changes is the interface chemical potential 

s - ~ / s h .  (3.2) 
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h 

I 
Figure 12. Interface between a favoured (# = -#0 < 0) and an unstable (/~ = 0) phase. The 

chemical potential is increased (reduced) at local maxima (minima). The arrow 
indicates the direction of interface motion. 

A convent ional  relaxat ion ansatz for the dynamics then yields the norma l  interface 
velocity as 

- r  6~- F # ,  (3.3) vn = ~Sh - 

where F > 0 is the interface mobi l i ty [87]; to arrive at an equat ion o f  mot ion  for 
h(x, t) we merely note that, f rom an obvious geometr ic  construct ion, 

Oh/Ot = vn[1 + (Vh)2] 1/2. (3.4) 

In the interest of  keeping the notat ion t ransparent ,  we give explicit expressions only 
for the case d = 1, where h(x, t) is a curve. Per forming the funct ional derivat ive of  
equat ion (3.1) we arrive at 

crV2h 
/z = [1 + (Vh)2] 3/2 - #0, (3.5) 

where the term mult ip ly ing the interfacial tension cr is the local curvature (see figure 
12). Thus the full equat ion of  mot ion  reads 

Oh F[1 q-(~7h)2]1/2{ °V2h } (3.6) 
0 ~  --  #0 q- [1 q- (~h)2]  3/2 " 

I t  is interesting to note that, besides the trivial f lat solut ion h = F#ot, equat ion 
(3.6) admits (semi-)circular 'droplet '  solut ions of  the fo rm 

h ( x ,  f) = [R2(t) - x2] 1/2, x 2 <_ R 2, (3.7) 

where the radius R(t) satisfies 

dR/dt  = F(#o - cr/R). (3.8) 

F rom this we infer the existence of  a critical droplet  radius Rc = ~r/#0 such that  
droplets with R > Rc grow while those with R < Rc shrink under surface tension; 
R = Rc is an unstable equi l ibr ium. Equat ion (3.8) (and, indeed, equat ion (3,6)) is an 
expression of  the famil iar Gibbs Thomson  relat ion wh i ch  states that  a larger 
the rmodynamic  driving force is required to move a curved interface. 

Let us now specifically apply these considerat ions to a solid growing f rom a 
vapour  phase. The G i b b s - T h o m s o n  effect is then microscopical ly  realized through 
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an increased (decreased) evaporation rate at negatively (positively) curved portions 
of the surface. It turns out, however, that many technologically relevant vapour 
deposition processes are operated under conditions of negligible evaporation [20, 88]. 
In such cases the 'evaporation-condensation'-dynamical ansatz (3.3) is inappro- 
priate and has to be replaced by an equation describing relaxation through mass 
transport along the surface [18]. To arrive at such a description, first note that the 
quantity defined in equation (3.2) may be interpreted, in the present situation, as the 
chemical potential of adatoms; indeed, 8Y/Sh is precisely the change in surface free 
energy associated with removing or adding a small amount of mass to the surface. 
When desorption is kinetically suppressed, chemical potential differences that arise 
due to modulations of the surface profile (as in figure 12) relax through surface 
diffusion currents, viz the migration of adatoms in the direction of chemical potential 
gradients. Thus, the normal velocity of the surface is given by 

vn = -OJ/Os, (3.9) 

where J is (in the 1D situation considered here) the mass current along the arc length 

s = Jdx  [1 + (Vh)2] 1/2. (3.10) 

As the current is driven by chemical potential gradients, we have 

~- (3.11) Fa O# 
J = - / ' a  [1 + (Vh)2] 1/20x' 

with an adatom mobility /~a > 0. Putting everything together, we arrive at the 
equation 

Oh 0 F a 0 crV2h 
Ot = Ox [1 + (Vh)2] 1/20x [1 + (Vh)2] 3/2' (3.12) 

The explicit form of the 2D generalization of this equation has been derived in 
several recent papers [89 91]. 

The reader will have noticed at this point that the external field #0, introduced in 
equation (3.1) to set the surface into motion, has effectively disappeared from the 
description; in fact the surface governed by equation (3.12) does not move. We can 
of course cure this deficiency by adding a constant deposition flux F to the right 
hand side of equation (3.12), however, this implies only a trivial change that can be 
undone by going to a frame moving at a speed F. The physical reason behind this 
surprising result is clear: within the framework of the classical theory, as expressed in 
equations (3.9) and (3.11), the surface diffusion processes, being sensitive only to 
spatial gradients in the chemical potential #, are not affected by an overall constant 
shift #0. It is also clear that this is unlikely to be the whole truth. A more careful 
consideration of the microscopic kinetics reveals that the mass transport on the 
surface can be rather drastically altered by the presence of a deposition flux F. On 
the level of effective interface equations of motion this implies the appearance of 
additional dynamic non-equilibrium terms in equation (3.12), the coefficients of 
which are proportional to F. We postpone to section 5 the detailed discussion of the 
microscopic origins of these terms, and present here only the main results. 

As was first suggested by Villain [20], two types of terms are expected to be 
present generically. The first set of terms arises because under non-equilibrium 
conditions the local chemical potential (or, rather, its appropriate non-equilibrium 
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generalization, see section 5.4) acquires a dependence on the local surface orientation. 
In equilibrium it is clear from the definition (3.2) of # as a functional derivative, and 
from the fact that the free energy o~ should be invariant under vertical translations 
h--+ h %- const., that the leading dependence of # is on the local curvature. From 
symmetry considerations one expects the non-equilibrium contribution to be an even 
function of Vh, and thus to admit an expansion 

#NE = A2(Vh) 2 + A4(Vh) 4 %- ' " .  (3.13) 

The second type of non-equilibrium effects leads to a contribution to the current 
J in equation (3.9) which, rather than being proportional to the gradient of some 
(equilibrium or non-equilibrium) chemical potential, is itself a function of the local 
surface orientation [92]. General symmetry arguments and detailed calculations, to 
be presented in section 5.2, show that the non-equilibrium current is an odd function 
of Vh, such that, in a gradient expansion. 

JNE ---- --[Ul + u3(Vh) 2 + "  "]Vh. (3.14) 

Here the leading term/JlVh is of special importance in that it changes the character 
of the equation of motion already on the level of the linearization around the flat 
state, which will be the focus of the next section. In particular, if ul < 0 ('uphill' 
current) the surface can be destabilized by (non-equilibrium) surface diffusion (see 
section 5.3). 

Including the non-equilibrium contributions (3.13) and (3.14), through equations 
(3.9) and (3.11), in the interface equation of motion leads to a problem of rather 
formidable complexity. Schematically, the final result reads as 

Oh 0 Fa 0 O 
--Ot = Ox [1 + (Vh)2] 1/20X (# %- #NE) -- Ox JNE + F, (3.15) 

and it should be remembered that #NE, JNE = (~(F). Equation (3.15) provides the 
most general macroscopic description of growth under conditions of volume- 
conserving surface relaxation. Correspondingly, equation (3.6) is the general 
equation of motion for non-conserved interface dynamics. 

3.2. Linearized fluctuation theory 
The theory of kinetic roughening is concerned with the question of how 

microscopic fluctuations, which are present in virtually any interface displacement 
process, are transformed, through effective interface equations of the kind derived in 
the previous section, into large-scale behaviour with universal properties. This 
transformation becomes transparent and easily tractable when the equations of 
motion are linearized about the flat solution h(x, t) = rot. One may hope that the 
linearization is appropriate when the interface is flat on average, or when one 
considers length scales on which macroscopic modulations of the interface orienta- 
tion are negligible. We shall see later that this hope is not quite warranted, due to the 
possibility of relevant nonlinearities which dominate the large scale properties of an 
interface even in the absence of macroscopic modulations; however, in order to 
appreciate the role of nonlinearities we first need to acquire a thorough under- 
standing of the linear fluctuation theory. 
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3.2.1. Langevin equations 
Fluctuations are commonly modelled by adding a stochastic noise term r/(x, t) to 

the right hand side of the interface equation of motion. The noise is assumed to be 
Gaussian and uncorrelated, with zero mean and covariance 

(r/(x, t)r/(x', t')) = D~d(x- x ' ) 6 ( t -  t'). (3.16) 

Here and in the following the angular brackets imply an average over noise histories. 
Since we aim at a theory that is as general as possible, we will not, at this point, 
specify the physical origin of the noise. In processes that operate at or close to 
equilibrium, the fluctuations are mainly of a thermal nature; far from equilibrium 
additional sources of noise appear, such as shot noise in deposition processes or the 
frozen disorder in interface displacements in porous media (in the latter case the 
fluctuations can be modelled by a time-dependent noise term only if the displacement 
is sufficiently rapid [93]). 

However, one remark is in order, regarding the different roles of the noise in the 
two classes of processes described by equations (3.6) and (3.15), respectively. In the 
case of  nonconserved dynamics (equation (3.6)), as exemplified by a moving Ising 
interface, the noise term ~(x, t) is present even in equilibrium, when #0 = 0; the 
coefficient D in equation (3.16) is then proportional to the temperature T. In 
contrast, with mass conserving surface diffusion dynamics (equation (3.15)), the 
deposition flux is the sole source of noise that can change the total amount of mass 
on the surface; the thermal fluctuations which arise due to the particulate nature of 
the surface transport, and which survive in equilibrium, when F = 0, conserve the 
volume of  the solid. Mathematically, this is expressed through a conserved noise 
term ~c which can be written as the divergence of a stochastic current, 
~c(X, t) = -V-js(X, t), and hence has a covariance of  the form 

(~Tc(X, t)~Tc (x', t')) = -Dc V 2~ d(x -- x')~(t -- t'), (3.17) 

with Dc ~ T, whereas the coefficient of the non-conserved noise term D is 
proport ional to the flux F. In growth processes where surface relaxation occurs 
mainly through surface diffusion, the noise itself is a non-equilibrium effect; we shall 
see that this implies very pronounced fluctuations in these systems. The 'mismatch' 
between nonconserved noise and conserved relaxation dynamics provides a general 
mechanism for power laws and generic scale invariance also in systems that do not 
possess the translational symmetry of  interfaces [94, 95]. It is intuitively plausible 
that a nonconserved noise term, when present, dominates the conserved noise r/~ on 
large length and time scales, and that the latter can therefore be neglected; a more 
precise argument will be given below. 

We now linearize the equations of motion (3.6) and (3.15) around a flat, 
uniformly moving front ho(t)= rot, with v0 = F/z0 for equation (3.6) and vo = F 
for equation (3.15). Adding the noise term one has, in the moving frame, 

Oh 
- (-~V2)~h + ~. (3.18) 

Ot 

The case m = 1 includes the linearization of equation (3.6), where v = F~r, as well as 
that of equation (3.15) in the presence of a stabilizing non-equilibrium current (3.14), 
such that v = vl > 0 (the linearization is clearly useless in the unstable case vl < 0, 
which will be treated in section 5.3); the fourth order derivative V4h that arises from 
the linearization of  the equilibrium equation (3.12) can then be neglected. This leads 
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to an important general conclusion: A non-equilibrium current, provided it is 
directed downhill so that ul > 0, may effectively mimic evaporation-condensation 
dynamics (in the sense that m -  1 in equation (3.18)) even if evaporation is 
kinetically suppressed. If, on the other hand, JNE is absent or negligible, the 
linearization of equation (3.15) results in equation (3.18) with m = 2 and u = Fact. 
Note that while the explicit forms of the full nonlinear equations were given in 
equations (3.6) and (3.15) only for d = 1, the linearization (3.18) holds in arbitrary 
dimensionality. 

Equation (3.18) with m = 1 has been employed to describe the equilibrium 
dynamics of interfaces, for example in the contexts of thermal roughening and 
wetting [96, 97]. In the kinetic roughening literature it is commonly referred to as the 
Edwards Wilkinson equation. Edwards and Wilkinson [98] were the first to derive 
this equation for a nonequilibrium situation, specifically, as a description of  the 
sedimentation of granular particles. In that case the relaxation term u~Zh arises from 
the expansion (3.14) of a nonequilibrium mass current driven downhill by gravity, 
and the coefficient ul is proportional to the particle flux. While gravity obviously 
plays no role on the atomic level, microscopic mechanisms associated, for example, 
with the transient kinetic energy of  the deposited atoms [99] exist which can give rise 
to downhill currents in vapour deposition processes. 

Equation (3.18) with m -- 2 was first written down and discussed by Golubovi6 
and Bruinsma [100] and by Wolf  and Villain [101]; since its deterministic form 
(r /= 0) originates in the work of  Mullins [18], we refer to it as the (noisy) Mullins 
equation. 

3.2.2. General solution 
To solve equation (3.18) we introduce the Fourier decomposition 

h(x, t) = ~ hq(t) exp (iq. x), 
q 

(3.19) 
~/(x, t) = Z ~lq(t) exp (iq.x), 

q 

where the sums run over the allowed reciprocal vectors of a lattice of linear size L, 
periodic boundary conditions and a lattice constant a. From equation (3.16) we find 
the covariance of the Gaussian noise components 

(~/q(t)7/q,(t')) - L-aD6q+¢6(t-  t'), (3.20) 

while for the conserved noise defined by equation (3.17) one has 

(~/cq(t)~cq,(t')) = L dDcq:~Sq+q,~5(t- t'). (3.21) 

This shows why ~/c can be neglected on large scales (small q), if a non-conserved noise 
source is present. The Fourier components of h evolve independently according to 

0 
-~hq = -ulqlZhq + ~q, (3.22) 

where we have set z - 2m. Odd values of  z can appear when the relaxation dynamics 
is nonlocal, for example z = 1 applies to diffusion-limited erosion [102] or relaxation 
through plastic flow [t6, 18], and z = 3 describes a surface relaxing to equilibrium 
through volume diffusion [18]. Since there is no difficulty in solving equation (3.22) 
for general z, we can treat all these cases on the same footing. 
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According to equation (3.22), each mode behaves as a randomly perturbed 
harmonic oscillator with restoring force u]q] z. The general solution is 

I' 
hq(t) = exp (-u]qrt)  hq(0) + d~- exp [-u[q[Z(t - ~-)] rh(T ). (3.23) 

0 

Here we will mostly be concerned with the transient roughening of an initially flat 
interface, so we set hq(0) = 0 for all q. Growth on rough substrates will be treated in 
section 3.2.5. Multiplying equation (3.23) with hq,(t) and averaging over the noise 
according to equation (3.20), we obtain 

with q = Iql and 

(hq(t)hq,(t)) = S(q, t)6q+q,, (3.24) 

-d D S(q, t) = L ~ [1 - exp (-2uqZt)]. (3.25) 

Since hq(t) derives from the Gaussian random variable ~q(t) through a linear 
transformation, the height modes themselves are Gaussian and higher-order 
correlation functions are simply related to the covariance (3.24); thus equation 
(3.25) completely specifies the statistics of interfacial fluctuations. Two features of 
equation (3.25) are noteworthy. First, the relaxation time of a mode with 
wavenumber q is proportional to qZ, i.e. long wavelength modes relax slowly. 
Second, the prefactor in equation (3.25) diverges for q ~ 0, thus giving large 
statistical weight to long wavelength modes, Together these two observations bring 
out the central mechanism of kinetic roughening; note also that both effects are more 
pronounced the larger the value of z. 

To proceed, we translate equation (3.25) into more conventional measures of 
interface roughness. Of particular interest are the interface width W, defined through 

W 2 ([h - h(t)] 2) = ~ S(q, t), (3.26) 
q¢0 

and the (second order) height difference correlation function 

G2 -= ((h(x + r, t) - h(x, t)) 2) = 2 ~ S(q, t)(1 - cos q. r). (3.27) 
q 

In equation (3.26) the instantaneous spatial average /~(t)= hq=0(t) has been sub- 
tracted; since the noise operates also at q = 0, h(t) performs a random walk with 
diffusion constant D / L d. 

For a first estimate of the width we approximate the sum in equation (3.26) by an 
integral and obtain, up to factors of order unity, 

W2 D [~/~ qd_~_z[ 1 -- dq - exp (-2uq~t)]. (3.28) 
lY J2~/L 

The integral is governed by the interplay of three length scales: the lattice constant a, 
the substrate size L, and the dynamical correlation length 

~(t) ~ (2ut) 1/z. (3.29) 

The lattice constant is irrelevant, in the sense that the integral converges for a ---, 0, 
below the upper characteristic dimensionality 
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d !  1) = z. (3.30) 

For d > d~ 1), we may let L, t--+ oc to obtain a finite limiting interface width 
W 2 ~  (D/u)a z a. This implies that the noise is able to roughen the interface, in 
the sense of  a proliferation of long wavelength fluctuations leading to a divergent 
width for L, t ~ oo, only in sufficiently low dimensionalities. 

In the rough regime d < d~ 1), the power law prefactor of  the integrand in 
equation (3.28) implies a divergence at small q which is limited by the smaller of  
the lengths L and ~. We may let a ~ 0 and summarize the dependence on the 
remaining two length scales in the scaling form [68, 70] 

with the roughness exponent 

and the scaling function 

W2(L, t) ~ L2¢f (~(t)/L), (3.31) 

where 

= d y y d - l - Z { l  -- exp [--(xy)Z]}. (3.33) f ( x )  ~ 2~ 

The scaling form (3.31) brings out the significance of the correlation length ~: the 
width saturates, that is, it becomes time-independent, when ~ ~ L, at a time of the 
order of 

to ,,~ LZ/u. (3.34) 

This time scale marks the transition from the transient to the stationary regime where 
the memory of the flat initial condition is lost. At early times when ~ << L, expanding 
equation (3.33) shows that the width increases as 

W 2 ~ (D/v)~ 2¢ ~ t 2~/z. (3.35) 

In the borderline dimensionality d = d~ 1), all three length scales have to be taken 
into account, and one finds 

w2 ~ f, (D/.) In (.t/a), ¢ << L, 
(3.36) 

{ (D/u)  In (L/a) ,  ~ >> L. 

For future reference we record some exact expressions for 1D interfaces, d = 1, in 
the rough regime, i.e. for z > 1. Consider first the stationary limit, t--+ oo. With 
a ~ 0 the sum (3.26) can be written as 

lim W2(L, t) - (27t) Z~R(Z)(O/u)L2¢, (3.37) 
t ~ O O  

CR(z) - k_~ (3.38) 

denotes the Riemann zeta function; for even integer values of  z, 
CR(Z) = 2z-lrcZB~/2/z! with the Bernoulli numbers B i n ,  and equation (3.37) simplifies 
to 

lira W2(L, t) - Bz/2 D L2¢. (3.39) 
t ~  z! 2u 

= (z - d ) / 2  > 0, (3.32) 
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Of pr imary interest are the cases z = 2, where B1/2! = 1/12, and z = 4 with 
B2/4! = 1/720. In these cases the full distr ibution o f  W 2 can also be computed 
[103 105]. 

To evaluate the width in the transient case, ~ << L, we let L --+ cx~ as well as a --+ 0 
at fixed t. The sum (3.26) then converges to an integral, which yields, after some 
simple manipulat ions, 

lim W2(L, t ) -  1 DF(1/z)  (2ut)2¢/z, (3.40) 
L ~  ~ U Z - - 1  

with F denot ing the gamma function. F rom equat ions (3.37) and (3.40) we can 
derive a more precise estimate o f  the crossover time tc int roduced in equat ion (3.34). 
Matching the two expressions we conclude that the crossover f rom the transient to 
the stat ionary regime occurs when the ratio o f  the correlat ion length (3.29) to the 
system size is 

1 [(z--1)¢g(z)] 1/(z-1) 
L - -  27z F(1/z) ] (3.41) 

The numerical value o f  the right hand side is v/rt/12 ~ 0.148 for z = 2, and ~ 0.153 
for z = 4 .  

3.2.3. Anomalous scaling 
In  the height difference correlat ion funct ion (3.27) the distance r between the two 

substrate points introduces a further length scale. For  some special cases in d = 1 the 
series for the stat ionary, t --+ cx~, correlat ion funct ion can be summed exactly. For  
z = 2 one obtains 

G2(r, L) = (D/Zu)r(1 - r/L), (3.42) 
and for z = 4 

G2(r, L) = (D/24u)Lr2(a - r/L) 2. (3.43) 

Compar ing the two expressions we notice that equat ion (3.42) has a finite limit 
Gz(r) - (D/2u)r for L ~ ~ ,  while equat ion (3.43) does not. 

To appreciate the origin o f  the different behaviours, we turn to the general case 
and approximate equat ion (3.27) as 

G2 ~ - -  dql I (1 - cos qllr) dq± q~-2q-Z[1 - exp (-2uqZt)], (3.44) 
11' J2~/L 32~/L 

where q and q± denote the components  o f  q parallel and perpendicular to r, and 
" 1 " - q = (q~ + q2)1/2. We focus on the rough case, d < d~ ), where the hmlt a --+ 0 can be 

performed, and also let L - +  cxD, since we expect the roles o f  L and ~ to be 
interchangeable. Then equat ion (3.44) reduces to 

G2 ~ u 0 dqlt q~l-1 z(1 -- COS qllr)F(qlf), (3.45) 

where F(s) ~ s z d+l for s --+ 0 and F(s ~ ~ )  = const. For  r >> ~ the cosine term in 
the integrand can be dropped and G2 saturates at a value o f  the order ~z-d _ ~2¢, as 
would be expected on the basis o f  the identity 

lim lim G2 = 2 W  2. (3.46) 
r - + ~  L---*~o 

To extract the behaviour for small r, r << ~, one might at tempt a series expansion o f  
1 - cos qll r. The coefficient o f  the leading r 2 term is finite, and o f  order ~z-d-2, only if 
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d < d (2) = z - 2. (3.47) 

O t h e r w i s e  G2 is nonanalytic for r --+ O, G2 ~ r z - d  = r 2¢, with a prefactor of order 

DI.. 
The dimensionality d~ 2) thus separates two regimes of  qualitatively different 

behaviour for G2. For d > d~ 2), conventional scaling holds in the sense that G2 
satisfies a scaling form analogous to that of the width (3.51): 

G2(r, t) = r2¢9[r/~(t)]. (3.48) 

However, for d < d!  2), the r 2¢ singularity of G2 is 'hidden' by the regular r 2 term, 
which dominates it for small r, and equation (3.48) is replaced by the anomalous 
scaling form [106-108] 

G2(r, t) = ~2~r2¢~(r/~(t)), (3.49) 

featuring a different r dependence and an additional power of  ~. Both scaling 
functions tend to constants of order D/u for small arguments, r << ~, and decay as 
9(s) ~ s -2¢, ~(s)~ s -2~ for large arguments. The anomalous scaling exponents in 
equation (5.49) take the values 

o ~ = ~ - 1 ,  ~ = 1 .  (3.50) 

In the borderline case, d = d!  2), o~ = 0, the short distance behaviour becomes [106] 
G2 ~ r 2 In (~/r), r << 4- In general, we observe that because of  equation (3.46), 
consistency between equations (3.49) and (3.35) requires 

+ ~ -  ¢. (3.51) 

In the stationary limit ~ >> L, analogous scaling forms hold with ~ replaced by L (see 
equations (3.42) and (3.43)). 

Comparing equations (3.32) and (3.47) we recognize that the dimensionality d~ 2) 
is characterized by 

¢(d~ (2)) = 1. (3.52) 

The value ¢ = 1 of the roughness exponent is special because it signals, in a certain 
sense, that the assumption of a well-defined average orientation of the interface 
(parallel to the substrate plane) becomes inconsistent: the orientational fluctuations 
at scale L estimated, for example, as W(L, oo)/L, decrease with L only if ¢ < 1 [100]. 
The conclusions that can be drawn, if it is found that ¢ -  1 for a particular 
dimensionality, depend on the physical context. For equilibrium interfaces ¢ = 1 is 
commonly associated with the breakdown of  two-phase coexistence at the lower 
critical dimensionality of the bulk system [109]; for example, for the pure Ising model 
¢ -  ( 2 -  d ) / 2 -  1 in bulk dimension d +  1 = 1, while for the Ising model with 
random fields [110] the Imry-Ma expression ¢ = (4 - d)/3 shows that the disorder 
shifts the (bulk) lower critical dimensionality to d + 1 = 2. Fluid membranes 
governed by bending elasticity rather than surface tension have ~ = (4 - d)/2, and 
hence ¢ = 1 in the physical dimension d = 2; this reflects the tendency of membranes 
to crumple on scales larger than the (possibly astronomical) persistence length [111]. 

In the present context the anomalous scaling regime described by equation (3.49) 
appears only in the case of surface diffusion dynamics without nonequilibrium 
currents, where z = 4 so ¢ > 1 in dimensionalities d _< 2. Physically, the anomalous 
behaviour is a consequence of the 'mismatch' between mass conserving relaxation 
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dynamics and non-conserving shot noise previously alluded to. Relaxation through 
surface diffusion is insufficient to counteract the disordering influence of the shot 
noise even locally; thus local roughness measures such as the slope fluctuation 
((Vh) 2) become enslaved by the long wavelength modes and diverge with increasing 
correlation length (or system size) as ((Vh) 2) ~ ~2c~ with c~ > 0 (cf. equation (3.49)). 
While nonlinearities are expected to significantly alter this picture, there is numerical 
evidence [107, 108, 112] that the anomalous scaling form (3.49) (possibly with 
nonuniversal values of the exponents c~ and ~) is generic for deposition processes 
with conserved surface relaxation in low dimensionalities. Moreover, two recent 
experiments on the Si(111) surface have reported a logarithmic divergence of  the 
slope fluctuations, consistent with the marginal case z = 4, ~ = 1 [113, 114]. We will 
return to this issue in section 5.5.2. 

3.2.4. Long distance asymptotics o f  height correlations 
We have seen above that the roughness exponent ~ characterizes the (possibly 

hidden) short-distance singularity of the height-difference correlation function. It is 
clearly legitimate to enquire also about the asymptotics in the opposite limit r >> 4. 
Surprisingly, this question has been addressed only very recently [115]. It is not 
merely of academic interest, since the interpretation of scattering data from rough 
surfaces typically requires a model for the full height correlations, including the 
regimes r ~ ~ and r >> ~ [16, 17, 116-118] (see section 5.6). 

The problem is posed most naturally in terms of  the heigh~height correlation 
function 

C(r, t) = (h(x + r, t)h(x, t)) = W 2 - ½ G2(r, t), (3.53) 

which decays to zero for r >> 4. Since C(0, t) = W 2, we can write 

C(r, t) - W2¢g(r/~(t)), (3.54) 

with Cg(s ~ 0) = 1 - Cg(s 2¢) in the case of conventional scaling, and 
Cg(s ~ 0) = 1 - (9(s 2~) in the anomalous case. The large-distance asymptotics of 
has been computed for the linear theories with z = 2 and z = 4, in dimensionalities 
d = 1 and 2 [115]. The results indicate that the decay is generally of the form 

5f(s) ~ s ~ exp (-cs~), (3.55) 

with 7 > 0 and ~ = z / (z  - 1). The coefficient c is real for the Edwards-Wilkinson 
equation (z = 2), but complex for z = 4; in the latter case the correlations decay in a 
damped oscillatory manner, analogous to the spatial oscillations that occur in the 
macroscopic shape evolution governed by surface diffusion [18]. 

A closed expression for C(r, t) can be derived in the case z = 1, d = 1, which 
describes diffusion-limited erosion in 1 + 1 dimensions [102] (see also section 3.4). 
One obtains 

D D ~2 
C(r, t) = In (1 + ~2/r2) ~ 2u r 2' (3.56) 

for r >> 4. The power law decay reflects the nonlocality of the interface dynamics or, 
equivalently, the fact that S(q, t) in equation (3.25) is nonanalytic at q = 0. 
Conversely, whenever the dynamics is local (i.e. for even integer values of z) one 
expects an exponential-like decay as in equation (3.55). 
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3.2.5. Growth on rough substrates 
In most applications of  thin film growth the substrate possesses some residual 

roughness. Within the linear theory this is easily incorporated by choosing the initial 
conditions in equation (3.23) from a suitable statistical ensemble. Let us assume for 
concreteness that the substrate is rough with roughness exponent if0 > 0 and 
correlation length ~0. The initial correlations are then of the form 

(hq(0)hq,(0)) = ~q+q,q-(d+2¢°)go(q~o) , (3.57) 

with g0(s -~ 0) ~ s d+2¢° and 9o(S ---+ c¢) = const. Using the general solution (3.23) in 
the evaluation of the surface width (3.26), one obtains the decomposition 

m 2 = m 2 q- m2at, (3.58) 

where  mflat is the growth-induced roughness from flat initial conditions discussed 
previously in this section, and W0 is the width of the initially rough interface which 
evolves deterministically under the noiseless dynamics, equation (3.18) with r / =  0. 
Since the deterministic equation is relaxational, W0 decreases with time, as the rough 
initial features are covered up by the growing film. The detailed analysis shows that 
[115] 

w0(0), ~ << ~0, 
Wo(t) ~ Wo(O)[~o/~(t)]~/2, ~ >> ~0, (3.59) 

where ~(t) is the usual correlation length of the growth process. The fact that the 
total width (3.58) is the sum of a decreasing (W 2) and an increasing (W2at) part 
implies the possibility of nonmonotonic time evolution, as has been experimentally 
observed [119, 120]. 

3.3. Relevant nonlinearities 
To what extent can the linearized fluctuation theory be trusted when it comes to 

describing real interfaces? The short answer is that the qualitative behaviour derived 
above is expected to remain valid. That is, any kinetic roughening process entails a 
dynamic correlation length 

~ t l/z (3.60) 

which enters the scaling forms (3.31), (3.48) and, possibly (3.49), for the width and 
the height-difference correlation function, but the values of  the dynamic exponent z 
and the roughness exponent 4, as well as the detailed shapes of the scaling functions 
may differ from the expressions of the linear theory; in particular, the height 
fluctuations may become non-Gaussian, involving, in extreme cases [112], separate 
roughness exponents for different moments of  h. 

The 'stability' of  the large scale behaviour of the linear theory against the 
inclusion of nonlinear terms can be probed by a simple technique referred to as 
power counting, which we illustrate here for the leading growth-induced kinematic 
nonlinearity of  the nonconserved interface equation (3.6). Expanding the square root 
in front of the curly bracket and adding the noise we have, in a frame moving at 
velocity vo = F#0, 

Oh 
Ot = uV2h + (Vh)2 + ~' (3.61) 

where we have set A = F/to = vo. We now perform a rescaling transformation 
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/~(x, t) = b-~h(bx, bZt), (3.62) 

with a scaling factor b > 1. The transformation of the noise is dictated by the 
invariance of the covariance (3.16); this yields 

~(x, t) = b (d+z)/2rl(bx, b Zt). (3.63) 

Inserting equations (3.62) and (3.63) into equation (3.61) we find that /z satisfies 
equation (3.61) with the rescaled coefficients 

F, = bz-zu, D = bz-d-2~D, )~ = bZ+¢-2/~. (3.64) 

It is easily checked that equation (3.62) constitutes, for b > 1, a coarse graining 
operation. Thus equation (3.64) provides, for b ~ ec, a measure of the relative 
importance of the various terms in equation (3.61) on large scales. In order to 
evaluate the large-scale effects of the nonlinear term we now set ¢ and z in equation 
(3.64) equal to the values ~ = (2 - d ) /2  and z = 2, characteristic of the linear theory. 
Not surprisingly, the coefficients u and D that appear already in the linear equation 
then remain invariant; however, the coefficient A of the nonlinearity increases, for 
d < 2, as b <. We conclude that this term is relevant and presumably alters the scaling 
behaviour of the linear theory. The same kind of analysis applied to higher-order 
terms appearing in the gradient expansion of equation (3.6), such as [(Vh)2] 2 and 
(Vh)ZV2h, shows that these are irrelevant, that is, their coefficients decrease under 
rescaling. Thus the nonlinear equation (3.61), which was first derived by Kardar, 
Parisi and Zhang [19] in 1986, gives a complete description of the large-scale 
properties of interfaces moving locally in the direction of the driving force, as in 
equation (3.3). Some properties of this equation will be discussed in section 4. 

In the case of conserved surface relaxation, as described by equation (3.15), the 
situation is much more complicated. First, since the linear theory (without non- 
equilibrium currents) shows anomalous scaling with ¢ _> 1 for d _< 2, all non- 
linearities that arise from expanding the geometric factors in equation (3.12) are 
relevant [89, 90] in dimensions d _< 2. Similarly, the t e r m s  ,~2m(Vh) 2m in the 
expansion (3.13) of the non-equilibrium chemical potential are relevant for 
d < 4m/ (2m - 1); in d = 2 all these terms are relevant. Existing renormalization- 
group treatments of the nonlinearities [90, 121,122] have taken into account only the 
lowest-order terms; however, it is not clear that such a procedure can be justified for 
infinite sequences of relevant terms (see sections 5.4.3 and 5.5.2). 

On the other hand, matters simplify drastically in the presence of a stabilizing 
(downhill) non-equilibrium current, equation (3.14) with ul > 0. As already men- 
tioned, the linear theory is then given by the Edwards-Wilkinson equation (3.18) 
with m = 1, and power counting shows that all conceivable nonlinearities (which are 
consistent with the conserved nature of the dynamics) are irrelevant [121,122]. Thus 
in this instance the linear theory provides the exact description of the large-scale 
properties. Below in section 3.4 we explore some further examples of microscopic 
models for which the linear theory becomes exact. 

Golubovi6 and Bruinsma [100] have investigated the effect of adding the KPZ 
nonlinearity (A/2)(Vh) 2 to the fourth-order surface diffusion equation (3.18) with 
m = 2. In that case power counting shows that the nonlinearity is relevant below 8 
interface dimensions. It should, however, be clear from the derivation in section 3.1 
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that the Golubovi6-Bruinsma equation 

Oh/Ot = -u~4h + (/V2)(Vh) 2 + ~/ (3.65) 

does not constitute a consistent description of  interface dynamics: since the KPZ 
term does not conserve volume, it should always be accompanied by an evapora t io~  
condensation term proportional to V2h. Indeed, the renormalization group analysis 
of Golubovi6 and Bruinsma does demonstrate the generation of such a term on large 
length scales, but its sign turns out to be negative (i.e. destabilizing) to leading order 
in e = 8 -  d. In view of recent work on the related, deterministic Kuramoto-  
Sivashinsky equation, to be described in section 4.4.1, it seems unlikely that this 
result has any consequences in physical dimensionalities. 

The reader should not be left with the impression that power counting always 
gives fully reliable answers. There are, at least, two kinds of situations where it may 
fail. The first case is the appearance of a strong coupling regime in which a nonlinear 
term with a small (in some dimensionless sense) coefficient is irrelevant, as predicted 
by power counting, but the same term becomes relevant when the coefficient exceeds 
some critical value. So far this scenario has been found to apply only to the KPZ 
equation and some of its variants (see section 4), but our understanding of the 
phenomenon is insufficient at present to be able to decide how commonly it occurs in 
the context of  general, nonlinear interface models. 

A second case in which linear analysis, including power counting, gives 
misleading results is growth with conserved relaxation on a 1D vicinal surface 
stabilized by step edge barriers (see section 5.2.1). These barriers give rise to a 
nonequilibrium current Jy~(Vh) which, when expanded around the average orienta- 
tion of the vicinal surface, is of the form (3.14) with ul > 0. Thus, following the 
above line of  reasoning, such a surface should be exactly described by the linear 
(Edwards Wilkinson) theory. Simulations of a microscopic model [123] reveal, 
however, that the state in which the linear theory applies is metastable: at long 
times, fluctuations nucleate large local deviations from the average orientation which 
bring the surface into a regime where ul < 0, eventually leading to a global instability 
not anticipated by the linear analysis. 

3.4. Microscopic realizations of the linear theory 
The large-scale behaviour of a given microscopic model conforms exactly to the 

linear theory if (i) all nonlinearities permitted by the physics of the problem turn out 
to be irrelevant, or (ii) if the model possesses additional (possibly artificial) 
symmetries that suppress relevant nonlinearities. 

An example of the first kind is provided by the process of diffusion-limited 
erosion (DLE), which was studied numerically by Meakin and Deutch [124] and 
analytically by Krug and Meakin [102]. DLE is the time-reversed process of DLA. 
As in DLA, individual diffusing particles are launched far away to wander towards 
the interface; however, instead of accreting to the growing deposit, upon contact they 
annihilate with a deposit particle, thus eroding the surface. The model applies to 
diverse processes such as electrolytic polishing and stable fluid invasion in the regime 
of high capillary numbers [102]. The reversal of the interface motion with respect to 
the gradient of the diffusion field implies that the destabilizing effect of the latter, as 
expressed in the conventional stability analysis for solidification fronts [125], is 
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Figure 13. Simulation results (symbols) compared to the theoretical scaling function (3.66) 
(full curve) for the surface width in diffusion-limited erosion on the square lattice. 
The numerical data were averaged over a number of independent runs ranging from 
4000 for L = 32 to 20 for L = 4096 [102]. 

turned into a rather efficient stabilizing force, since local protrusions are preferen- 
tially eroded. 

Krug and Meakin [102] showed that the appropriate linear fluctuation theory for 
this problem is given by equation (3.22) with z = 1, and the coefficient u equal to the 
average interface velocity v; this makes it plain that the relaxation term is of purely 
nonequil ibrium origin. Moreover, all nonlinearities are found to be irrelevant by 
power counting. The agreement with the linear theory is illustrated in figure 13, 
where simulation data for d = 1 (the marginal dimensionality d~ 1) for this model) are 
compared to the analytic expression for the interface width. For  z = 1, d = 1, the 
series (3.26) defining W 2 can in fact be summed exactly, with the result 

D 
W2 = 2~u {In (L/a) + In [1 - exp (-4~ut/L)] }. (3.66) 

In the figure, the non-universal short range cut-off a has been removed by 
subtracting the stationary limit of the width; also, the interface velocity u = 1 by 
definition of the time scale, so that the noise strength D ~ 1-2 remains as the only fit 
parameter. 

A class of microscopic models tailored to represent the linear continuum theory 
was recently introduced by Kim and Das Sarma [126], building on earlier work by 
Family [127]. The models are solid-on-solid (SOS) models [128] in which the position 
of the surface is specified by an integer-valued height variable hx defined on the d- 
dimensional substrate lattice. Deposit ion occurs by randomly choosing a lattice site 
x0; however, rather than simply increasing the height at x0 (which would lead to a 
trivial model) the depositing particle is allowed to relax in a local neighbourhood, 
typically including x0 and its nearest neighbours. The relaxation is governed by a 
function Kx of the heights and their discrete derivatives, which is assigned to each 
lattice site and can be viewed as a representation of the local surface chemical 
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potential. The final deposition site is the one in the neighbourhood that has the 
smallest value of K prior to deposition; if the minimum is not unique, a random 
choice is made. 

In the model of Family [127], the 'chemical potential' K is simply the height itself, 
Kx = hx. The model may therefore be regarded as a lattice version of  the 
sedimentation process envisioned by Edwards and Wilkinson [98], in which granular 
particles settle in local surface minima under the influence of  gravity. As was pointed 
out by Krug [129], in the context o f  sedimentation the assumption of  a regular lattice 
is too strong a simplification: the fact that real sediments are disordered provides a 
mechanism for the generation of the quadratic KPZ nonlinearity, which invalidates 
the predictions of the linear theory on large scales (see section 5). On the other hand, 
a regular lattice appears naturally if one intends to describe epitaxial growth with 
conserved surface relaxation. In that case the post-deposition relaxation in Family's 
model could arise from the transient kinetic energy of  the depositing particles, which 
allows them to 'funnel' downhill before being incorporated into the lattice [99]. In 
the continuum language this causes a downhill current with a stabilizing linear 
coefficient ul > 0 in equation (3.14) which, as we have repeatedly argued, supersedes 
all allowed nonlinearities (the metastability scenario sketched at the end of  the 
previous section cannot alter this conclusion, since the current in Family's model is a 
monotonic function of  inclination, so that ul > 0 for all surface orientations). Thus, 
this model (including variants with longer-ranged, gravity-driven relaxation [130]) is 
an exact realization of the Edwards-Wilkinson equation, as was confirmed by 
numerical work in one [127] and two [131] dimensions. 

For the curvature model defined by Kx = -(V2h)x (the right hand side denoting 
the lattice Laplacian) the corresponding argument [t 12] requires somewhat greater 
care. Here, the crucial observation is that, since the dynamics can be formulated 
solely in terms of the local curvatures, the model is invariant under arbitrary tilts, 
hx--+ hx + u.x. Consequently, any nonlinear contributions to the coarse-grained 
surface chemical potential have to be powers of  second and higher derivatives of h, 
which are all irrelevant by power counting. Related symmetries are discussed in 
section 5.2.2. 

Of course, the extra symmetry of the curvature model is due to the somewhat 
artificial relaxation rule-- i f  the local curvature is replaced, for example by the 
coordination number of the deposited atom, as a more realistic representation of  the 
actual atomic kinetics [101, 132, 133], the tilt invariance is lost and the scaling 
properties of  the model become considerably more complex [107, 108, 112]. Such 
models are described in section 5. l. 1. 

Since we expect the large-scale behaviour of  the curvature model to be governed 
by the linear, noisy Mullins equation (equation (3.18) with m = 2), we may utilize the 
exact expressions derived in section 3.2.2 both to ascertain our expectation, and to 
determine the coefficient u in the continuum equation. The noise strength D is fixed 
from the outset: in the whole class of models introduced by Kim and Das Sarma 
[126], particles are deposited at random and relax only locally, within a region of a 
few lattice spacings; therefore, the coarse-grained noise has Poisson (shot noise) 
statistics and D = 1 in units where time is counted in deposited monolayers. In figure 
14 we show simulation data for the width and the mean-squared step height 
((Vh) 2) = ((hx+l - hx) 2} for a large (L = 105) 1D system (the precise relaxation rule 
implemented here is described in [112]). The predictions of the linear continuum 
theory for the infinite system can be written as 
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Figure 14. Simulation results for the surface width W 2 and the local height gradient ((Vh) 2) 
of the curvature model [112]. The broken lines are power law fits with the predicted 
exponents. 

lira W2/t 3/4 = (D/u)(2u)3/4F(1/4)/67z, 

lim ( (Vh)2) / t 1/4 = (D /u)(2u)l/4 F(3 / 4) /2~. 
t ~ e e  

(3.67) 

From the fits indicated in the figure we estimate u ~  0.140 and D / u ~  7.0, in 
accordance with the argument that D = 1 for this general class of models. The 
example illustrates how numerical measurements of correlation functions, such as 
the interface width, can be used to extract the model-dependent parameters that 
enter the large-scale continuum theory. This procedure will recur in the nonlinear 
context in sections 4.2 and 5.4.2. 

4. Aspects of Kardar-Parisi-Zhang theory 
The Kardar-Par is i -Zhang equation [19] 

Oh uV2 h + A 
0~ = ~ (Vh)2 + ~ (4.1) 

is the most thoroughly studied continuum theory of kinetic roughening. While the 
derivation in section 3 was based on the macroscopic equation (3.6) for an interface 
that moves locally normal to itself, it should be recognized that equation (4.1) is a 
valid description of large-scale interface fluctuations under much more general 
conditions. The KPZ equation applies whenever the macroscopic interface equation 
of motion has the form 

Oh 
Ot = v(Vh) + curvature corrections, (4.2) 

with an inclination-dependent growth rate v(Vh) that is a nonlinear function of the 
local orientation; in the isotropic case of equation (3.6), v(Vh) = F#0 [1 + (Vh) 211/2. 
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The characteristic quadratic nonlinearity of equation (4.1) then results from a 
gradient expansion of  v [8, 129, 134]: 

v(Vh) ~ v(O) + ~-~ Oiv(O) 4- 2 ai \ ~x~ / 4-.... (4.3) 
i = l  '=  

Here, the substrate plane coordinates have been chosen such that the matrix of 
second derivatives 02v(O) is diagonal with eigenvalues hi. To arrive at the usual form 
(~/2)(Vh) 2 of  the nonlinearity one has to transform further to a tilted, co-moving 
frame in which the constant and linear terms in equation (4.3) vanish, and to assume 
in-plane isotropy so that h i -  A for all i. This is achieved trivially by a spatial 
rescaling if all hi have the same sign; otherwise novel physics can arise, as will be 
discussed shortly. The curvature corrections in equation (4.2) involve second and 
higher derivatives of h, such as the Gibbs Thomson term in equation (3.6). In the 
presence of a non-trivial inclination-dependent growth rate these terms do not affect 
the evolution of macroscopic shapes, since they become arbitrarily small under a 
coarse-graining operation that rescales h and x coordinates in the same manner (this 
should not be confused with the coarse-graining of fluctuations in section 3.3; there, 
h and x are treated differently when ( ¢ 1). 

Equation (4.2) is useful in clarifying what kind of physical growth processes 
would be expected not to fall into the KPZ universality class. First, the dynamics o fh  
is assumed to be local. This rules out all situations in which the interface motion 
couples to some nontrivial bulk dynamics, such as the diffusion-limited erosion 
process described in section 3.4, the competitive growth models of  section 2 and the 
classical continuum theories of solidification [125]. Second, growth with volume- 
conserving surface relaxation is not covered by the KPZ theory, since in that case the 
growth rate is controlled entirely by the external deposition flux, v -  F, and is 
therefore independent of inclination [129]. We may remark in this context that the 
orientation independence of  the growth rate is a well-established experimental 
feature in the molecular beam epitaxy (MBE) of silicon [88], lending support to 
the application of the conserved growth equation (3.15) to this system (a detailed 
discussion is found in section 5). Finally, the KPZ theory assumes that the 
fluctuations in the growth process can be reasonably modelled by a noise term that 
is a random function of x and t. This assumption fails for interface motion in a 
random medium close to the depinning threshold, where the quenched nature of  the 
fluctuations, i.e. their dependence on the interface position h, becomes essential [81, 
84, 82, 931. 

For  practical purposes, the mechanisms neglected in the KPZ equation typically 
define some crossover length scales which limit the applicability of  the theory. For 
example, while desorption may well be negligible in most MBE processes, it is never 
entirely absent and should in principle lead to a reappearance of KPZ behaviour on 
sufficiently large length scales; defect formation would have the same effect (see 
section 5). Similarly, an interface moving through a random medium should be 
describable by the KPZ theory on scales that much exceed the correlation length 
associated with the depinning transition. Thus, the fact that in many cases the 
physics on relevant length scales is governed by effects not included in the KPZ 
equation should not obscure the status of  this equation as the generic description of 
the asymptotic fluctuation behaviour of  a broad class of interface displacement 
processes though it must be said that non-KPZ physics seems to dominate all 
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experimental situations considered so far, to the extent that no clean experimental 
confirmation of KPZ behaviour has yet emerged (see section 5.6.1). 

Strong coupling. From a theoretical perspective, the most intriguing feature of the 
KPZ equation is the occurrence of a nonequilibrium phase transition for dimension- 
alities d > 2, from a weak coupling phase for small A where the nonlinearity is 
irrelevant (as expected on the basis of power counting, see section 3.3), to a strong 
coupling phase characterized by nontrivial scaling exponents not accessible to 
perturbative methods. The physical case d = 2 is at the lower critical dimensionality 
of the transition, which has important implications for the length and time scales 
required to observe the asymptotic behaviour [135]. Most of the work published in 
the five years following the seminal paper [19] of Kardar, Parisi and Zhang 
attempted to elucidate the nature of the transition, and to obtain accurate numerical 
estimates of the strong coupling scaling exponents. These efforts have been reviewed 
elsewhere [8]; for a representative sample of current numerical work see [136 138]. 

Recent analytic approaches have yielded promising but not quite conclusive 
results. Two-loop renormalization group (RG) calculations have been presented by 
Sun and Plischke [139] and by Frey and T~uber [140]. Whereas Sun and Plischke 
claim to identify the strong coupling fixed point in d = 2 and derive estimates for the 
scaling exponents, the analysis of Frey and T~uber indicates a scenario that is similar 
to the earlier one-loop results [19, 77]--only the critical fixed point governing the 
phase transition is accessible in an expansion around d = 2 dimensions, but the 
strong coupling regime remains elusive. For a discussion of the discrepancy between 
the two groups see [14t, 142]. L/issig [143] has shown that certain features of the 
phase transition predicted by the two-loop analysis [140] are exact to all orders, and 
an appealing physical interpretation of the transition has been proposed by Newman 
and Kallabis [144]. 

The non-perturbative nature of the strong coupling regime suggests that a self- 
consistent mode-coupling approach [145] may be more appropriate than perturba- 
tive RG schemes. Mode-coupling equations have been written down before in related 
contexts [146-149], but only recently have approximate solutions been attempted 
[150-152] in order to extract the dimensionality dependence of the strong coupling 
exponents. Moore and co-workers [153] have found an analytic solution of the 
mode-coupling equations for d > 4, which indicates that d = 4 may play the role of 
an upper critical dimensionality, in the sense that the dynamic scaling exponent in 
the strong coupling phase takes on its weak coupling value z = 2 for d >_ 4. Such a 
scenario was suggested earlier by Halpin-Healy on the basis of a functional RG 
calculation [154, 155], and has received recent support from other approaches [142- 
144, 156]. On the other hand, a numerical solution of the mode coupling equations 
[157] yields z < 2 for all dimensions, in line with the available simulation data [136]. 

A third analytic approach that holds considerable promise with regard to an 
improved understanding of the strong coupling regime is the study of anisotropic 
generalizations of the KPZ equation. Building upon the observation of Villain [20] 
that growth on vicinal crystal surfaces (in the presence of desorption) may display a 
regime in which the two coefficients A1,/~2 in equation (4.3) have different signs, Wolf 
[158] showed that in such a situation the nonlinearities are in fact (marginally) 
irrelevant, i.e. the strong coupling regime disappears and the surface is described by 
the linear theory (up to logarithmic corrections). Subsequently, Fisher and Grinstein 
[159] and Hwa [160] considered, in the contexts of electrical transport in insulators 
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Origins of scale invariance in growth processes 187 

and driven flux line liquids, respectively, higher-dimensional anisotropic variants of 
the KPZ equation. Depending on the number of  non-zero coefficients ~i in equation 
(4.3) and on their relative signs, strong coupling behaviour may or may not be 
present. Therefore, the anisotropic equation can be used to systematically interpolate 
[160] between the (isotropic) KPZ equation and the problem of driven diffusive 
systems (DDS) [147], which corresponds, roughly speaking, to a situation where only 
one of the hi is nonzero. The DDS problem does not possess a strong coupling 
regime and is therefore amenable to standard perturbative analysis [161]. 

Outline of section. In the remainder of  this section we shall be concerned almost 
exclusively with the 1D KPZ equation. The 1D problem is special due to the validity 
of a f luctuatio~dissipation theorem which fixes the values of the scaling exponents 
(section 4.1). This allows one to pose more refined questions regarding scaling 
functions, universal amplitudes and the probability distribution of height fluctua- 
tions (sections 4.2 and 4.3). Section 4.4 briefly reviews recent work on interface 
displacement processes in which the fluctuations are of chaotic origin, while section 
4.5 introduces the well-known 'directed polymer' representation of the KPZ 
equation. Finally, section 4.6 addresses the problem of KPZ-type growth in the 
presence of defects or open boundaries, which break the translational symmetry in 
the substrate x direction. In such situations the nontrivial dynamic scaling properties 
of the KPZ equation reappear in the spatial domain in the form of power law height 
profiles and correlations [162], which in some cases can be computed exactly [163- 
166]. Moreover, morphological phase transitions can be induced by the defects, 
which have a particularly appealing interpretation in the directed polymer repre- 
sentation. 

4.1. Exact invariants 
The 1D KPZ equation has two important invariance properties, the first of which 

applies in arbitrary dimensionalities d. To derive it, consider the tilt transformation 

1 1 2 
h'(x, t) = h(x - u0t, t) - ~u0 "x ÷ ~u0 t ,  (4.4) 

parameterized by some d-dimensional vector u0. It is easily checked that h' satisfies 
the same KPZ equation (4.1) as h, with a shifted noise term 

rff(x, t) = r/(x - u0t, t). (4.5) 

Provided the temporal correlations of r/are sufficiently short ranged, the shift does 
not affect the statistical properties of the noise [77], and we may conclude that the 
statistics of the height fluctuations are invariant under the transformation (4.4). In 
the literature this property is often referred to as Galilean invariance, since it was first 
discussed by Forster, Nelson and Stephen [167] in the context of randomly stirred 
fluids governed by the noisy Burgers equation 

0 u  
0 t  + u.  Vu = uV2u - AV~I, (4.6) 

which follows from equation (4.1) with the identification u = - . ~ V h ;  the tilt 
transformation (4.4) is precisely a Galilean transformation for the fluid velocity u. 
In the context of interface motion the tilt invariance appears as a residue of the full 
rotational symmetry of the isotropic equation (3.6). 
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The significance of the tilt invariance lies in the fact that the transformation (4.4) 
contains explicitly the coefficient A. Thus, if the invariance is to be preserved under 
coarse graining, it is clear that the rescaling operation (3.62) should not change the 
value of A. From the last of equations (3.64) we read off that this enforces the 
exponent identity [26, 77, 148] 

+ z = 2 (4.7) 

between the roughness exponent and the dynamic exponent. 
In order to determine the values of ~ and z individually, we would require a 

second identity derived from some invariant combination of the coefficients u, D and 
A. No such invariant is known for d > 1; in the 1D case the appropriate combination 
is the ratio D/u. In fact a much stronger statement holds [8, 167, 168]. The Gaussian 
stationary probability distribution of the (z = 2) linear theory, 

~ [ h ] ~ e x p  - ~  dx(Vh) 2 , (4.8) 

is also the stationary solution of the full Fokker-Planck equation that corresponds 
to the nonlinear KPZ equation. This can be seen by computing the contribution 
introduced by the KPZ nonlinearity on the right hand side of the Fokker-Planck 
equation 

~--~ I dxA (Vh)2~[h] = I j dx a(Vh)2D V2h]~[h], (4.9) 

which vanishes by partial integration (assuming periodic boundary conditions in x). 
Similar results can be proved for certain microscopic realizations of the KPZ 
equation [8]. 

The remarkable conclusion is that all stationary correlations of the nonlinear 
KPZ equation in one dimension are given exactly by the linear theory. Specifically, 
for the transient roughening of an initially flat interface considered in section 3.2, we 
know that the two-point function S(q, t) defined by equation (3.24) satisfies 

lim S(q, t) = L -1 D (4.10) t ~  2uq 2 " 

Corresponding relations for higher order correlations follow immediately from the 
Gaussian nature of the probability density (4.8). A particular consequence is that the 
roughness exponent C = 1/2 as in the linear case, and the dynamic exponent z = 3/2 
from the scaling relation (4.7). It is much harder to demonstrate directly that 
z = 3/2. For a particular microscopic model this has been achieved by Gwa and 
Spohn [169]; extensions of their work can be found in [170-172]. 

We now exploit the invariance of A and D/u to determine the full scaling form of 
S(q, t). First, we derive an expression for the dynamic correlation length ~(t) using 
only dimensional arguments. From the KPZ equation (4.1), the dimensions of A and 
D/u are given by 

[A] = [x]2/[h][t], [D/u] = [h]2/[x]. (4.l 1) 

The task is to construct a lateral length scale (of dimension Ix]) from the invariant 
quantities A, D/u, and the time t. The only solution is 

~(t) = [(O/21~)l/2[/~[t] 2/3, (4.12) 

where a factor of 2 has been inserted for later convenience. Together with the 
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asymptotic constraint (4.10) it follows that S can be written as 

S(q, t) = L-1 2@q2 9(q~(t)), (4.1 3) 

where, in analogy with the expressions (3.25) and (3.29) derived in the linear case, 9 is 
now expected to be a universal function with the limiting behaviours 

9(0) = 0, lim g(s) = 1. (4.14) 
s-~--~ oo  

In the linear theory, equation (4.13) holds with 9(s)= 1 - e x p  (-s2). The scaling 
function for the KPZ equation is not known explicitly. A closely related function 
describing the temporal correlations in the stationary state has been studied 
analytically [147, 149, 161] and numerically [173] by several groups. In the next 
section we show how the scaling function can be characterized through dimension- 
less amplitudes of statistical observables such as the interface width. 

4.2. Universal amplitudes 
Using the scaling form (4.13) we can proceed to compute real space correlation 

functions from the general formulae (3.26) and (3.27). Since all stationary (t ~ oo) 
correlations are identical to those of the linear theory, the focus is on transient 
quantities, i.e. we take the limit L -+ oo at fixed t. For the width this yields the 
expression [174] 

W 2 = c2 [(D/Zu)2],~l t] 2/3, (4.15) 

with a dimensionless prefactor c2 that is expressed in terms of the universal scaling 
function 9 as 

C 2  = - -  g ( S ) .  (4.16) 
7~ 0 

Similar expressions can be written for higher-order correlation functions and higher 
moments of the height fluctuation distribution. Of particular interest are quantities 
that reveal the deviation of  the distribution from a Gaussian, such as the skewness 

50 - ( ( h -  (h)) 3) 
((h - (h)) 2) 3/2, (4.17) 

and the kurtosis 

~. ( (h -  (h)) 4) 3. (4.18) 
( (h -  (h))2) 2 

The skewness is a measure of the asymmetry of the fluctuation distribution, to be 
expected because the growth direction breaks the h --+ - h  symmetry, while ~ gauges 
the weight contained in the tails of the distrubution relative to a Gaussian; for a 
Gaussian 5 ~ = ~ = 0. Simulations of a variety of microscopic models belonging to 
the KPZ universality class indicate [174, 175] that the skewness in the transient 
regime converges to a universal value 15Pl = 0.28 i 0.04, and the sign of  5" is equal 
to the sign of  A in equation (4.1); the value of  ~ is in the range ~ ~ 0.12-0.16. The 
theoretical significance of these results is discussed by Friedberg and Yu [176]. 

A few remarks are in order regarding the numerical procedure [173, 174, 177] 
employed to extract universal amplitudes like c2, 5 ~ and ~ from simulations of 
microscopic models. Two steps are involved. First, the transient behaviour of the 
quantity of interest (e.g. the width) is measured, executing care that the asymptotic 
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( W 2 ~  t 2/3) regime is well established in the time range used to determine the 
prefactor. Then, in order to arrive at dimensionless coefficients such as c2, the 
dimensionful invariants D/u and ~ have to be computed for the particular model 
at hand. In a few cases this can be done analytically [173, 174]; however, in general 
one has to resort to simulations. The ratio D/u figures prominently in the correlation 
functions of the linear theory, and can therefore be obtained from numerically 
determined stationary quantities, using exact relations like equation (3.39). The 
coefficient & is most easily estimated from a direct measurement of the tilt 
dependence of the growth rate [134], as defined in equation (4.3); for this purpose 
a macroscopic tilt u = (Vh) is imposed through helical boundary conditions, 
h(x + L) = h(x) + uL (for an example see figure 17). 

The knowledge of the universal amplitude c2 can be exploited to estimate the 
crossover time tc at which the interface width saturates in a finite system, i.e. the 
nonlinear analogue of equation (3.41). To this end we match the transient expression 
(4.15) to the stationary result (3.39) (with z = 2), and obtain 

~(tc)/L = (12c2) -1 --~ 0.21, (4.19) 

with the numerical estimate [174] c2 ~ 0-40. Similar considerations apply to the 
crossover from an intermediate, Edwards-Wilkinson (EW) scaling regime in cases 
where the value of the nonlinearity in equation (4.1) is small (in a dimensionless 
sense) compared to the linear term uV2h. Matching the KPZ asymptotics (4.15) to 
the exact expression (3.40) for the transient regime of the z = 2 linear (EW) equation, 
the crossover is found to occur at a time 

tEW-~KPZ 32rc_3c26uSD_21/~l-4 ~ 252uSD_21)q 4. (4.20) 
C 

This relation has been particularly useful in identifying the asymptotic behaviour in 
models of chaotic interfaces, to be described in section 4.4. 

4.3. Finite size effects 
An interesting feature of the nonlinear term in the KPZ equation is the coupling 

that it induces between the spatially averaged, centre of mass motion of the interface 

h(t) = hq=o(t) = L -1 dx h(x, t), (4.21) 
o 

and the internal fluctuation modes. This is illustrated by writing the instantaneous 
global interface velocity as 

dh } Z  
v(t) =-- dt - q2lhq(t)12 ÷ ~/q=0(t). (4.22) 

q¢0 

Several important conclusions can be drawn from this expression. First, 
averaging over both sides and taking t--+ c~ we find, using equation (4.10), that 
the right hand side is a sum over N - 1 identical terms L-I(D/2u), where N = L/a  is 
the total number of modes (the q = 0 mode does not contribute). It follows that the 
stationary average growth rate has a universal finite size correction [178] 

D)~ 
Av = (v(L)} - (v(oc)) = - 4 u L "  (4.23) 
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The average growth rate itself, (v(ec)) = D)~/4ua, depends on the lattice cut-off a 
and is therefore nonuniversal. Similarly, in the transient regime one finds a 
correction proportional to t -2/3. The non-dimensional coefficient in equation 
(4.23) is altered when the periodic boundary conditions are replaced by open ones 
[179]. 

Second, the coupling to the internal modes induces [180] long-ranged temporal 
correlations in the growth rate, on time scales smaller than the correlation time 
tc ~ L 3/2. This effect is displayed in the centre of mass dispersion 

W 2 = ((/~_ (/~))2), (4.24) 

obtained by twice integrating the velocity correlation function (v(t)v(s)). In one 
dimension, this quantity behaves as 

W2 ~ { L- i t  4/3, t << L 3/2, (4.25) 
L 1/2t, t >> L 3/2, 

i.e. the dispersion is superdiffusive in the transient regime, leading to a 1/f- type 
divergence in the velocity power spectrum [147, 159, 180, 181]. In the stationary 
regime ordinary diffusion is recovered, however, with a prefactor that is enhanced 
relative to the 1/L dependence of  the linear theory (see below). 

Equation (4.25) highlights the necessity of  carefully distinguishing between the 
ensemble average (h) and the spatial average h in a finite system. The height 
fluctuation relative to the ensemble average 

I~ 2 =- ( ( h -  (h)) 2) (4.26) 

is dominated by the centre of  mass dispersion for t > tc, where W 2 >> W 2, and I~" can 
be equated to the conventional definition (3.26) of the width W only for t << to; of 
course in simulations l~ is of little relevance, since the ensemble average (h) is 
generally not known. 

These considerations apply also at the level of the linear theory; however, there 
they are comparatively trivial since the centre of mass motion only couples to the 
q = 0 mode of the noise, so that W 2 = Dt/L d for all times. Incidentally, this remains 
true in nonlinear theories with conserved relaxation--indeed, the requirement of 
volume conservation in all relaxation processes implies precisely that these processes 
do not couple to the average height. In RG language this leads to the nonrenorma- 
lization of the noise strength D and the concomitant exponent identity [95, 101, 121, 
122, 180] 

z = d ÷ 24, (4.27) 

as can be read off from the scaling transformation (3.64). 
It is instructive to rederive the second part of equation (4.25) from a scaling 

argument. Dimensionally, W 2 is no different from the width W 2, hence one should 
be able to write a scaling form analogous to equation (3.31): 

W~= D -~uLfc(~/L). (4.28) 

To inform the shape of the scaling functionfo, we note that for times large compared 
to the correlation time, i.e. for ( >> L, the interface velocity becomes uncorrelated 
and one expects that W~ ~ t. Since the KPZ correlation length behaves as ~ ~ t 2/3, 



D
ow

nl
oa

de
d 

B
y:

 [T
IB

-L
iz

en
ze

n 
- T

IB
 L

ic
en

ce
 A

ffa
irs

] A
t: 

13
:0

5 
10

 M
ar

ch
 2

00
8 

192 J. Krug 

this requires that fc(S) = co $3/2 for large arguments, and using the expression (4.12) 
we obtain 

m~ = co(D/Zu)3/Zl~lL ~/2t (t >> L3/2) ,  (4.29) 

which determines also the prefactor in equation (4.25) up to the universal constant 
C0.  

Remarkably, the amplitude co is known analytically by virtue of a recent exact 
solution of a specific model due to Derrida, Evans and Mukamel (DEM) [182]. These 
authors were concerned with the tracer diffusion of particles in a 1D lattice gas with 
hard core repulsion--the asymmetric simple exclusion process (ASEP). The equiva- 
lence between the ASEP and a simple growth model, the single step model, has been 
known for some time [8, 26]. Any configuration of  lattice gas occupation numbers 
ci = 0, 1 can be mapped onto a solid-on-solid interface through the identification 
hi+l- hi = 1 -  2el = 4-1, the integer height variables hi specifying the interface 
position. In the ASEP particles jump to the right to vacant nearest neighbour sites; 
each jump increases the local height as hi ~ hi + 2. Thus, hi measures (twice) the 
time-integratedparticle current through bond i. DEM computed the time-integrated 
displacement Yt of a tagged particle, and showed that, for long times, 

with a diffusion constant 

(Yt 2) - (Yt) 2 -- At, (4.30) 

/x = v / ~  (1 - p)3/2 1 
2 pl/2 L1/2' (4.31) 

where 0 < p < 1 denotes the particle density. Equation (4.31) represents the leading 
behaviour in 1/L when the stationary limit t -+ oc is performed first, followed by the 
limit L ~ ec at fixed density p. 

To establish the connection with equation (4.29), note first that since the particle 
current is equal to the product of density and velocity, the time-integrated curren~ is 
p Yt and h - 2p Yr. Equations (4.30) and (4.31) therefore translate into 

l~ 2 = ((h - (h)) 2) -- 2v/~z[p(1 - p)]3/2t/L1/2, (4.32) 

which is also equal to W 2 in the stationary (t >> L 3/2) regime considered here. Next 
we remark that the stationary correlations of  the ASEP (with periodic boundary 
conditions!) are trivial: for L---+ oo every site is occupied independently with 
probability p (for an explicit proof  see [26, 181]). Consequently it is an easy matter 
to show that the dimensionful invariants of the equivalent growth model are [174] 

= -1,  D /2u- -  4p(1 - p). (4.33) 

Thus equation (4.32) conforms exactly to the scaling prediction (4.29), and allows us 
to identify the dimensionless prefactor as 

co - v/re/4. (4.34) 

The universality of this number is illustrated by simulation results for the centre-of- 
mass dispersion of a different growth model, the restricted solid-on-solid model of 
Kim and Kosterlitz [183] (figure 15). For this model the quantities D/u and ~ are 
known only numerically [174]. 
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Figure 15. Centre of mass fluctuation W 2 of the interface in the restricted solid-on-solid 
growth model of Kim and Kosterlitz [183], scaled by system size (L = 100) and time 
according to the scaling form (4.29). The data represent an average over l04 
independent runs, extending over 4 × 104 deposition attempts per site. The broken 
line is the prediction for the prefactor obtained from equation (4.29) with the 
universal amplitude (4.34) and the dimensionful parameters, D / 2 u = 0 . 8 1  and 

= -0-75, which were determined numerically in [174]. 

4.4. Chaotic interfaces 

4.4.1. The Kuramoto -S ivash insky  equat ion 
A number of recent studies have been devoted to purely deterministic models of 

interface mot ion where the fluctuations, rather than being induced externally by 
thermal or kinetic noise, are generated by some local chaotic dynamics. The prime 
representative for this class of systems is the Kuramoto-Sivashinsky (KS) equation 

Oh/Ot + V2h + V4h  - (Vh) 2 = 0, (4.35) 

which appears as an asymptotic local approximat ion to various moving boundary 
value problems, such as laminar flame propagat ion [184], solidification at large 
undercooling [185], and terrace edge evolution during step flow growth [186, 187] 
(see also section 5.2.1). Similar equations have been derived in plasma physics [188] 
and in the context of chemical turbulence [146, 189]. 

The units in equation (4.35) have been chosen such that all coefficients are equal 
to unity. Usually the l D equation is considered, with periodic boundary conditions 
on an interval of length L. The trivial solution h = const, is linearly unstable when 
L > 2~. For large L, almost all initial conditions evolve to a state of  spat io- temporal  

chaos, which can be viewed as a collection of cell-like structures that split and merge 
in a random fashion. The cell size is set by the wavelength l0 = ~/2(2~) with the 
largest growth rate 1/To = 1/4 under the linearized dynamics. 

In the present context, the fundamental question is to what extent the large scale 
dynamics of this ' turbulent '  state, coarse grained beyond the typical cell size 10, can 
be described by a stochast ic theory of kinetic roughening. Yakhot  [190] was the first 
to suggest, on the basis of a renormalization group coarse graining procedure, that 
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Figure 16. Width of a 1D Kuramoto-Sivashinsky interface of length L = 65 536. The 
squares show numerical data obtained by averaging over 70 independent runs. The 
broken line is a fit to the early time Edwards Wilkinson behaviour, W 2 = 0.397t 1/2. 
The full line represents the asymptotic KPZ behaviour, W2= 0.092t 2/3, with the 
prefactor calculated from equation (4.15) using the numerical estimates of D/2u and 
.~. The arrow indicates the crossover time t ~w~KPz ~ 7000 predicted from equation -c 
(4.20). The last few data points are already affected by finite size effects--the 
saturation time determined by equation (4.19) is about 3 x 105 for this system size 
[193]. 

the appropriate large-scale theory is the KPZ equation (at the time known as the 
noisy Burgers equation [167]). Yakhot 's  conjecture is very plausible intuitively; it 
only requires that (i) the stabilizing effect of the nonlinearity in equation (4.35) can 
be described in terms of a positive, effective interfacial tension u > 0 on large scales, 
and (ii) the random cell interaction events are sufficiently uncorrelated to give rise to 
a white noise forcing. However, a formal proof  by conventional renormalization 
group methods is difficult because the cell size l0 interferes with the R G  flow [191]. 

A careful numerical test of the conjecture was performed by Zaleski [192], who 
found it exceedingly difficult to access the asymptotic KPZ  regime. A subsequent 
quantitative crossover analysis [193], utilizing the amplitude relations derived in 
section 4.2, estimated that the asymptotic behaviour sets in only on length scales 
L > 2500 and time scales t > 7000 (figure 16). Similar crossover scales were observed 
in the stationary regime [194]. Somewhat paradoxically, the crossover time (4.20) is 
large because of the large value of  the effective interface tension u, which starts out 
being negative on the 'microscopic' (=sub cell size) level. Assuming that u is 
generated by the cell dynamics, a rough estimate involving the characteristic cell 
scales is u = l~/'ro = 19.7. Numerically, one finds u = 10.5 ± 0.6 [193]. An analytic 
approach to estimating u, as well as the other effective parameters in the large-scale 
stochastic evolution equation, was presented by Chow and Hwa [195]. 

The intuitive picture suggests that a KPZ-type large-scale description should 
apply also in higher dimensions. Recent numerical work in two dimensions [196, 197] 
has not succeeded in unambiguously confirming this hypothesis, and the issue 
remains controversial [198 201]. It  is unclear at present whether the problem is only 
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one of  computat ional resources, or whether the 2D equation is different f rom the 1D 
case in some more fundamental way. Qualitatively novel behaviour certainly occurs 
if the differential operators in equation (4.35) are made anisotropic; indeed, under 
suitable conditions the stabilization mechanism breaks down completely, so that no 
large-scale stochastic description exists [202]. 

We briefly comment on the relationship between the KS equation (4.35), and the 
Golubovi6-Bruinsma equation (3.65), which may be viewed as the u0 ---+ 0 limit of 
the generalized KPZ equation [191] 

Oh/Ot = u0V2h - ~74h + (Vh) 2 + z/. (4.36) 

The work summarized in this section has shown that an interface governed by 
equation (4.36) with zero external noise strength D = 0, and a negative bare interface 
tension u0 < 0, can be described on large scales by an equation with a non-zero 
intrinsic noise strength Dintr > 0 and a positive effective tension u > 0. I t  appears 
plausible that the properties of the chaotic state of equation (4.35) should not be 
qualitatively altered by the addition of an external noise source. Moreover, i f  the 
nonlinearity in equation (4.36) is capable of generating a positive interface tension 
out of a negative bare value u0 < 0, this should remain true in the limit u0 ~ 0-. 
Thus, one is lead to conclude that a positive interface tension would be generated 
also in the case of equation (3.65), in contradiction to the e = 8 - d expansion of 
Golubovi6 and Bruinsma [100]. 

The argument is somewhat less firm than it seems, because it presupposes that the 
limit u0 ~ 0 in equation (4.36) (which takes equation (4.36) to equation (3.65)) 
commutes with the limit D ~ 0 (which takes equation (4.36) to equation (4.35)). To 
gain some insight into this issue, consider equation (4.36) with D = 0 and u0 < 0. 
This reduces to the parameter-free equation (4.35) through the transformation 

/~(x, t) = I~ol lh(l~ol ~/2x, lyol-2t)- (4.37) 

Using this transformation together with the results obtained for equation (4.35) in 
[193], it is an easy matter to show that the effective large-scale interface tension of the 
deterministic version of  equation (4.36) vanishes as u ~ -u0, and the intrinsic noise 
strength vanishes as Dintr ~ l/Y017/2 when u0 ~ 0. I f  the limit u0 ~ 0 is performed at 
fixed external noise strength D > 0, one therefore enters a regime where the external 
noise dominates over that generated by the chaotic fluctuations, and which may 
behave differently f rom the deterministic equation (4.35). The transition between the 
two regimes was studied numerically by Karma and Misbah [187], who found a 
smooth crossover with no singular features. 

4.4.2. Related models 
I t  should be emphasized that, since equation (4.35) contains no control 

parameters apart f rom the system size L, the large crossover scale in one (and 
possibly also two) dimensions is an intrinsic property of the equation. This lack of 
versatility was one of the motivations that led Bohr and co-workers [203, 204] to 
introduce lattices of coupled circle maps as a new class of chaotic interface models. 
These models are defined in terms of real, unbounded height variables ht(i) that live 
in discrete time and on a discrete space (the integer lattice, for the present 
discussion). In the absence of  coupling, each variable is updated according to a rule 
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Figure 17. Inclination dependence of the interface velocity v for coupled circle maps with 
diffusive (squares) and totalistic (triangles) coupling. The local updating rule (4.38) 
was the logistic map with R = 4 in both cases. The data were obtained from 
simulations of systems of size L - 1000, with a duration of 10 6 time steps per data 
point. The broken curves indicate parabolic fits. 

that is a combination of a constant shift (to break the h --+ - h  symmetry) and a 
nonlinear map on the unit interval acting on the fractional part of h: 

h --, F(h)  = h ÷ f ( h  - [hi). (4.38) 

A typical choice is the logistic map, f ( x ) =  Rx(1  - x ) .  Two kinds of  coupling 
schemes have been considered [203, 204]: a diffusive coupling defined by 

ht+l(i) = F(ht( i ) )  + e[ht(i + 1) + ht(i - 1) - 2ht(i)], (4.39) 

and a totalistic coupling 

ht+l(i) = F([ht(i  ÷ 1) ÷ ht(i) ÷ ht(i - 1)]/3). (4.40) 

It turns out [204] that the magnitude of the KPZ nonlinearity in the large scale 
dynamics, and therefore the observability of KPZ scaling, depends crucially on 
the choice of coupling. This is illustrated in figure 17, which shows the variation 
of the average interface velocity v = (ht+l(i) - ht( i))  with inclination 
V h  = (ha( i+ 1 ) -  ha(i)), for the two coupling schemes (4.39) (with e = 0.2) and 
(4.40). From the indicated parabolic fits one estimates that A ~ - 0 . 1 6  for the 
diffusive coupling, and A ~ - 2 - 0  in the totalistic model. According to equation 
(4.20), this implies that the crossover times to asymptotic KPZ behaviour differ by a 
factor of 2-4 x 104! Indeed, while clean KPZ scaling was observed in simulations of 
the totalistic rule, with the diffusive coupling only the pre-asymptotic EW regime 
could be accessed [204]. 

Clearly, the coupled map models differ from the KS equation (4.35) in several, 
possibly important, respects. Here, the chaotic fluctuations arise (for appropriate 
choices o f f )  simply from the local updating rule (4.38); there is no analogue of the 
unstable spatial coupling in equation (4.35), nor of the resulting cellular structure. 
Also, the coupled map models have only discrete translational symmetry in i and h; 
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moreover, in two dimensions the continuous rotational symmetry of  equation (4.35) 
is lost. Nevertheless, the great variability that can be achieved by different choices of 
local maps and different coupling schemes makes them promising objects for 
explorative studies of spatio-temporal chaos. 

The goal of constructing models of spatio-temporal chaos which are similar to 
the Kuramoto-Sivashinsky equation but afford a greater flexibility was also a major 
motivation in the recent work of Rost and Krug [205], who proposed a particle 
model for the KS cell dynamics. The crucial idea in the construction is to let the 
particle positions evolve according to the laws of classical mechanics, which 
automatically ensures Galilean invariance of the velocity field. The merging and 
splitting of cells is represented through the coalescence and creation of particles; the 
rules for these events are constrained by the requirement that the particle velocities 
should correspond to the gradient of an interface height profile with local dynamics 
at all times. Numerical simulations of the model show KPZ behaviour on relatively 
short length and time scales. Single particle trajectories wander superdiffusively, 
analogous to 'tracer' particles in the KS equation [206] (cf. the discussion of tracer 
diffusion in the ASEP in section 4.3). 

4.5. Directed polymers in random media 
The directed polymer representation [19, 77] of the KPZ equation provides a link 

between the non-equilibrium dynamics of interfaces and the equilibrium statistical 
mechanics of flexible lines in a quenched random environment. The conceptual basis 
of the mapping between the two problems is quite simple. The d-dimensional 
substrate space of the interface is enlarged into a ( d +  1)-dimensional space by 
treating the time direction as an additional coordinate. Thereby each noise history 
r/(x, t) can be viewed as a realization of a quenched random potential in d + 1 
dimensions. The time evolution of the interface is then encoded by an ensemble of 
'infection paths', to be specified shortly, which are directed along the t axis. The 
statistical weight of each path can be written as a Boltzmann factor with an energy 
that comprises an elastic term and a random contribution due to the disorder 
potential. Thus, the paths can be identified with conformations of physical objects 
such as flux lines, directed polymers or (in d = 1) equilibrium interfaces. 

Mathematically, the mapping is achieved through the Cole-Hopf transforma- 
tion, which was discovered some forty years ago as a means to exactly linearize the 
(deterministic, 1D) Burgers equation [207]. Here, we shall proceed in the converse 
direction--we first state the directed polymer problem, and then show how it leads to 
the KPZ equation. Throughout this section we will be working with a general 
number of transverse dimensions d, and return to specific applications to d = 1 in 
section 4.6. 

Consider then a directed line that runs through the random potential 7, 
connecting the origin (0, 0) to some endpoint (x, t) (figure 18). The total energy of 
the line can be written as 

t "y ( dy ,~2 T](y(s), S) }, 
Je [Y (S ) ]=Jods {~ \~ -7 }  + (4.41) 

with a line tension 7 > 0. The restricted partition function of all conformations that 
run from (0, 0) to (x, t) takes the form of a path integral: 
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Figure 18. Directed line in a random potential, represented by the crosses. 

[ (x,t) 
~e(x, t) = Dy[.] exp { -~ [y ] /kBT} .  (4.42) 

J(0,0) 

By standard techniques [208] this is brought into the differential form of a diffusion 
equation: 

O~ _ kBT v2~f 1 
ot ~ - kB r ~ 

(4.43) 

In the last step we introduce the restricted free energy 

~-(x, t) = --kB r In ~(x,  t), (4.44) 

which satisfies, according to equation (4.43), the KPZ equation 

0~- - k ~ V 2 ~ -  - ~ (Vg)2 + r/' Ot (4.45) 

with coefficients u ~-kBT/23` and )~ = - 1 / 3 ' .  The equivalence between equations 
(4.42) and (4.45) was first observed by Huse, Henley and Fisher [168]. 

Several remarks are in order. First, since equation (4.45) is written for ~ rather 
than for Y', the thermal average is already implicitly performed when describing the 
directed polymer by the KPZ equation, whereas the conventional noise average in 
the interface dynamics corresponds to a subsequent disorder average. The succession 
of the two averages implies that we are dealing with a case of quenched disorder. 
Second, it should be noted that the natural initial condition for ~- is different from 
the flat initial state commonly considered in the interface context: from the definition 
of the path integral (4.42) we have ~e(x, 0) = 6a(x), corresponding to a deep narrow 
groove in the 'interface' Y(x, t). Third, it is clear from the derivation that the 
mapping always leads to the isotropic KPZ equation; different signs of the hi in 
equation (4.3) cannot be accommodated [158]. This hints at some fundamental 
differences between the isotropic and anisotropic equations, which still wait to be 
elucidated. 

Readers who feel uneasy about the formal manipulations of the continuum path 
integral (4.42) will be reassured to learn that the mapping can be formulated and 
explicitly carried out also on the level of microscopic, stochastic lattice growth 
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models [8, 179, 209 211]. In these cases the resulting directed polymer problem 
typically resides as zero temperature, so that the thermal average is replaced by the 
selection of a single, optimal ground state path. This is nonessential as long as the 
finite (low) temperature behaviour and the behaviour at T = 0 fall into the same 
universality class, which is true for the standard directed polymer (see below) but 
fails, for example, in the presence of columnar disorder [212] (see section 4.6.3). 

We now summarize the main correspondences induced by the mapping (details 
can be found in the cited literature). The rough interface configuration h(x, t) 
translates into the rugged free energy landscape felt by a polymer of length t. The 
interface velocity equals the free energy per unit lengthf  = O~/Ot .  This immediately 
provides us with an appealing interpretation of the finite size correction to the 
stationary interface velocity derived in section 4.3: identifying the coefficients from 
equation (4.45) we see that equation (4.23) expresses the increase in the free energy 
per unit length 

D 
A f  - 2kBTL (4.46) 

due to the confinement of the polymer to a cylinder of circumference L. The effect is 
analogous to the increase in free energy incurred by a thermally excited line (in the 
absence of disorder) confined to a region of lateral extent L, due to the loss of 
configurational entropy [213]. The corresponding expression 

(kBT)2 (4.47) 
Aj~hermal N ") 'L2  

is easily derived [179] from equation (4.45) with ~/= 0 and appropriate boundary 
conditions. Besides the different L dependences of equations (4.46) and (4.47), which 
show that the disorder always dominates the behaviour on scales larger than 
Lc = (kBT)3/"/D, it is interesting to note the opposite roles played by temperature 
in the two cases, as well as the fact that equation (4.46), in contrast to equation 
(4.47), is independent of the line tension 3'. 

Somewhat less obviously, the dynamic correlation length ~(t) ~ t 1/z turns out to 
be proportional to the transverse displacement of the polymer 

8x(t) - {[x(t)] 2} 1/2 ~ {(t) ,,~ t 1/z, (4.48) 

where square (angular) brackets indicate thermal (disorder) averages. The displace- 
ment is superdiffusive when z < 2, due to the random potential which encourages 
large transverse fluctuations; diffusive behaviour, z = 2, is characteristic of the 
entropic wandering of a thermally excited line. 

The directed polymer representation has been instrumental in developing an 
intuitive understanding of the weak coupling/strong coupling phase transition of the 
KPZ equation in dimensions d > 2. In the directed polymer context the transition 
appears as a thermal phase transition between a disorder-dominated, glassy low 
temperature phase (strong coupling) and a high temperature phase in which the 
polymer is essentially unobstructed by the disorder (weak coupling). Rigorous 
proofs for the existence of the transition, and bounds on the transition temperature 
have been obtained [8, 214]. 

Another issue that deserves more than summary treatment is the interpretation of 
the tilt (or Galilean) invariance of the KPZ equation in the directed polymer 
language. We have argued in section 4.1 that, as a consequence of the invariance 
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of the equation under the tilt transformation (4.4), the coefficient A of  the 
nonlinearity is not renormalized. From equation (4.45) we see that this implies the 
non-renormalization of the polymer line tension % Indeed, by applying the tilt 
invariance argument on the level of the partit ion function (4.42) it can be shown 
[215] that the average elastic response of the polymer is completely unaffected by the 
disorder, in the sense that the average free energy profile for a polymer of length t, 
fixed at the origin, is 

7x2 (4.49) {~(x, t) - ~ (0 ,  t)) - 2t 

Since the transverse displacement of the endpoint from 0 to x stretches the polymer, 
to leading order, by the amount x2/2t, equation (4.49) is simply a manifestation of 
Hookes law with the line tension 3' of the pure system. This is a highly non-trivial 
result, which has its roots in the statistical translational invariance of the disorder 
potential, i.e. the fact that ~' and ~/ in equation (4.5) have the same correlation 
functions; statistical translational invariance, when regarded as a symmetry prop- 
erty, has powerful consequences for a large class of disordered systems [216]. The 
simplicity of  the average free energy (4.49) notwithstanding, the actual response of a 
polymer in a single realization of randomness is dominated by rare, large fluctua- 
tions drawn from a non-trivial power law distribution [217]. 

While the line tension remains unrenormalized, the temperature T does no t - -  
from equation (4.45) we see that T ~ u, and hence, according to the scaling 
transformation (Y64), temperature is driven to zero under renormalization, provided 
z < 2; the low temperature (strong coupling) phase of the directed polymer is 
governed by a zero-temperature fixed point [154]. This is the reason for the 
equivalence of zero and finite temperature scaling properties alluded to previously. 
The equivalence may break down if the translational invariance of the disorder 
potential is broken, as is the case in the situations discussed in the following section. 

4.6. Inhomogeneous growth 
In this section we shall concern ourselves with situations where the translational 

invariance parallel to the interface (in the substrate plane) is broken due to the 
presence of  an external, position-dependent contribution to the local growth rate. 
There is no principal difficulty in studying this problem in general dimensionalities; 
however, since almost all studies so far have addressed the 1D case, we will specialize 
to d = 1 from the outset. Consider then the following generalization of the KPZ 
equation: 

Oh 
- uVZh + 2 (Vh)2 -t- ~l(x, t) + V(x). (4.50) 

Ot 

We will discuss two types of growth rate inhomogeneities V(x). In the first case (the 
single defect case), V(x) is localized in a small spatial region and can be modelled, in 
the continuum limit, by a 6-function: 

V ( x )  = Vo~(x  - xo) .  (4.51) 

Here, x0 may be located either in the bulk [218 221], or at the boundary of the 
system; the latter possibility is realized in the dynamics of an interface of finite lateral 
extent L in which growth rate inhomogeneities arise at x - 0 and x = L due to some 
set of  'free' boundary conditions [162, 179]. Here the main interest is in morpholo- 
gicalphase transitions that may occur, by a mechanism to be explained shortly, as the 
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strength V0 of  the inhomogeneity is varied. In the second case (many defects), V(x) is 
a random function with short-ranged correlations. Not  surprisingly, as will be shown 
in section 4.6.3, this turns out to severely modify the roughness of the interface. 
Finally, in section 4.6.4 we consider a different type of  boundary effect, which occurs 
in stationary non-equil ibrium interfaces anchored at one end [222]. 

4.6.1. Morphological transitions 
The basic mechanism whereby a growth rate inhomogeneity o f  the type (4.51) 

can change the large-scale morphology of  the interface is easily accounted for [218] 
(figure 19). Consider an interface with a growth rate that is a symmetric function of 
inclination, v (Vh)=  v(0)+ (A/2)(Vh) 2, and suppose for concreteness that X > 0. 
This implies that the interface can increase its growth rate by assuming a nonzero tilt. 
Consequently, a macroscopic hill can form in response to a sufficiently large, positive 
growth rate inhomogeneity V0 > 0: since the sides of  the hill are tilted by some 
amount +u relative to the reference line, the hill grows faster than the planar 
interface and thus allows the system to accommodate the external bias. This is not 
possible if the growth rate is reduced at x0, i.e. if V0 < 0, since the planar interface 
already propagates as slowly as possible and cannot slow down by tilting; a defect 
with V0 < 0 does not affect the large-scale morphology. Clearly the roles of  positive 
(V0 > 0) and negative (V0 < 0) inhomogeneities are reversed if X < 0. 

It  is natural to regard the magnitude of the induced tilt u as an order parameter 
of the transition, and to write 

- ~  IVo- v ; [ ,  Vo -,  v; (4.52) 

to define an order parameter exponent/3 (note that possibly V~ = 0). The transition 
is associated with a diverging correlation length, which can be identified as follows. 

v v[ 
U :~ U 

h, 
~v0 

h, 

X X 

(a) (b) 

Figure 19. Illustration of the mechanism for tilting transitions induced by a localized growth 
rate inhomogeneity. The growth rate v is assumed to be an increasing function of 
inclination u. (a) If V0 > 0, the interface can increase its growth rate by forming a 
macroscopic hill; the slopes of the hillsides are indicated by dots in the v--u graph. (b) 
If V0 < 0, no transition occurs because the flat interface is already moving as slowly 
as possible. 
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In the tilted state, we consider the interface fluctuations about the average profile 
ho(x, t) = ux + v(u)t, i.e. setting h(x, t) = ho(x, t) + h(x, t) one has 

-- /]V2]~-~- .~UV/I @ ~ (V]7) 2 -t- ~(X, t) -~- g(X). (4.53) 
Ot 

The essential feature is the linear term XuV/~ induced by the tilt. This term describes a 
drift of  fluctuations with velocity c = - A u .  In contrast to the translationally 
invariant situation discussed subsequent to equation (4.3), here the drift term cannot 
be eliminated by going to a suitably chosen moving frame, since such a transforma- 
tion would not be compatible with the inhomogeneity V(x). Instead, the drift is 
expected to play an essential role in the dynamics [162] (for a related situation see 
section 4.6.4). In view of the dimensional arguments employed in section 4.1, the 
primary effect of  the additional term is that it provides us with a third dimensionful 
coefficient, the drift velocity c, that can be used together with the invariants & and 
D/u  to construct a time-independent length scale 

l(u) = A2(D/u)]c] -2 = (D/u) lu ]  -2, (4.54) 

which diverges upon approaching the transition. Introducing the correlation length 
exponent ~b through 

l ~  IV0 - V~I-L (4.55) 

it follows that ~ = 2ft. 
It is informative to contrast the quadratic divergence of equation (4.54) with the 

corresponding behaviour in a 'mean field' approximation [218, 162] to equation 
(4.50), in which the noise term ~(x, t) is neglected. In the absence of noise the 
invariant quantities of the equation are A, the drift velocity c and the coefficient u of 
the Laplacian term. Since the dimension of u is [u] = [x]2/[t], a length scale can be 
constructed from u and c, 

/MF(U) --- u/Icl-- (-/l l)lu1-1, (4.56) 

which diverges linearly in 1/ju[. This indicates that the presence of noise changes the 
universal features of  the transition. To clarify these issues we now turn to the 
interpretation of inhomogeneous growth in the directed polymer representation. 

4.6.2. Delocalization and unbinding 
To arrive, via the mapping described in section 4.5, at the generalized KPZ 

equation (4.50), we have to start from the energy expression 

{2 , ,  + 

which contains an additional potential term V acting on the polymer. Since V is 
independent of the 'time' coordinate t, a localized inhomogeneity (4.51) corresponds 
to a defect line that traverses the random energy landscape parallel to the t axis 
(figure 18). Noting that ~ < 0 in the KPZ equation (4.45) for the polymer free 
energy, it becomes evident why a phase transition can be expected to occur for 
V0 < 0. The defect potential being attractive, it competes with the roughening 
tendency of the bulk disorder r /and may, if sufficiently strong, bind the transverse 
position of the polymer close to x0; in the bound phase the restricted free energy 
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J~(x, t) increases linearly with the distance from the defect, corresponding to a 
macroscopically tilted interface. Thus the morphological transitions induced by the 
growth rate inhomogeneity re-emerge in the guise of  unbinding or delocalization 
transitions of  a kind that has been much studied in the context of thermal and 
disorder-induced fluctuations of equilibrium interfaces [213]. 

At this point it becomes important to distinguish between the two possible 
locations of the defect position x0 in the bulk or at the boundary of the system, 
respectively. When the defect resides in the bulk, the defect potential V(x) is 
symmetric in x -  x0. This property is inherited by the positional probability 
distribution of the polymer. Consequently, the average position will be equal to x0 
irrespective of  whether the polymer is bound to the defect or not; in order to observe 
the transition, the width (second moment) of the probability distribution has to be 
monitored. Following Forgacs, Lipowsky and Nieuwenhuizen [213] this case will be 
referred to as a delocalization transition. In contrast, if the defect is located at the 
boundary of the system (x0 = 0, say), the polymer is subject to an additional 'hard 
wall' potential which arises from the constraint that y(s) 2 0 for all paths (this 
corresponds [179] to a free boundary condition for the interface). Therefore the total 
defect potential has a repulsive hard core and an attractive short-range part of 
strength V0. In this case the liberation of  the polymer from the defect will result in a 
divergence of the average distance from the boundary, a phenomenon known as [213] 
unbinding. In both cases the 'liberation' o f  the polymer from the defect is expressed in 
the divergence of the correlation length l, which measures the typical distance of  the 
polymer from the defect; for this reason the exponent ~ in equation (4.55) is 
occasionally referred to as the liberation exponent. 

To appreciate why the two situations may lead to qualitatively different 
behaviours, it is useful to first consider the 'mean field' version of  the problem in 
which ~ = 0 in equations (4.50) and (4.57). Note that this simplification has a very 
natural interpretation in the directed polymer language. In the absence of  disorder, 
equation (4.57) reduces to the energy of  a thermally excited line (or 1D interface) 
subject to an external potential, a class of  problems much studied in diverse contexts 
ranging from wetting phenomena [213] to the adhesion and unbinding of fluid 
membranes [111]. 

In the thermal case the study of  the delocalization or unbinding of a line reduces 
to an exercise in elementary quantum mechanics. Taking the limit t--* ec, the 
diffusion equation (4.43) for the restricted partition function ~(x ,  t) (derived from 
the Hamiltonian (4.57)) becomes a stationary Schr6dinger equation 

I + V| ~ =J'o~, (4.58) 
(kBT) 2 ] 

V 2 
27 3 

where J0 denotes the free energy per unit length. The transition is associated with the 
disappearance of the last bound state of the Schr6dinger problem and the 
concomitant vanishing of the eigenvalue f0. Outside the range of V such a bound 
state decays exponentially on a scale l - kB T/Z( - 23f0) 1/2, hence the order parameter 
u = Oo~/Ox is u = kBT/ l  in accordance with equation (4.56) (note that from 
equation (4.45) we have u/IA I = kBT/2). From the well-known fact that a sym- 
metric, attractive potential always possesses at least one bound state in one 
dimension, we conclude that the delocalization transition occurs at zero potential 
strength, V~)= 0, while the threshold for unbinding is expected to be non-zero. 



D
ow

nl
oa

de
d 

B
y:

 [T
IB

-L
iz

en
ze

n 
- T

IB
 L

ic
en

ce
 A

ffa
irs

] A
t: 

13
:0

5 
10

 M
ar

ch
 2

00
8 

204 J. K r u g  

V~ 

%- 
s 

s 

s S 

s [ 
Vc VL 

Figure 20. Phase diagram for a directed polymer confined by two attractive walls, as 
obtained from the exact solution of the ASEP with open boundary conditions [179]. 
VL and VR denote the (negative) contact potentials at the left and right walls. The 
full bold lines indicate continuous unbinding transitions, while the broken bold line 
represents a first-order transition between two bound phases. 

Specifically, if the potential is modelled by a square well of  width a and depth - V0, 
one obtains 

l - -  l cBT _ ( k B T )  2 (V~o _ Vo)_ l ,  (4.59) 
u "ya 

with V~ = 0 for delocalization and V~--- (kBT)2(rc/2a)2/27 < 0 for unbinding. 
Comparing with equation (4.52) we see that the order parameter exponent/3 = 1 in 
the thermal case, both for delocalization and unbinding. 

Delocalization and unbinding transitions in the presence of  quenched bulk 
disorder constitute a highly nontrivial class of problems that has been intensely 
studied in the years following the pioneering work of Kardar [223]. It was pointed 
out only very recently [179] that the particular problem of zero-temperature 
disorder-induced unbinding affords an e x a c t  solution in one transverse dimension, 
d = 1. The solution is obtained in a somewhat indirect fashion, through a sequence 
of mappings that take a zero temperature, discrete directed polymer problem to a 
growth model (the single step model briefly discussed at the end of  section 4.3) and 
further to a version of the asymmetric simple exclusion model (ASEP, see section 
4.3) with open boundaries originally introduced by Krug [162]. The ASEP, in turn, 
was solved exactly by Derrida, Evans, Hakim and Pasquier [163] and independently 
by Schiitz and Domany [164]. 

The main features of the unbinding transition that emerge from the exact 
solution are as follows (see also figure 20). The transition occurs at a finite value 
of the binding potential, and the order parameter exponent in equation (4.52) is 
/3 = 1 as in the thermal case (in fact the entire phase diagram of the model is 
reproduced e x a c t l y  by the mean-field/thermal approximation, for reasons that are 
not completely understood). The relation (4.54) would then suggest that the 
liberation exponent ~ defined by equation (4.55) should take the value ~ = 2, 
different from the thermal result ~b = 1 (see equation (4.59)). This was already 
predicted by Kardar [223], and is explicitly confirmed by the exact solution [179]. 

While early numerical studies [223-225] suggested that disorder-induced deloca- 
lization may be rather similar to unbinding, recent analytic and numerical work 
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[226 229] seems to converge (some controversy remains, however; see [230]) on the 
view that the two problems are in fact fundamentally different. First, as in the 
thermal case, delocalization occurs at zero potential strength, V~ = 0. Second, and 
more importantly, the values of the exponents/3 and @ are formally infinite, in the 
sense that the power law divergence (4.55) is replaced by an essential singularity 

1 ~ exp ( -  C~ Vo), (4.60) 

with C > 0, for V0 < 0; the relation (4.54) is nevertheless satisfied [228]. Needless to 
say, the direct numerical verification of equation (4.60) is exceedingly difficult [226, 
227]. 

4.6.3. Many defects 
Much of the recent work on the disorder-induced delocalization of directed 

polymers has been motivated by the application to flux lines in dirty high- 
temperature superconductors [231,227]. There, the localizing potential is provided 
by a columnar defect which may either be present in the material in the form of a 
screw dislocation, or may be deliberately created by ion irradiation, with the intent 
of increasing the critical current through enhanced pinning. Localization at the 
defect is counteracted by thermal fluctuations (i.e. entropy) as well as by bulk 
disorder that appears in the form of point defects such as oxygen vacancies. 

In this context it is very natural to consider the behaviour of a flux line in an 
array of many columnar defects with randomly distributed pinning strengths. Within 
the continuum theory defined by equation (4.57), this can be modelled by choosing 
the potential V as a Gaussian random variable with zero mean and short ranged 
correlations: 

{ V(x) V(x')) = V26(x - x'). (4.61) 

In terms of interfaces described by the inhomogeneous KPZ equation (4.50), this 
corresponds to a growth rate with a time-independent, spatially random component 
(not to be confused with the quenched, h-dependent noise that appears in the study 
of interface displacement in random media [81-84]). Physically, such disorder could 
represent [232], for example, a random array of screw dislocations which locally 
enhance the growth rate [233]. It also arises in the context of phase-disordered 
interfaces, where the h variable is subjected to a periodic potential with quenched 
random phase shifts between different points in the lateral x direction [234, 235]. In 
the following discussion we will however use the directed polymer language, which 
provides the most natural framework for analytic arguments. 

As it stands, the KPZ equation (4.50) with random inhomogeneities poses a 
rather formidable problem, the directed polymer being subject to the conflicting 
influences of point disorder, columnar defects and thermal fluctuations. The problem 
without point disorder (r 1 - 0) has a rich history [212, 236], with applications ranging 
from the conformation of (undirected!) Gaussian polymers in random media [237, 
238] to the evolution of biological species [239]; the full problem (~1 ¢ 0) has also 
been studied in the context of driven diffusion with disorder [240]. Here, we shall 
focus on two special cases, (i) the purely columnar problem (r/= 0) at finite 
temperature, and (ii) the zero temperature problem in the presence of both columnar 
and point disorder. We will argue that the thermal fluctuations and the point 
disorder play very similar roles in counteracting the localizing tendency of the 
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columnar defects in the two cases, and can in fact be treated on the same footing 
[241]. 

To avoid some subtleties associated with the continuum formulation of the 
problem, we envision, for the purposes of the present discussion, a suitable 
discretization. For example, in the case of  directed paths on the square lattice with 
the transverse displacement restricted to at most one lattice spacing per time step, the 
discrete version of the diffusion equation (4.43) for the restricted partit ion function 
reads [212, 241] 

Z(x, t + 1) = exp {-[r/(x, t) + V(x)]/kBT}[Z(x, t) + Z(x - 1, t) + Z(x + 1, t)]. 

(4.62) 

In the zero-temperature limit this reduces to a recursion for the ground state energies 
E(x, t) = -limr__+0 kBT ln Z(x, t). 

The competition between the localizing defect and the delocalizing influence of 
thermal or point disorder fluctuations has already been emphasized as the driving 
force behind delocalization and unbinding transitions. In the presence of a random 
array of  columnar defects, this competit ion extends to all scales, thereby dramati- 
cally enhancing the transverse wandering of  the polymer. To see this, we first need to 
identify the 'optimal' disorder regions to which the polymer is attracted. In the 
presence of either point disorder or thermal fluctuations, the (free) energy cost per 
unit length required to localize the polymer in a region of transverse extent 1 is of 
order l -r,  where (for d = 1 transverse dimension) 7---- 1 for point disorder, and 
~- = 2 in the thermal case (see equations (4.46) and (4.47)). Due to the confinement 
energy, the polymer is primarily attracted to wide regions in which all columnar 
defect energies are lower than average; naturally, such regions are rare, and to reach 
them large transverse fluctuations are necessary. 

For  a quantitative estimate consider, for example, a binary distribution of 
columnar defect energies, V = - V0 with probability p and V = 0 with probability 
1 - p .  The probability for finding l subsequent attractive defects (which have 
V = -V0) is then pl, and the (free) energy per unit length for a polymer residing 
in such a region can be estimated as -V0 + e, with e N 1/U. This translates into a 
'density of states' 

( Ilnp' ) (4.63) p(e) ~ p l  ,.~ exp 0/~ , 

and a similar form is obtained for continuous, bounded disorder distributions. A 
standard variable range hopping argument [212, 241] applied to equation (4.63) then 
shows that the transverse displacement increases as 

t 
6x(t) (ln t) 1+~' (4.64) 

in reasonable agreement with simulations [212, 241] (see figure 21). In d transverse 
dimensions the exponent of the logarithmic factor in equation (4.64) is 1 + T/d. The 
result 8x ~ t/(ln 03 for the thermal case in one dimension has been rigorously 
confirmed by Sznitman [242]. 

In case (ii), point and columnar defects at zero temperature, the result (4.64) has 
the surprising, and somewhat counterintuitive, feature that the displacement due to 
the combined effect of  both types of  defects is larger than that produced by any of 
the two types alone: the pure point problem has the standard KPZ behaviour 
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I I O  

I n  t 

Figure 21. Measures of the transverse wandering of a finite temperature directed polymer in 
1 + 1 dimensions, subject to binary columnar disorder, but no point disorder (~! = 0 
in equation (4.62)). The upper and the lower curves show ([x(t)2]} 1/2 and ([x(t)]2) 1/2, 
respectively, divided by the path length t. The broken line indicates the prediction 
(4.64) for the logarithmic prefactor, with ~- -~ 2 in the entropic case. The data were 
obtained by averaging over 104 realizations of disorder [212]. 

gx ~ t 1/z = t2/3, while purely columnar defects at zero temperature, with a uniform 
distribution of  defect energies, lead to a wandering as 8x ~ t 1/2 [212, 238]. 

The behaviour of the transverse wandering as a function of temperature and the 
ratio D~ V~ of point to columnar disorder is summarized in figure 22. In the bulk of 
the diagram, where T > 0 and D > 0, one expects asymptotically the point disorder 
to dominate over thermal fluctuations, as the confinement length 1 --+ e~ (compare to 
section 4.3). It  should be noted that the point T = 0, D - 0 is nonuniversal, in the 
sense that the scaling depends on the shape of  the columnar disorder probabil i ty 
distribution [212, 238]. The rest of  the diagram is universal for all distributions of 
finite support. For rapidly decaying, unbounded distributions (e.g. Gaussian or 
exponential) the wandering is still subballistic, 5x ~ t /0n t) u, but the value of  # 
differs from that in equation (4.64) [212]. The effect of  slowly decaying (power law) 
distributions of columnar disorder has so far been studied only in the absence of 
both thermal fluctuations and point disorder, where it typically leads to ballistic 
wandering, ~x ~ t, and non-extensive behaviour of the ground state energy [212, 
238]. 

Returning to the kinetic roughening of  interfaces described by the KPZ equation 
(4.50) with random inhomogeneities, the main interest is in the temporal  behaviour 
of the interface width W, rather than the correlation length ~. Since typical interface 
configurations show a hill-and-valley morphology with a lateral peak-to-peak 
distance ~, one has simply 

W ~ ~ ~ t/(ln t) 1+~. (4.65) 

This has been confirmed in simulations of  phase-disordered solid-on-solid models 
[234, 235]. 
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Too 

8x ~ tl(ln 0 3 
8x ~ t/an 0 2 

t l /2 

8 X  "~ t 2/3 

5 

OO 

D/Vo 2 

Figure 22. Phase diagram for the 1 + 1 dimensional directed polymer subject to point 
disorder, columnar disorder and thermal fluctuations. In the bulk of the diagram the 
transverse wandering behaves as 8x ~ t/0n t) 2. Differing behaviours are observed 
only at D/V~ 0 (pure columnar disorder) and D/V 2 = oo (pure point disorder). In 
the former case the point T = 0 is special. 

4.6.4. Anchored interfaces 
Here we describe a type of boundary effect that occurs for certain stationary non- 

equilibrium interfaces. Consider an interface displacement process characterized by a 
growth velocity v(Vh) that changes sign at some orientation Uc > 0, V(Uc) = 0. Let the 
height variable h(x, t) be defined on the half-axis x > 0, with an 'anchoring' 
boundary condition 

h(O, t) = 0 (4.66) 

at all times. I f  in addition 
c - v'(Uc) < 0, (4.67) 

then the interface will be driven to a stationary, non-moving state with average 
position (h(x, t)) = UcX. Such interfaces arise as domain walls in Toom's  cellular 
automaton, a nonequil ibrium 2D Ising model [222, 243]. Another rather natural 
realization is the surface of a (1 + 1)-dimensional sandpile, which is kept in steady 
state by the balance between a continuous deposition flux and the outflow at the 
anchored boundary [244] (figure 23); in that case Uc defines the angle of repose. 

The fluctuations/~(x, t) = h(x, t) - u~x around the average profile are described 
by the KPZ-type equation 

O/~ uV2/~ + cV/~ + (V/~) 2 + (V/~) 3 + + rl, (4.68) 
Ot 

where A - v"(uo) and A' = v'(Uc), supplemented with the boundary condition (4.66). 
As in section 4.6.1, the lack of translational invariance implies that the drift term 
cVh cannot be removed by a tilt transformation. Owing to the stability condition 
(4.67), the drift transports fluctuations in the positive x direction, away from the 
anchoring point. This provides a mechanism for translating temporal into spatial 
fluctuations. 
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h 
s 

0 x 

Figure 23. Schematic of an anchored interface, such as the surface of a semi-infinite 
sandpile. The stationary profile (bold line) is stable against upward or downward 
tilting (broken lines). 

Let us estimate the stationary fluctuation amplitude at some point x > 0. At 
x = 0 the fluctuations are completely suppressed due to equation (4.66). At x > 0 
they have travelled a time t ~ x/c,  during which they have grown according to the 
KPZ dynamics (4.68). Thus their magnitude is of order t l / 3 ~  x 1/3 or, more 
precisely, using equation (4.15) we expect [222] 

([h(x, t) - (h(x, t))] 2) ~ [(D/Zu)2[Ax/c[] 2/3, (4.69) 

provided A ¢ 0 in the expansion (4.68). I f  for symmetry reasons A -  0, then the 
fluctuations are governed by the cubic term in equation (4.68), which is marginally 
irrelevant in d = 1 (compare to section 3.3). In this case the right hand side of 
equation (4.69) is of the order of [x(lnx)l/211/2 [245, 246]. These predictions have 
been confirmed by simulations of Toom interfaces [222] and sandpile models [244]; 
for sandpiles with two open boundaries additional effects occur due to the 
interaction between the two anchored interfaces [247]. 

5. The role of  surface diffusion 
Despite the challenging unresolved problems posed by the KPZ theory, over the 

last few years the attention of the kinetic roughening community has turned 
increasingly towards a class of surface growth processes that are not described by 
the KPZ equation. The shift of focus is motivated mainly by a critical reassessment 
[20] of the physical relevance of the KPZ nonlinearity in deposition processes, which 
would appear to provide the most natural realization of kinetic roughening 
phenomena. 

We have emphasized in section 4 that the origin of the (kinematic) KPZ 
nonlinearity lies in a nontrivial inclination dependence of the growth rate v, 
measured in the vertical (h) direction (see equation (4.3)). However, as was first 
pointed out by Krug [129], in the most simplistic model of crystal growth from the 
vapour (the Wilson-Frenkel model; see [128] and [88]), in which every atom 
impinging on the surface is immediately incorporated into a perfect crystal lattice, 
the growth rate is manifestly independent of inclination. In suitable units it can be 
written as 

v = F/p ,  (5.1) 

where F denotes the deposition flux and p is the deposit density (equivalently, l i p  is 
the atomic volume); in the situation just described, both are independent of surface 
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orientation. In the framework of the derivation of the isotropic continuum 
equation (3.6) in section 3.1, this result may be regarded as a consequence of 
crystalline anisotropy, which enforces an orientation dependence of the normal 
surface velocity vn that precisely cancels the geometric factor [1 + (Vh)2] 1/2 in 
equation (3.4). 

Equation (5.1) is useful in identifying the mechanisms by which the simplistic 
Wilson-Frenkel picture fails in real deposition processes. At low temperatures, the 
mobility on the surface is insufficient for every deposited atom to reach a lattice site 
before the arrival of other atoms, and a finite concentration of vacancies and other 
defects results. This implies a shift in the deposit density which, as is well known for 
the extreme case of ballistic deposition [31] (see also section 2.1), is a function of the 
surface inclination relative to the deposition beam. On an inclined surface one has a 
higher concentration of steps, at which overhangs and, eventually, overgrown 
vacancies can form; consequently the density p decreases, and, according to equation 
(5.1), the growth rate increases with the tilt [129]. 

At high temperatures there is a non-negligible probability for a deposited atom to 
redesorb from the surface; the sticking coefficient is less than unity. As the 
desorption probability depends on the local bonding environment, the desorption 
flux varies with the step density, and hence with surface inclination. To account for 
desorption, the total deposition flux in equation (5.1) should be replaced by a net flux 
F - Fdesorp(Vh), which, again, induces an inclination dependence in v. This mechan- 
ism is also evident in the celebrated Bur ton-Cabrer~Frank (BCF) expression for the 
growth rate of a vicinal surface [88, 233] (see also section 5.2.1): 

VBCF = 2F[(Ds~-)l/2/l] tanh [l/2(Ds~-)l/2]. (5.2) 

Here, l = IVh1-1 is the step distance, Ds is the surface diffusion coefficient, and ~- is 
the inverse desorption rate. In the limit T--+ oo (no desorption) equation (5.2) 
reduces to equation (5.1), vBcv ~ F. 

In the context of simple stochastic growth models, the 'desorption' mechanism 
may be viewed as being responsible for the inclination dependence of the growth rate 
for the class of restricted solid-on-solid (RSOS) models introduced by Meakin et al. 
[26], Kim and Kosterlitz [183] and others [136, 248]. In these models deposition 
attempts are accepted only if certain conditions on the local height configuration are 
met; obviously this can be interpreted in terms of a zero sticking coefficient, or 
immediate redesorption, for some local environments. 

The conclusion is that vapour desposition processes do fall into the KPZ 
universality class; however, the two underlying mechanisms apply mainly at either 
high or low temperatures. It turns out that technologically relevant deposition 
methods-- in particular molecular beam epitaxy (MBE)--are often operated in the 
temperature window where both mechanisms, desorption as well as defect formation, 
can be neglected. This is perhaps not entirely surprising, since the practitioner would 
attempt to optimize the process towards growing perfect crystals (no defects) at 
maximal yield (no desorption). Empirically, the absence of the two mechanisms is 
demonstrated directly by the observed independence of the growth rate on miscut 
angle (that is, inclination), for example in the MBE of silicon [88]. 

Given the widespread interest in MBE applications, and availability of MBE 
growth chambers as well as sophisticated experimental techniques for the character- 
ization of the growing surface, it is obviously desirable to bring the concepts of 
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kinetic roughening to bear upon the MBE process. This has prompted a large 
amount of theoretical work devoted to the limiting case, termed ideal M B E  by Lai 
and Das Sarma [121], of deposition in the complete absence of both desorption and 
defect formation. The fundamental interest in this class of processes arises from the 
hope of  finding new, non-trivial universality classes-- distinct from the KPZ class 
which is excluded by construction. As we shall see in this section, the removal of  the 
dominant KPZ term opens up a Pandora's box of possible behaviours. Moreover, 
the assignment of a universality class (represented by a specific large-scale equation 
of motion) to a given microscopic model turns out to be a rather subtle problem, 
with seemingly minor details playing a decisive role in a way unprecedented by the 
experience with KPZ-type models. 

Ideal MBE. In the absence of desorption all relaxation processes on the surface 
conserve the mass of  the growing film. The assumption of perfect crystalline 
structure transforms mass conservation into volume (or height) conservation. Thus, 
apart from the deposition flux, which is by definition uncorrelated with the surface 
configuration, ideal MBE is a conservative growth process that can be described by a 
driven continuity equation 

Oh 
Ot + V • J = F, (5.3) 

where F includes the average deposition flux as well as shot noise fluctuations. 
Clearly, the question of  universality classes reduces to a classification of the possible 
forms for the surface diffusion current J. 

We remarked already in section 3.1 that, in addition to the classical equilibrium 
surface diffusion current, two types of non-equilibrium contributions generically 
occur. Here, we re-emphasize that these contributions are fundamentally different 
from the KPZ nonlinearity, in the following sense. The KPZ term is obtained from a 
purely kinematic relation, equation (3.4), and arises physically simply because the 
interface is moving on average. In contrast, for the MBE equation (5.3) the mean 
motion is irrelevant, because it does not couple to the surface fluctuations (compare to 
section 4.3). Instead, the non-equilibrium contributions to the current J are of 
dynamical origin, reflecting the perturbation of the surface diffusion processes 
imposed by the external deposition flux. Consequently, the microscopic interpreta- 
tion of these contributions requires considerable insight into the behaviour of 
adatoms on the surface. 

The purpose of this section is to review our present theoretical understanding of 
non-equilibrium effects in ideal MBE. The two types of non-equilibrium contribu- 
t ions- incl inat ion-dependent currents and inclination-dependent chemical poten- 
t ia l s -a re  discussed separately in sections 5.2 and 5.4. A central theme is provided 
by the idea that the main effect of  the deposition flux is to remove the constraints 
imposed on equilibrium surface diffusion by the requirement of detailed balance in 
microscopic processes [249]. This view is supported by the fact that closely analogous 
non-equilibrium effects arise if a surface is driven out of equilibrium by some 
mechanism other than growth, provided detailed balance is broken [92, 250, 251]. 
A separate section 5.3 is devoted to the surface instabilities which arise generically as 
a consequence of growth-induced currents. In section 5.5 the emerging picture is 
summarized, and the experimental situation is evaluated in section 5.6. To set the 
stage, we begin in section 5.1 with a survey of microscopic models. 
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5.1. A survey of models" for molecular beam epitaxy 
5.1.1. Limited mobility models 

The first example of a growth model that conforms to the 'ideal MBE' 
restrictions of no desorption and no defect formation was proposed by Family in 
1986 [127]; we have described the model in section 3.4. Although the title of Family's 
paper features the term 'surface diffusion', the basic assumption of the model- - that  
the motion of adatoms is biased in the direction of decreasing absolute height is 
hardly realistic in the context of  MBE (unless one assumes that the adatom dynamics 
is completely dominated by transient mobility and downward funnelling effects, 
which may well be true on metal surfaces at low temperatures [99, 252, 253]). 
Recognizing this weakness, Wolf  and Villain [101] and Das Sarma and Tamborenea 
[132] independently proposed variants of Family's model in which the preferred 
incorporation sites for the adatom are determined by the local bonding environment; 
roughly speaking, the function Kx introduced in section 3.4, which the mobile 
adatom seeks to minimize, is identified with the negative coordination number. 

In fact the two models introduced by Wolf and Villain [101] andby  Das Sarma 
and Tamborenea [132] differ slightly in their microscopic rules. For later reference, 
we make the effort to precisely define three versions of these models, the first two of  
which (DT1 and DT2) are probably close to the model actually simulated by Das 
Sarma and Tamborenea, while the third (WV) is the model proposed by Wolf  and 
Villain. Bizarre as it may seem at this point, we will argue in section 5.2.3 that all 
three models belong to different universality classes asymptotical ly--a striking 
example of  the sensitive dependence on microscopic details alluded to above. 

To keep matters simple, we restrict the discussion to 1D surfaces, and allow the 
freshly deposited atom to search for an incorporation site only among the nearest 
neighbours of the deposition site. As in section 3.4, the surface configuration is 
described by a set of integer height variables hi defined on the 1D substrate lattice 
i = 1, . . . ,  L (with periodic boundary conditions, say). The bonding environment at 
each site i is characterized by the lateral coordination number ki (that is, the number 
of lateral nearest neighbour bonds) that an additional atom would have i f  it were 
deposited at i: 

0, 

ki = 1, 

2, 

hi >_ hi+l and hi >_ hi l, 

hi 1 <_ hi < hi+l or hi 1 > hi ~> hi+l, 

hi < hi 1 and hi < hi+l 

(5.4) 

(see figure 24). In one deposition step, a site i is chosen at random and the 
coordination numbers (ki- l ,  ki, ki+l)  are examined. 

In the DTmodels,  sites with ki = 1 or 2 are permanent traps; the freshly deposited 
atom is moved to one of the neighbouring sites i 4- 1 only if ki = 0 and ki- i  > 0 or 
ki+l > 0. The atom is moved to the right if (ki 1, ki+l) = (0, 1) or (0, 2), and to the 
left if (k i -b ki+l) = (1, 0) or (2, 0). In a symmetric environment, (ki ~, ki+~) = (1, 1) 
or (2, 2), a random choice is made to move the atom left or right with equal 
probability. The two versions DT1 and DT2 differ in their treatment of the cases 
(ki 1, ki+l) = (1, 2) and (2, 1). Rule DT1 treats them as symmetric configurations, i.e. 
one of the two neighbouring sites is chosen at random, while DT2 always moves the 
atom to the site with the largest value of ki, i.e. to the right for (ki_l,  ki+l)  --  (1, 2) 
and to the left for (ki-1, ki+l) = (2, 1). 
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ki-- 0 1 0 0 2 

Figure 24. Illustration of the lateral coordination number defined in equation (5.4). The 
shaded squares are virtual atoms about to be deposited onto the (bold) surface. 

The WV rule coincides with DT2 when ki ~-0; however, in addition atoms 
deposited on sites where k i -  1 are allowed to move, if they can increase the 
coordination number. The atom is moved to the right if (ki, ki+l) = (1, 2) and to 
the left if (ki-l, ki) - (2, 1); the symmetric case (ki-b ki, ki+l) = (2, 1, 2) cannot 
o c c u r .  

It is worthwhile to point out that in all three models (DT1, DT2 and WV) the 
height of  the incorporation site is always less or equal to that of  the deposition site, 
i.e. there are no 'uphill' jumps (this is no longer true if next nearest neighbour jumps 
are included). Naively, one might expect this asymmetry to give rise to a 'downhill ' 
non-equilibrium current, as discussed in section 3, and consequently place all models 
in the Edwards-Wilkinson universality class (see section 3.2). We will show in section 
5.2.2 why this simple-minded reasoning fails. 

The work of Wolf  and Villain [101] and Das Sarma and Tamborenea [132] was of  
great importance because it numerically demonstrated, for the first time, the 
possibility of scaling behaviour in vapour deposition processes that is distinct from 
the familiar Edwards-Wilkinson and KPZ universality classes. A confusing variety 
of related models have been subsequently proposed, with rules that are not always 
easy to decipher from the published description [121, 133, 25d~259]. 

An interesting variant was introduced recently by Kim, Park and Kim [260]. This 
model is a restricted solid-on-solid (RSOS) model in which a strict constraint on the 
absolute magnitude of nearest-neighbour height differences is enforced at all times. 
Since it is required, under the rules of ideal MBE, that every deposited atom be 
incorporated somewhere on the surface, such a constraint can be maintained only if 
the region around the deposition site in which the atom searches for an eligible 
incorporation site is unlimited. In the implementation o fK im et al. [260] the search is 
conducted in shells of ever increasing radius around the deposition site. 

The common feature of all these models (and the rationale for subsuming them 
under the 'limited mobility' heading) is that only freshly deposited atoms are 
regarded as mobile; once the preferred incorporation site has been chosen, according 
to some rule, in the neighbourhood of the deposition site, the deposited atom is 
placed there permanently. If, as is commonly done, the potential incorporation 
region is restricted to the nearest neighbours of  the deposition site, the adatom 
mobility is very limited indeed, and the model strongly overemphasizes the 
disordering influence of the shot noise in the atomic beam. Consequently, the surface 
morphology is extremely rough (figure 25). In a certain sense the limited mobility 
models do not allow for any true surface relaxation, since there is no dynamics when 
the beam is turned off. The crucial improvement afforded by the collective diffusion 
models, to be described next, addresses precisely this problem. 

These remarks make it clear that the limited mobility models have the status of  
toy models, rather than providing a (semi-)realistic description of MBE. We should 
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Figure 25. Surface configuration hi - (h) (upper curve) and local step size si = I h i + l  - hil 
(lower curve shows si - 300) generated by the DT1 rule. A total of l0 s monolayers 
were deposited on a substrate of L 500 lattice sites [112]. 

mention, however, that a realistic interpretation of these models does exist, in terms 
of a coarse-grained algorithm for island nucleation and growth, when the growth 
rule is supplemented by a noise-reduction algorithm [261]. Moreover, limited 
mobility models have been found to rather closely mimic the behaviour of  more 
realistic models, at least for limited time regimes, provided the diffusion and 
deposition rates of the latter are chosen appropriately [262-264]. 

5.1.2. Collective diffusion models 
An important number for characterizing epitaxial growth is the ratio of the 

surface diffusion constant Ds to the deposition flux F. To arrive at a properly 
nondimensional quantity, we express the flux in terms of the monolayer completion 
time rML and the diffusion constant through the atomic hopping rate R, as 

F = (aaTML) ~, Ds = a2R, (5.5) 

where a is the lattice constant, and d is the substrate dimension. The relevant number 
is then RrML. Note that Ds refers to the tracer diffusion of a single adatom on a 
perfect, flat surface without steps or islands; the collective diffusion constant, which 
determines the adatom mobil i ty in the macroscopic theory, equation (3.11), can be 
significantly reduced relative to Ds [265]. 

For an order of magnitude estimate, consider a metal at room temperature 
(300 K) and a growth rate of one monolayer per minute. The conventional Arrhenius 
ansatz for the hopping rate reads 

R = coo exp ~ E s / k B T ) ,  (5.6) 

with a vibrational attempt frequency coo ~ 2kBT/h  = 3.64 x 1013 s 1 (here h denotes 
Planck's constant). Using a typical value of Es ~ 0-5 eV for the surface diffusion 
activation barrier, yields R~-ML ~ 3 x 106. Thus, growth under MBE conditions must 



D
ow

nl
oa

de
d 

B
y:

 [T
IB

-L
iz

en
ze

n 
- T

IB
 L

ic
en

ce
 A

ffa
irs

] A
t: 

13
:0

5 
10

 M
ar

ch
 2

00
8 

Origins of  scale invariance in growth processes 215 

be viewed as a competition between two opposing processes--disordering through 
deposition and smoothening through diffusion--that occur on widely separated time 
scales. The models described in this section are designed to deal with this situation, at 
least in principle (in practice computational resources limit the values of R~-MI~ that 
can actually be achieved [261]). Accordingly, their dynamics consists of two sets of 
rules--a deposition rule and a diffusion ru le-- that  can be applied at widely different 
rates. 

5.1.2.1. Arrhenius dynamics. The most popular model in this class is the 
Arrhenius model first introduced by Gilmer and Bennema [266] in 1972, and 
extensively used by Vvedensky and co-workers several years prior to the advent of 
ideal MBE in the kinetic roughening community [267-269] (see also [270] and 
references therein). These studies were concerned mainly with reproducing 
experimentally observed features of the early stages of growth, such as the 
characteristic oscillations in the reflection high-energy electron diffraction 
(RHEED) signal (see section 5.4.4). 

The surface is modelled in the conventional solid-on-solid (SOS) fashion [128], its 
position being specified by a set of integer height variables hx above the substrate (x) 
lattice. Deposition occurs, at a rate F, by selecting a site x at random and letting 
hx --+ hx + 1; more involved deposition schemes, in which the kinetic energy of the 
depositing atom allows it to search, in the spirit o f  the limited mobility models, for a 
highly coordinated site in the neighbourhood of the deposition site, have also been 
implemented [269, 272]. 

The modelling of the diffusion step adheres to the Arrhenius form (5.6) for the 
hopping rate with, however, an activation barrier that depends on the local bonding 
environment. The barrier is assumed to be of the form 

E = Es +nEN, (5.7) 

where Es is the barrier on a fiat surface used in equation (5.6), and EN is a bonding 
contribution multiplying the number n of in-plane (lateral) nearest neighbour bonds 
of the adatom that attempt to jump. It is important to point out that the lateral 
coordination number n is different from the coordination numbers ki introduced in 
section 5.1.1, since it refers to an atom that is actually present on the surface, rather 
than to a 'virtual' atom about to be deposited. For  clarity we give here the definition 
of n for a 1D surface, in analogy with equation (5.4): 

0, hi > hi+l and hi > hi 1, 

ni = 1, hi-1 < hi ~ hi+l or hi-1 ~_ hi > hi+l, (5.8) 
2, hi < hi-1 and hi ~ hi+l 

(see figure 26). Since jumps of  isolated adatoms (n = 0) constitute the fastest process 
in the problem, they define the time scale and are accepted with unit probability 
(note that this implies a considerable speed-up, by a factor of exp (Es/kBT),  
compared to a molecular dynamics simulation that operates at the attempt frequency 
w0 in equation (5.6)). Jumps of  more highly coordinated atoms (n > 0) are executed 
with probability exp ( -nEN/kBT) .  It should be emphasized that, within the SOS 
model, the topmost atom above each substrate site is a potentially mobile adatom; 
even fully coordinated surface atoms, which have n = 2d on a d-dimensional surface, 
can move, albeit at a very small rate. 
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n i=  1 2 0 2 2 

Figure 26. Definition of the coordination numbers (5.8). The surface configuration is 
identical to that in figure 24, but here the relevant environments are those of (shaded) 
surface atoms that attempt to hop. 

When a jump occurs, the atom is removed (hx ~ h x -  1) and placed at a 
randomly chosen nearest neighbour site y (by ---+ hy + 1). At least in this basic, most 
commonly used version of the model, the jump rate is independent of the bonding 
environment at the final site; variants which abandon this simplifying (and, as we 
shall see, crucial) assumption have been considered recently [271-274]. Of particular 
interest are attempts to incorporate realistic barrier energies, obtained from semi- 
empirical potential calculations, into Arrhenius-type models [275]. A noteworthy 
feature of  the equilibrium (F = 0) dynamics of the basic Arrhenius model is a simple 
relation between the collective diffusion coefficient and the tracer surface diffusion 
coefficient on a flat surface, namely, their ratio is exp(-dEN/kBT) for a d- 
dimensional surface [276]. 

5.1.2.2. Detailed balance. It was first suggested by Siegert and Plischke [89, 277] 
(see also [278]) that, as a minimal criterion in the choice of surface diffusion rules 
in MBE models, one should require the surface to relax into a reasonable 
thermodynamic equilibrium state when the beam is turned off. This would ensure 
that the observed non-equilibrium effects are really associated with the external 
particle flux, rather than being artifacts of the surface diffusion dynamics. A 
sufficient condition is that the jump rates satisfy detailed balance with respect to 
some short-ranged energy function Yr. Explicitly, denoting by Rxy the jump rate 
from site x to a nearest-neighbour site y, the condition reads 

Rxy(H)/Ryx(H xy) = exp {-[2/g(H xy) _ ~ (H ) ] / kB  T }, (5.9) 

where H is a shorthand notation for a height configuration {hx} and H xy is the 
configuration obtained from H by moving an atom from x to y; for clarity, the 
dependence of the jump rates on the configuration has been indicated also. 

Simple energy expressions for a solid-on-solid surface are the Hamiltonians 

J~e = Kq ~ Ihx - hyl q, (5.10) 
<xy/ 

the sum running over nearest-neighbour pairs. The case q = 1 is known as the 
standard SOS model, and q = 2 is the discrete Gaussian model [279]. It is easily 
checked that the basic Arrhenius rules for surface diffusion satisfy detailed balance 
with respect to the standard SOS model (q = 1), provided the bonding contribution 
to the activation barrier is set to EN = 2Kl [276]. 

Of course, the requirement of detailed balance is fulfilled by a large variety of 
jump rates. Siegert and Plischke [89, 277] chose the 'Metropolis' function 
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Figure 27. The excess step edge energy (5.12) is the enegy difference between atom 2 and 
atom 1. 

Rxy = (1 + exp { [Jt~(H xs) _ J/~(H)]/kB T } ) -1, (5.11 ) 

and studied the effect of varying the power q in equation (5.10), with rather 
remarkable results (see section 5.2.2). One motivat ion for considering different 
values of q comes f rom the observation [280] that the Hamil tonian (5.10) mimics, 
for q > 1, the effect of  step edge barriers (also referred to as Schwoebel barriers [281, 
282]) which are known to exist on certain metal surfaces. Field-ion microscopy 
studies [283 285] show that atoms diffusing on a terrace can be reflected when 
attempting to jump down from the terrace edge. This is interpreted in terms of  an 
increased energy barrier for inter-layer diffusion, due to the reduced bonding 
experienced by the atom at an edge position (the energy landscape is illustrated in 
figure 30). 

To see that the Hamil tonian (5.10) incorporates this effect, consider adding an 
isolated adatom (n - 0) to a perfectly flat terrace (figure 27). From equation (5.10) 
the excess energy associated with the atom is 2dKq in d dimensions. Now imagine 
moving the atom to the cliff edge of a straight, monatomic step. At such an edge site 
the energy of  the atom is (2d - 1)Kq + (2q - 1)Kq, since one of  the neighbouring sites 
is now two lattice units lower, rather than one. Thus, the energy at a step edge is 
increased by an amount 

A ~  ,~ = (2 q - 2)Kq > 0 (5.12) 

for q > 1. I f  the jump rates are sensitive to the energy at the final site (this is true, e.g. 
for the rates (5.11)), then a diffusing atom approaching a step from above is likely to 
be reflected, rather than being incorporated at the step. This effect is one of  the main 
microscopic mechanisms that give rise to a nonequil ibrium surface diffusion current 
[20] and will be discussed in detail in section 5.2.1. 

In our opinion, the requirement o f  detailed balance for surface diffusion 
processes is a useful guiding principle that should be abandoned only if compelling 
reasons exist to do so; as we shall see below,matters are sufficiently complicated even 
without artifacts arising from ill-chosen diffusion dynamics. Nevertheless, a number 
of investigations of collective diffusion models of MBE have been carried out in 
which surface diffusion is governed by energetic considerations, but detailed balance 
is not (or only approximately) fulfilled. For example, in some studies of the 
Arrhenius model the slowest processes, involving the mot ion of atoms with n = 2 
in d -- 1, are completely suppressed for numerical convenience [132, 133]; this clearly 
violates detailed balance, though the effects may be small at low temperatures. 
Phillips and Chrzan [280] proposed a model of  crystal growth (in the presence of 
desorption) in which surface diffusion is governed by the Gaussian Hamiltonian, 
q = 2, but the system is updated in parallel, in violation of detailed balance [278]. 
Finally, in some recent papers [257, 286], Arrhenius-type dynamics is supplemented 



D
ow

nl
oa

de
d 

B
y:

 [T
IB

-L
iz

en
ze

n 
- T

IB
 L

ic
en

ce
 A

ffa
irs

] A
t: 

13
:0

5 
10

 M
ar

ch
 2

00
8 

218 J. Krug 

with an additional rule that prevents atoms from jumping up, a further source for 
possibly artificial, non-detailed balance behaviour. 

5.1.3. Beyond the solid-on-solid approximation 
All models described so far are of  the SOS type, wherein the crystal is viewed as 

an array of columns of  heights hx above the substrate lattice. The SOS restriction is 
quite natural in the context of ideal MBE, since it prevents, by construction, the 
formation of bulk defects. Nevertheless, it has been criticized as becoming 
unphysical in the presence of high surface steps [287, 288]. Indeed, since atoms 
move laterally, from the top of one column to another, irrespective of the height 
difference involved, the vertical motion is effectively instantaneous, as the time 
required for diffusion does not depend on the distance along the surface. This is 
hardly a problem for collective diffusion on 2D surfaces, especially for realistically 
large value of  RrML, since high steps are exceedingly rare in that case; but the 
criticism is clearly relevant in one dimension, where fluctuation effects can create 
large local height gradients, especially in the limited mobility models. Furthermore, 
it is of some interest to understand the crossover from ideal MBE to (presumably) 
KPZ scaling once overhangs are allowed to form through 'vertical' diffusion. 

Deposition models which include both surface diffusion and defect formation 
have long been considered in the optical thin film community [289] as well as in the 
detailed microscopic modelling of semiconductor MBE [290, 291]; however, in these 
works the emphasis was not on obtaining information about the statistical properties 
of the surface. The interplay between bulk defects and surface roughening was 
addressed by Pellegrini and Jullien [292], who investigated a model which combines 
Family's downward diffusion rule [127] (see section 3.4) with standard ballistic 
deposition [26], in an attempt to elucidate the strong coupling phase transition of the 
KPZ equation. Because of the significant computational demands, models which 
treat surface diffusion in a realistic and isotropic manner have been introduced only 
recently. 

Yan [287] studied two models on the square lattice (d = 1) which are essentially 
isotropic variants of the limited mobility models of section 5.1.1. Deposition occurs 
either in the manner of ballistic deposition (sticking at the first empty site with an 
occupied nearest neighbour; see section 2.1), or as in the SOS models (deposition 
onto the topmost atom in a lattice column). The freshly deposited atom then 
performs a number of random walk steps along the arclength of the surface, 
vertically or horizontally. The atom is trapped permanently at sites with two or 
more nearest neighbours, or else it stops walking when the number of steps has 
reached a prescribed threshold LRW. For both kinds of deposition rules a rather 
gradual crossover from an early time regime, possibly described by the noisy Mullins 
equation (see section 3.2), to KPZ-type scaling was observed, and it was confirmed 
that the deposit acquires a finite density of  defects 1 - p which approaches zero upon 
increasing LRW. 

The model of Kessler, Levine and Sander [288] is closer in spirit to the collective 
diffusion models of section 5.1.2, in the sense that any atom that is not fully 
coordinated may move, even if it was not recently deposited. A move occurs if a 
more highly coordinated site can be found within a box of length and height 
2LD + 1, where the 'diffusion length' LD is to be roughly identified with x/LRw in 
Yan's model. The model was studied on the square lattice, with a 'ballistic' 
deposition rule (see above). In this case the crossover from an early time regime, 



D
ow

nl
oa

de
d 

B
y:

 [T
IB

-L
iz

en
ze

n 
- T

IB
 L

ic
en

ce
 A

ffa
irs

] A
t: 

13
:0

5 
10

 M
ar

ch
 2

00
8 

Origins of  scale invariance in growth processes 219 

apparently characterized by Edwards-Wilkinson scaling (see section 3.2), to the 
KPZ regime is observed to be rather violent, with a rapid intermediate increase of  the 
width attributed to the sudden proliferation of bulk defects. 

A similar scenario was found by Das Sarma, Lanczycki, Ghaisas and Kim [293] 
in simulations on both 2D and 3D lattices (d = 1 and 2) with the 'ballistic' 
deposition rule. These authors employed an Arrhenius-type collective diffusion 
model in which the activation barrier is proportional to the total number of 
(horizontal and vertical) nearest neighbours of the atom. If the hopping attempt is 
accepted, the atom is moved to a randomly chosen nearest- or next-nearest- 
neighbour site, provided the landing site is at the surface, i.e. it possesses at least 
one occupied nearest neighbour. It should be noted that this rule includes the 
possibility of the deposit becoming disconnected--for example, if part of the deposit 
is connected to the rest only through a single, doubly coordinated atom which hops 
away; auxiliary rules have to be introduced to suppress such moves. The simulations 
show an early time 'epitaxial' regime consistent with Edwards-Wilkinson scaling 
( W  e-o t l /4 in d = 1 and W ~ (9(log t) in d = 2), followed by a rapid increase of  the 
width and a final power-law regime, which is clearly resolved (and consistent with 
KPZ behaviour) only at low temperatures, in d = 1. The crossover time (or 
thickness) at which epitaxial growth breaks down shows the expected, activated 
temperature dependence. By monitoring the deposit density, Das Sarma et al. 
verified that the crossover is associated with the onset of bulk defect formation. 
The defect density is rather small in the square lattice simulations, about 1% at 
700 K, but the 3D cubic lattice deposits turn out to be extremely porous, with a 
saturation defect density of about 2/3 which, moreover, appears to be temperature 
independent. 

Schimschak and Krug [262] recently carried out a detailed study of the defect- 
induced crossover to KPZ scaling in which both the pre-asymptotic 'epitaxial' 
regime, and the KPZ regime were clearly resolved, and the available information 
about the universal KPZ amplitudes was exploited. The model was defined on the 
square lattice, and the rules were chosen as a compromise between realism and 
tractability. First, to avoid defect formation already in the deposition stage, an SOS 
deposition rule was used in which particles slide down lattice columns until they 
reach the topmost occupied site (cf. [287]); physically this can be viewed as a 
consequence of downward funnelling [99]. Second, a collective diffusion rule in the 
spirit of  Das Sarma et al. [293] was employed, with diffusion limited, however, to 
singly coordinated atoms, in order to ensure the connectivity of the deposit; in this 
sense the model is the low temperature limit of  that of Das Sarma et al. [293]. 
Diffusion proceeds along the arclength of the surface, and hops to nearest- and next- 
nearest-neighbour sites (from the point of view of the square lattice) occur at equal 
probability; the inclusion of step edge barriers which suppress 'around the corner' 
jumps to next-nearest-neighbour sites is straightforward. 

The control parameter in the model is the ratio RTML of the hopping rate to the 
deposition rate. A typical deposit grown at RT-ML = 200 is shown in figure 28. The 
most striking feature is the appearance of vertical void chains that seem to originate 
from deep narrow grooves in the surface; at least in this regime of rather high-quality 
epitaxial growth (the deposit density is about 0.98), the bulk defects are seen to be 
induced by surface fluctuations. The surface grooves themselves are reminiscent of 
structures found in the 1D limited mobility models (compare to figure 25). Indeed, 
the analysis of spatial and temporal correlation functions reveals that the surface 
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Figure 28. Two-dimensional deposit grown with a rule that allows for the formation of 
defects through isotropic surface diffusion [262]• 

fluctuations on short.length and time scales (up to about 50 lattice spacings and 1000 
monolayers) are virtually identical to those found in the limited mobility models of 
Wolf and Villain [10t] and Das Sarma and Tamborenea [132], i nc lud ing  the 
anomalous scaling of the height difference correlation function [107, 108, 112] (see 
also sections 3.2.3 and 5.5.2). 

The crossover to KPZ scaling that occurs on larger scales is illustrated in figure 
29. While the scaling range available for determining the asymptotic exponents is 
quite limited, KPZ universality can be unambiguously identified by including the 
prefactors into the analysis. As was described in section 4.2, the relevant numbers are 
D / u ,  which can be extracted, via equation (3.39), from the stationary surface width 
shown in the inset of figure 29, and ]~, which is obtained from a measurement of the 
tilt dependence of the deposit density (compare to equations (4.3) and (5.1)). The 
prediction for the KPZ asymptotics resulting from equation (4.15) is plotted in figure 
29; it is interesting to note that, in contrast to the crossover from Edwards- 
Wilkinson scaling (figure 16), here the asymptote is approached from below. 

5.2. N o n - e q u i l i b r i u m  su r face  cur ren ts  

As was noted in the preliminary discussion of non-equilibrium effects in section 
3. l, the central importance of the non-equilibrium surface current (3.14) lies in the 
fact that it changes the surface dynamics already on the level of the l i near i zed  

equation of motion, and hence ultimately decides the stability of the surface. Possible 
mechanisms for generating an 'Edwards-Wilkinson' (EW) term u V 2 h  under MBE 
conditions were discussed by Wolf and Villain [101] in their pioneering paper; 
numerical evidence for the presence of such a term was reported by Kessler et  al. 

[288] and by Kessler and Orr [294], but its origin remained unclear. The thoughtful 
study of Villain [20] focused attention on the role of step edge barriers (termed 
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Figure 29. Surface width W as a function of the number of monolayers t for system sizes 
L = 20 - 1000. The ratio of hopping rate to deposition rate is R~-ML = 200. The full 
curve is the KPZ prediction (4.15), evaluated with the numerically determined KPZ 
parameters D/2u = 6-6 ±0.4 and A = 0.0314± 0-0006, and corrected for the 
intrinsic width W:. The inset shows the stationary (t ~ oo) width as a function of 
system size. The broken line corresponds to a roughness exponent < ~ 1-3; the slope 
of the full line has been used to determine D/2u according to equation (3.39) [262]. 

'diffusion bias' by Villain) in producing an EW term with a coefficient that could be 
either stabilizing (u > 0) or destabilizing (u < 0); unknowingly Viltain rediscovered 
the results of Schwoebel [281, 282], who had investigated the effects of  step edge 
barriers in the framework of  a step dynamical model (see section 5.2.1). 

Subsequently, Krug, Plischke and Siegert [92] offered a somewhat different point 
of view by proposing that inclination-dependent surface currents with an expansion 
(3.14) should be regarded as a generic consequence of the non-equil ibrium conditions 
of MBE growth. The core of  the argument can be phrased as follows: On a vicinal 
surface the in-plane direction of the miscut induces an asymmetry in the statistics of 
local bonding environments; for example, the density of  up steps differs f rom that of 
down steps. Generically, an adatom moving on the surface will be influenced by the 
asymmetry, and consequently acquire a systematic drift along the direction of the 
miscut, unless some constraint is present which prevents the asymmetric bonding 
environments f rom being reflected in the hopping rates. In equilibrium, such a 
constraint is always present in the form of  detailed balance. However, once detailed 
balance is broken by the presence of a deposition flux, or some other external 
influence, the drift of  the particles adds up to a systematic mass current directed 
either 'uphill '  or 'downhill '. The step edge barrier arguments of  Schwoebel and 
Villain focus on one particular set o f  bonding environments; however, it is clear that 
many other configurations potentially play a role in determining the overall current. 
This implies, in particular, that non-equil ibrium surface currents can appear also on 
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surfaces where the simplest kind of step edge barrier [283, 284] is absent or 
undetectably weak. 

An analogy may be useful in clarifying the spirit of this argument. There has been 
much recent interest in the Brownian motion of particles in 1D, periodic, 'ratchet'- 
like potentials ([295] and references therein). According to a famous remark of  
Feynman, the left-right asymmetry of  the potential is unable to induce a drift in the 
particle motion provided the stochastic dynamics satisfies the fluctuation-dissipation 
relation of thermal equilibrium. On the other hand, fluctuations that are of non- 
equilibrium origin, modelled, for example, by a 'coloured' noise term in the Langevin 
equation, do generically produce a systematic motion of the particle, even if the 
fluctuations themselves are symmetric [296, 297]. While the magnitude of the induced 
current is of the order of the correlation time of  the noise, as would be expected, the 
sign of the drift results from an interplay between the shape of the potential and the 
detailed noise statistics, in a way not easily accessible to intuitive reasoning. It is our 
contention that the non-equilibrium surface currents in MBE growth can be viewed 
as a similar, though more complex phenomenon. Indeed, rather than dealing with a 
single particle in an external potential, we are confronted with the collective diffusion 
of  adatoms on a surface whose structure is determined by the moving atoms 
themselves [276]. 

K r u g e t  al. [92] corroborated their hypothesis by numerically measuring the 
surface current as a function of misorientation, for MBE models of the 'collective 
diffusion' and the 'limited mobility' varieties, as well as for models of  nonequilibrium 
surface diffusion without growth, in which detailed balance is broken by a suitable 
choice of hopping rates [250]. Here, we focus on the (rather limited) analytic 
understanding of these effects. Three types of analytic results have been obtained 
so far. First, in section 5.2.1 the growth-induced surface current is calculated for the 
classic step dynamical model of crystal growth at vicinal orientations [88, 233]. This 
model is intermediate between continuum theories (as introduced in section 3.1) and 
atomistic models, in the sense that certain microscopic structures (steps) are retained, 
but deposition and surface diffusion are described in terms of  a continuous adatom 
density. While the neglect of fluctuation and nucleation effects leads to some artificial 
features, the results are useful for the order-of-magnitude comparison with experi- 
ments that will be attempted in section 5.3. Second, for some of  the models described 
in section 5.1, hidden symmetries can be identified that force the non-equilibrium 
current to be zero, despite the absence of detailed balance in the conventional sense; 
these 'negative' results are summarized in section 5.2.2. Third, in section 5.2.3 an 
approximate, microscopic calculation of the current is presented for the 1D limited 
mobility models introduced in section 5.1.1. In these models only a few local 
configurations contribute to the current, the statistical weights of  which can be 
reasonably estimated. 

5.2.1. Burton-Cabrera-Frank theory with step edge barriers 
The classic BCF theory [233] (here we follow the presentation of Ghez and Iyer 

[88]) considers a vicinal surface consisting of  perfectly straight steps at a fixed 
spacing 1. The (effectively 1D) geometry, and the basic processes are indicated in 
figure 30. Particles impinge on the surface at a flux F, diffuse on the terraces with a 
diffusion constant Ds, and incorporate into the crystal at the steps; the presence of  
step edge barriers is modelled through the rates r± at which atoms coming from the 
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l F 
I -2D . 

0 1 x 

Figure 30. Schematic of a vicinal surface according to Burton, Cabrera and Frank [233]. 
The underlying adatom energy landscape is also indicated. 

lower (r+) and the upper (r_) terrace are incorporated; the conventional behaviour 
corresponds to r+ > r_ [281,282]. As usual in ideal MBE, desorption is neglected. 

We adopt the quasistatic approximation, assuming that the adatom population 
on the terrace equilibrates on a time scale that is fast compared to the step motion; 
the consistency of this approximation will be addressed shortly. The adatom density 
n(x) on the terrace (more precisely, the deviation of the density from its equilibrium 
value) then satisfies, in steady state, the stationary diffusion equation (n~(x) = dn/dx, 
n"(x) = d2n/dx 2) 

Dsn" + F = 0, (5.13) 

with the incorporation boundary conditions [88] 

Dsn'(0) = r+n(O), Dsn'(l) = - r  n(1). (5.14) 

The resulting parabolic density profile is easily written down. For later reference we 
note that the density scale is 

no = FI2/Ds, (5.15) 

as could be guessed from dimensional considerations. 
Here we are mainly interested in the surface current, which is obtained by 

averaging the local diffusion current j = -Dsn ~ over the terrace. This yields 

( l _ - l+  ) (5.16) J=(Ds/ l) [n(O)-n( l) ]=Joo l ÷ l  ÷ l+  ' 

where the length scales 

have been introduced, and 

l~ = Ds/r-- (5.17) 

= -½FZ (5.18) 

refers to the maximal current that results when mass transport between layers is 
completely inhibited, r_ = 0; equation (5.18) was previously derived by Villain [20]. 
Under normal conditions (r+ > r ) the current is negative because particles 
preferentially attach at the left, in the uphill direction (figure 30). 

For  an estimate of the length scales I± we write, in analogy to equation (5.6), 

r± = w0a exp (-E--/kB T), (5.19) 
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with E± denoting the energy barriers that have to be overcome to attach to the step 
(compare to figure 30). Together with the expressions (5.5) and (5.6) for Ds, this 
implies 

l+ = a exp (AE±/kBT),  (5.20) 

where AEj: = E± - Es. Since attachment from below the step is usually expected to 
be facilitated (this need not be true in the presence of surfactants; see [298]), 
AE+ < 0; consequently l+ is at most of the order of the lattice constant, and can 
be neglected relative to l and l_ in equation (5.16). In contrast, l_ can be significantly 
larger than a; for example, using the experimental estimate AE_ ~ 0.2 eV for 
tungsten [284], one obtains l_/a ~ 2300 at room temperature. The meaning of the 
incorporation length l_ is clarified by considering the probability p+ (p_) that a 
deposited atom will be incorporated at the upward (downward) step. Since the total 
flux impinging onto the terrace is Fl, we have (neglecting l+) 

Dsn'(0) 1/2 + I_/l 
P+-- FI l + l _ / l  ' p = l - p + .  (5.21) 

Hence incorporation becomes symmetric, p+ ~ p_, for terraces much wider than 1 . 
In the same approximation (l+ --+ 0), 

J ~ So~(1 + t / l_) -1, (5.22) 

illustrating the reduction of the current relative to J~ due to the finite interlayer 
transport. 

5.2.1.1. Island nucleation. In figure 31 the current (5.22) is plotted as a function 
of  the surface inclination Vh = - a / 1 .  The current is discontinuous at the high 

Figure 

6 i i i i I 
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31. Growth-induced current (5.22) computed from the BCF theory without 
nucleation. The incorporation length is l_/a = 10. 
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/o 
l 

EL_ 

Figure 32. Schematic of a vicinal surface in the nucleation dominated regime, l > lb. The 
broken line indicates the original surface prior to growth. 

symmetry orientation Vh = 0, because equation (5.22) has a finite limit - F l  /2 for 
1 ~ co. This is of course an artifact of not allowing for the nucleation of islands on 
the terraces, a process that becomes important when the terrace width 1 exceeds the 
diffusion length lD which characterizes the typical island size on the singular 
(Vh = 0) surface. Rate equation arguments [299] show that lD is typically given by 
a relation of the form 

lD ,--' (Ds /F )  ~, (5.23) 

where the exponent 7 depends on the size of the smallest stable island, the fractal 
dimensionality of islands, etc. In the simplest case of  stable dimers and compact 
islands, one finds 7 = 1/(2d + 2) for a d-dimensional surface. 

Heuristically, the effect of  island nucleation can be treated as follows [20, 300]. 
When l >> ID, the surface morphology more closely resembles figure 32 than figure 
30. Rather than a well-ordered step train, one has to consider a disordered array of 
steps of both signs, with a small fraction ID/I of excess (down) steps representing the 
overall vicinality of the surface. Only the excess steps contribute to the current, and 
the contribution of each is given by equation (5.22) evaluated at I = ID. Thus 
the current vanishes for l ~ o c ,  as required by symmetry. Specifically, 
J ~ u l (a / l )  = - u l V h  as in equation (3.14), with a coefficient 

- F 1 2 / a ,  l_ >> ID, (5.24) 
Ul ~ - f ( l D l _ ) / a ,  1 << lD. 

Myers-Beaghton and Vvedensky [301, 302] have proposed to include island 
nucleation in the BCF theory through a quadratic pair-formation term in the 
balance equation (5.13). In the following we show that this extended BCF theory, 
supplemented with the boundary conditions (5.14), reproduces the behaviour of the 
current expected on heuristic grounds. At high adatom densities, where nucleation 
becomes significant, one may also expect the steps to move sufficiently fast to 
invalidate the quasi-static approximation [88]. Thus, the stationarity condition 
replacing (5.13) reads, in a frame moving with the step velocity c [301], 

Ds n" + cn ~ + F = ma2Fn + r2Ds n 2. (5.25) 

The first loss term on the right hand side accounts for events in which an atom is 
deposited next to an adatom (m is the number of nearest-neighbour sites of the 
adatom and ma 2 is the corresponding capture area), while the second term describes 
loss of adatoms due to dimer formation, which occurs with probability r2. In the 
absence of desorption the step velocity is c = l/~-ML = a2F1 by mass balance 
(compare to equation (5.5)). 
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The significance of the various terms in equation (5.25) can be assessed by going 
over to scaled quantities, n (x )=  no p(x/ l ) ,  with the BCF density scale (5.15). This 
results in 

p" + (l/lo)2 p ' + 1 = m(l/lo)2p + (l/lD)4 p 2, (5.26) 

where the length scales 

lo = (Ds/Fa2) 1/2 = (Ds 7-ML) 1/2, ID = (Ds/Fr2) 1/4 (5.27) 

have been introduced. The length l0 is the distance covered by a freely diffusing 
adatom during the monolayer completion time, while lD can be identified with the 
diffusion length introduced above. The value 3' = 1/4 for the exponent in equation 
(5.23) results because the dominant nucleation effect has been assumed to be the 
formation of dimers; in fact it is much more likely that an adatom is captured by a 
pre-existing island, which would give 7 = 1/6 [304]. This effect could be included by 
writing a separate equation for the island density [301-303]. 

For the purpose of the present discussion, the main point is that lD << l0 for 
RrML >> 1. Thus, as 1 is increased away from the step flow regime (where island 
nucleation is negligible), the first appreciable correction is due to the pairwise 
nucleation term, and both the convection term cn' and the deposition term ma2Fn 
in equation (5.25) can be neglected. Keeping the relevant terms, we rewrite equation 

(5.25) as 

n" = - F / D s  + r2n 2 = - V'(n) (5.28) 

to emphasize the analogy with a Newtonian particle of unit mass, moving in a cubic 
potential V(n )=  ( F / D s ) n -  (r2/3)n 3. This analogy is very useful in extracting the 
behaviour of the density profile in the limit l ~ oc. Since 1 is the total travel time of 
the particle, for l ~ c~ it has to spend most of its time close to the unstable 
equilibrium position nl > 0 where V ' ( n l ) =  0. Thus, the adatom density on the 
terrace approaches, for 1 ~ oc, the value 

nl = (F/Ds r2) 1/2 = F12D/Ds, (5.29) 

which is, not surprisingly, of  the same form as equation (5.15). The boundary values 
n(0) and n(l) that determine the current (5.16) can now be obtained from the law 
of energy conservation for the particle problem (5.28), which states that the 
quantity 

E(x) = [n'(x)12/2 ÷ V(n(x)) (5.30) 

is independent of x. Indeed, since the particle is almost at rest (the density profile is 
almost constant) close to nl, for 1 ~ oe the energy converges to E = V(nl). Using the 
boundary conditions (5.14), the boundary densities are then given by two uncoupled 
cubic equations: 

[n(0)/l+]2/2 + V(n(O)) = [n(l)/l-]2/2 + V(n(l)) = V(nl). (5.31) 

We now specialize to the case where attachment to the step from below is rapid, 
so that l+ = 0  and n(0)=  0 is ensured. The current (5.16) is then simply 
J = - (Ds/ l )n ( l ) .  Writing n(1) = #nl, the dimensionless coefficient # satisfies 

(ID/l_)2#2/2 q- # -- #3/3 -- 2/3 = 0, (5.32) 
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Figure 33. Growth-induced current in the presence of island nucleation, for l_ = ee and 
lD/a = 10. The full curve shows the lower bound (5.34), and the broken curve shows 
the current (5.18) obtained in the absence of nucleation. 

which implies that # ~ 1 for lD << l_, and # ~ (2/v/3)l_/lo for 1D >> 1 . As expected, 
the current vanishes linearly in Vh = -a l l ,  and the coefficient is given by 

{-Fl~,/a, 1 >>  ID,  ( 5 . 3 3 )  

ul = - ( 2 / v / 3 ) F ( I D l  ) /a ,  l << lD, 

in accordance with equation (5.24)• 
To obtain the full inclination dependence of  the current, one would require the 

solution of the mechanical problem (5.28) for arbitrary l, which is not available in 
closed form. For the case of  perfect step edge barriers (r = 0, r+ = ec), the lower 
bound 

J >- Jb = 2Jee( lD / l )4 { [  1%- (I/ID)4] 1/2 -- l} (5.34) 

can be derived, which reproduces the exact asymptotics for 1 << 1D and l >> 1D; an 
upper bound is given in [123]. The expression (5.34) is shown in figure 33, together 
with the current (5.18) obtained in the absence of nucleation. A similar, heuristic 
interpolation formula was proposed by Johnson et al. [274]. 

5.2.1.2. Stability and metastability. Irrespective of its derivation, the bound (5.34) 
is representative of the generic form of  the inclination-dependent surface current 
induced by step edge barriers, and can be used to discuss the stability of the 
growing surface. We consider the physical dimensionality d = 2, and assume in- 
plane isotropy. The non-equil ibrium contribution to the surface current J in 
equation (5.3) can then be written as [92] 

JNE = '~(IVhl2)Vh, (5.35) 
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where the function 95 corresponding to (5.34) is 

95(u 2) = F(12 /a){  [ulD/a) 4 + 111/2 _ (uli)/a)2}. (5.36) 

The important (and generic) features of (5.36) are that 95 ~ -u l  for u << a/lD and 
95 ~ Fa/2u 2 for u >> a/1D. 

We now insert (5.35) into (5.3) and expand the equation of motion about a 
growing surface uniformly tilted in the x direction: 

h(x, y, t) = ux + Ft + e(x, y, t). (5.37) 

We disregard for the moment the fourth-order derivatives due to the equilibrium 
part of the current, since they do not affect the stability with respect to long 
wavelength fluctuations (see section 5.3.2). This results in 

0e 02e 02C 
ot = vii ~x2 + ~± 0 7 '  (5.38) 

with 
ull = --[95(u2) q- 2u295 t(u2)] , 

//z = _95(/12) . (5.39) 

The stability coefficient in the tilt direction can be written in terms of the BCF 
current function J( l )  as 

vii = - (12/a)  dJ /d l ,  (5.40) 

which changes sign at 1 ~ lb. Thus, as was pointed out by Schwoebel and Shipsey 
[281,282] and others [305, 306], the step edge barriers stabilize the surface in the step 
flow regime, 1 < ID, but the same effect acts to destabilize it once island nucleation 
becomes appreciable for l > li) [20]. However, even in the step flow regime the 
surface is not completely stable, because the transverse coefficient u j_ < 0 for all u 
[3071. 

The transverse instability is related to the meandering instability of terrace edges 
discussed by Bales and Zangwill [308] (see also [186, 187]). In the context of the 
present continuum theory, a terrace edge is simply a height contour line in the x -y  
plane. In the regime of step flow growth treated by Bales and Zangwill, the surface is 
stable in the tilt direction, Ull > 0. It is then reasonable to consider perturbations that 
vary only in the transverse direction, e = e(y, t) in equation (5.37). Defining the 
position of  the h = Ft contour line by the relation x = X(Y, t), we see from equation 
(5.37) that X = - e / u  and X evolves according to 

09¢ 02)¢ 
Ot = u± Oy--- f . (5.41) 

For  a quantitative comparison with [308], consider the case of absolute step edge 
barriers (r_ = 0, r+ = oo), where u± - ( I /a )Jo~.  The growth rate for a transverse 
modulation of wavenumber q is then equal to (1/2)(FI2/a)q 2, which coincides with 
the appropriate limit (no desorption, ql << 1) of the expression derived by Bales and 
Zangwill [308]. 

The converse scenario of transverse stability (u± > 0) and longitudinal instability 
(vii < 0) is possible if adatoms preferentially approach the step from above ('reverse' 
Schwoebel effect). Due to the strongly anisotropic surface diffusion rates on the 
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dimer-reconstructed terraces, this case is approximately realized on vicinal Si(001) 
[3091. 

We conclude that truly stable growth requires that (i) the current is a decreasing 
function of inclination, so that Ull > 0, and (ii) the current is in the downhill 
direction, q5 _< 0, to ensure that y± > 0 also. Within the BCF theory the latter 
condition can be met only by assuming 'reversed' step edge barriers with r+ < r_ 
(this may be possible in the presence of surfactants [298]), while the former requires 
the surface to be in the nucleation-dominated regime, l > ID. On the other hand, the 
BCF theory is expected to apply only to orientations vicinal to a high symmetry 
direction, and it is quite conceivable that a more refined treatment will reveal 
additional features of the current, such as zeros related to other crystallo- 
graphic symmetries [92] or 'hot atom' effects [99, 273, 300], which favour stable 
growth. 

Since the transverse destabilization is absent for 1D surfaces, one may hope that 
the stable step-flow regime envisioned by Schwoebel may be realizable at least in 1D 
stochastic growth models. This conclusion appears to be invalidated by the second 
important feature, apart from the transverse step fluctuations, that is left out by the 
BCF theory, namely the shot noise in the deposition flux. Krug and Schimschak 
[t23] have carried out simulations of  a 1D SOS model that incorporate the basic 
processes of the extended BCF theory described abov~depos i t i on  at rate F, 
diffusion of singly bonded adatoms, and the formation of immobile islands when 
two adatoms meet (a related model, however, without shot noise, has been studied 
by Elkinani and Villain [310]). The step edge barriers are assumed to be absolute 
(r = 0) so that mass transport between layers is completely inhibited. For the 
singular orientation, Vh = 0, this is well known to give rise to a Poisson distribution 
of layer coverages, and a width that increases diffusively, 

W 2 = Ft, (5.42) 

with no saturation even on a finite substrate [311]. On vicinal surfaces, for large 
values of R~-ML (typically R~-ML = 5 X 105), step flow behaviour is observed that 
conforms to the predictions of  BCF theory for the current (equation (5.18)), as well 
as for the fluctuations, described by the Edwards-Wilkinson equation with 
u -  Ulb > 0 (see section 3.2). However, the step flow regime is metastable and 
terminates at a transition time to (measured in units of  ~-ML) that scales as 

tc ~ u2(RT-ML) 3/4 (5.43) 

with the surface inclination u and the diffusion rate. The transition proceeds through 
the nucleation of  a large fluctuation in the local orientation that brings the surface 
into the regime where Ull < 0 (figure 34). For  times t >> to the surface configurations 
resemble the strongly disordered morphology obtained on a flat substrate (u = 0), 
and the width asymptotically approaches the maximal 'Poisson' randomness given 
by equation (5.42). It is interesting to note that W 2 increases faster than linearly with 
t, as W 2 ~ t 2, in the transition region (figure 35). Step flow growth is stable only in 
the limiting case R~-ML = ec, which can be solved exactly [123]. 

5.2.2. Symmetry arguments' 
In this section we return to the microscopic level, and begin by formulating a 

precise microscopic definition of the nonequilibrium surface current for SOS models. 
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Figure 34. Evolution of a 1D vicinal surface ( l /a = 3) in the presence of absolute step edge 
barriers. The ratio of hopping to deposition rate is R~-ML = 5 × 105. Note the 
nucleation of an unstable region after 60 monolayers, and the development of an 
approximately periodic pattern at late times [123]. 

Figure 
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35. Time evolution of the surface width for various values of u = - a l l ,  at 
RT"ML = 5 x 105. Initially W 2 ~ t 1/2 with a prefactor that is correctly predicted by the 
EW equation (inset). After the nucleation of unstable regions (figure 34) W 2 increases 
faster than linearly in order to catch up with the Poisson behaviour (5.42) [123]. 
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To unburden the notation we focus on a 1D surface described by discrete height 
variables hi, i = 1, . . . ,  L. The average heights then evolve according to 

d 
dt  (hi) + (Ji - Ji-1) = F ,  (5.44) 

the discrete analogue of equation (5.3), where the current is given in terms of the 
jump rates R~/between neighbouring sites, j = i 4- 1, as 

J i  : Ri i+ l  - R i+ l i .  (5.45) 

The inclination-dependent current of  the macroscopic description is obtained by 
averaging equation (5.45) with respect to the stationary probability distribution of  
height configurations of  f i xed average tilt u = (hi+l - h i } ,  imposed, for example, 
through helical boundary conditions 

hi+L = h i  + u L .  (5.46) 

Thus we would like to evaluate the expectation 

J ( u )  =- (Ri i+ l  - R i+ l i ) u .  (5.47) 

Numerically, this is done simply by keeping track of  the cumulative number of  jumps 
executed to the right and to the left [92]. Note that the vertical displacements of the 
atoms--whether their actual height is increased or decreased by a jump--plays no 
role in determining the current (this is of course not true in non-SOS models with 
isotropic diffusion [262]). Therefore, in the following we shall use the terms 'uphill' 
and 'downhill' motion to imply moves in the direction of increasing or decreasing 
average height, respectively. I f  u > 0 in equation (5.46), uphill jumps are directed to 
the right, downhill jumps to the left. 

The analytic computation of equation (5.47) is difficult because the stationary 
distribution of the growth process is not known. However, in some cases either the 
jump rates or the stationary state itself possess a symmetry that forces J to vanish 
identically. This is obviously true if the rates satisfy detailed balance. It is also true 
for the Arrhenius growth model introduced in section 5.1.2. There, the key point is 
that the jump rates depend only on the bonding environment at the initial site, 
Rii+l = exp ( - -n iEN/kBT),  where ni denotes the number of lateral neighbours at site 
i. Thus 

J = (exp ( - -n iEN/kBT)}  u -- (exp (--ni+IEN/kBT)) u = 0, (5.48) 

by translational invariance. Physically, the current vanishes because the jump rates 
do not couple to the asymmetry of  the local environment. 

A somewhat different argument applies to the discrete Gaussian model, defined 
by equation (5.10) with q = 2, equipped with random deposition and the Metropolis- 
type jump rates (5.11). These rates depend on the initial and final position of the 
atom, and therefore the motion does couple to the asymmetry of  local environments. 
Instead, in this case the stationary state at fixed tilt u turns out to be independent of u; 
since the current vanishes by symmetry at u = 0, it then has to vanish identically for 
all u. The tilt invariance follows from writing the energy difference involved in a 
jump as [312] (the notation is explained in section 5.1.2) 

K21 [a f (H ii+1) - W(H)]  = 6 - 2(hi+2 q- hi - 2hi+l) 4- 2(hi+l -k h i - I  - 2hi) 

= 6 - 2[(VZh)i+l - (VZh)i]. (5.49) 
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The dynamics depends only on differences in the discrete local curvature, and is 
therefore invariant t under global tilts, hi--+ hi + ui. In this sense, the discrete 
Gaussian 'collective diffusion' model is similar to the 'l imited mobil i ty '  curvature 
model introduced in section 3.4, and the conclusion drawn for this model applies 
here also: As a consequence of the tilt invariance there are no relevant nonlinearities, 
and the large-scale properties of the surface should be given exactly by the linear 
noisy Mullins equation. While the original simulations of Siegert and Plischke [89] 
seemed to indicate a different behaviour, more recent numerical results are in accord 
with this prediction [312]. 

Two comments are in order. First, we recall having argued, in section 5.1.2, that 
the discrete Gaussian model has a sizable step edge barrier [280] (see equation 
(5.12)); nevertheless, we have shown here that the nonequil ibrium surface current 
vanishes identically. Thus, the presence of step edge barriers is not sufficient to 
produce a nonzero net current, because their effect can be cancelled by other, less 
conspicuous local configurations. Second, the fact that the step edge barrier energy 
(5.12) is an increasing function of q, vanishing at q = 1, leads to a plausible 
conjecture regarding the q dependence of  the current: since J = 0 at q = 2, we 
expect a net current in the uphill (downhill) direction for q > 2 (q < 2). This 
conclusion is corroborated by a detailed analysis of how the jump rates in various 
local environments change as q is moved away f rom q = 2 [314]. I t  is further 
confirmed by the direct measurement of the current for q = 1 and q = 4 [92], as 
well as by the resulting behaviour of the surface, which shows clean Edwards-  
Wilkinson scaling for q = 1 [277], and unstable growth for q = 4 [89, 312]. 

The symmetry arguments for the Arrhenius and the Gaussian models apply in 
arbitrary surface dimensionalities. In contrast, our last example, the version DT1 of 
the limited mobil ity rules described in section 5.1.1, can be simply analysed only in 
d - 1. For the present discussion, the important property of the rule is that it does 
not distinguish between incorporat ion sites with o n e  (ki = 1)  and two (ki = 2) lateral 
nearest neighbours (the coordination numbers ki are defined in (5.4)). The behaviour 
of  adatoms on the surface can therefore be predicted on the basis of a two-state 
variable/~i = min [ki, 1] = 0, lass igned to each site i. The local environments that 
contribute to the current are (ki-1, ki, ki+l) = (0, 0, 1) and (1, 0, 0), where the atom is 
thought to be deposited at i and incorporates at i + 1 or i -  1, respectively. 

For a fixed height configuration H = {hi} subject to helical boundary conditions 
(5.46), we now consider the spatially and temporally averaged surface current J 
defined by depositing many 'test' atoms onto each site i, and recording where they 
incorporate. Clearly, 

J ( H )  = L l[N001(H ) - U~oo(H)l , (5.50) 

where Nlm n is the number of  local environments (/~i-1,/~i,/~i+l) = (l, m, n) in the 
configuration H. The crucial observation is that N001 -- N~00 for any string of  O's and 
l 's with periodic boundary conditions, both numbers being equal to the number of  
clusters of at least two consecutive O's (figure 36). Thus, J ( H ) =  0 for any 
configuration, and the ensemble average over H vanishes also. The proof  is easily 

tStrictly speaking, the argument only implies invariance for integer values of the tilt. Indeed, 
careful simulations of the discrete Gaussian model [313] reveal a non-zero current that is a periodic" 
function of the tilt, with unit period; however, its amplitude ( ~ 2 x 10 7) is so small as to make it 
negligible for all practical purposes. 
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0 l l i l 0 1 0 1 0 1 1 1 0 1 1  1 
1 0 

0 1 

0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0  0 

Figure 36. In a random sequence of O's and l's on a ring, the number of triples (001) is 
equal to the number of triples (100). 

extended to versions of  the rule where the atoms are allowed to search in a larger 
neighbourhood for a favourable incorporation site, as long as the property of having 
only two possible values for the effective coordination number ki is preserved. The 
remaining two rules defined in section 5.1.1, DT2 and WV, do not have this property 
and hence give rise to a non-zero current, which is approximately computed in the 
next section. 

5.2.3. Approximate microscopic theory 
Having established that the surface current vanishes identically for rule DT l, we 

may conclude that the current for the more elaborate rules DT2 and WV must be 
due solely to configurations in which these rules differ from DT1. For  DT2, these are 
the asymmetric configurations (ki_l, ki, ki+l) = (1, 0, 2) and (2, 0, 1), which bias the 
deposited particles to the right and to the left, respectively. We may therefore write 

JDT2 = Prob (1, 0, 2) - Prob (2, 0, 1). (5.51) 

For the Wol~Vil lain (WV) rule, an additional contribution comes from the motion 
of particles deposited onto a site with k i  = 1 that has a neighbour for which kj = 2. 
Thus 

Jwv = JOT2 + Prob (1, 2) - Prob (2, 1). (5.52) 

In order to evaluate the probabilities occurring in equations (5.51) and (5.52), we 
now make two rather drastic approximations. First, we assume that the local height 
differences (also referred to as step heights) c~i = h i + l -  hi at different sites are 
statistically independent. The probabilities in (5.51) and (5.52) can then be expressed 
as products of the three numbers p+, p_ and P0 defined by 

p + = P r o b { c r i > 0 } ,  p = P r o b { c r i < 0 } ,  P 0 - P r o b { c ~ i = 0 } -  (5.53) 

The height configurations contributing to Prob (1, 0, 2) and Prob (1, 2) are illustrated 
in figure 37. We conclude that 

Prob (1, 0, 2) = (P0 + p+)p2+p_ +PoP'P+, Prob (1, 2) = p2_p+, (5.54) 

k i = 1 0 2  1 0 2  1 2  

Figure 37. Height configurations contributing to the current in the limited mobility rules 
DT2 and WV. 
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Figure 38. Simulation results for the growth-induced current, at surface inclinattion Vh = 1, 
obtained using the three limited mobility rules described in section 5.1.1. Each data 
point represents an average over 106 monolayers deposited onto a substrate of size 
L = 100. 

and  therefore 

JI)T2 = p + p  (p~+ - p2_), 
(5.55) 

Jwv = JDT2 +p+p (p- --p+) = --P+P-Po(P+ --P ). 

I f  the surface is f lat on average, p+ = p_ by symmet ry  and  the currents vanish. A 
posit ive average surface inc l inat ion increases p+ relat ive to p_.  Thus, a first 
conclus ion f rom the expressions (5.55) is that  the current  is d i rected uphill for  the 
DT2  model ,  JDT2(U > 0) > 0, while Jwv(u > 0) < 0. The two rules belong to 
dif ferent universal i ty  classes, in the sense o f  di f ferent signs for  the coefficient u~ in 
the expans ion (3.14). This is conf i rmed by the direct numer ica l  measurement  o f  the 
currents (figure 38). Note,  however,  that  JDT2 is ext remely smal l  and bare ly  
d is t inguishable f rom the noise. The fact that  ul < 0 for this mode l  therefore does 
not  lead to any observable consequences on accessible t ime and length scales. 

The inc l inat ion dependence o f  the currents can be ob ta ined  by mak ing  a second 
assumpt ion  regard ing the p robab i l i t y  d is t r ibu t ion o f  the step heights ai. F o r  
convenience, we choose an exponent ia l  d is t r ibut ion 

1 
P(cr) = 2 e x p  ( -K [~ [  + ma), (5.56) 
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where the 'slope chemical potential '  m controls the average inclination through the 
relation 

sinh m 
u = (a) cosh K - cosh m (5.57) 

The coupling K controls the spread of the distribution, which can be characterized, 
for u = rn = 0, by the variance 

(o -a) = (cosh K - 1) -], (5.58) 

and Z(K, m) is a normalization constant. Equation (5.56) would be exact if the 
surface were in equilibrium, governed by the Hamil tonian (5.10) with q = 1. The 
actual height difference distribution for the 1D limited mobil ity models is much 
broader, and better described by a stretched exponential [112]. In view of the 
uncontrolled approximations inherent in the present approach, however, the form 
(5.56) is quite sufficient for our purposes. The generalization to other choices for 
P(a) is straightforward. 

Using equation (5.56), the probabilit ies p±, P0 and thus the currents are easily 
evaluated. In the following we discuss only the Wolf  Villain rule. In figure 39 the 
calculated current is compared to the results of direct simulations. Since the current 
tends to strongly decrease with increasing system size (see below), we have chosen 

o , ~  
L//", " - - - r - -  / . . -" ' "  - 0 . 0 0 5  I//',, / / .---- 

II,  j 
- 0 . 0 1  " " L = 1 0  

• L = 2 5  

- 0 . 0 1 5  i , I I I I I I I I , I ' , , i , ' , 

0 2 4 6 8 2 0  

7h 
Figure 39. The inclination-dependent current in the 1D Wolf-Villain model. The symbols 

show simulation results for two different system sizes, obtained by averaging over 108 
monolayers per data point. The full and broken curves without symbols show the 
corresponding analytic approximation. 
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small systems for the simulations, L = 10 and L = 25, and averaged over 108 
monolayers for each value of  the inclination. For comparison with the simulations, 
the parameter K in the exponential distribution (5.56) was chosen such that the 
variance (5.58) matches that of the numerically determined step height distribution; 
for L = 10 this gives K = 0.797 (in this case (or 2} ~ 2.986), and for L = 25 we chose 
K = 0.361 (corresponding to (or 2) ~ 15.21). It  can be seen that the approximate 
theory reproduces the overall inclination dependence rather well, but the magnitude 
of  the current is significantly overestimated, especially at larger tilts. 

It is of particular interest to understand how the shape of the current-inclination 
curve changes as the step height distribution P(~) broadens, for example by 
decreasing K in equation (5.56). Qualitatively, figure 39 shows that the minimum 
in J(u) shifts to larger slopes, such that the absolute magnitude of the current 
decreases with decreasing K for slopes smaller than the minimum, but increases for 
large slopes. On a more quantitative level, one obtains the following simple 
expressions for the derivative at zero slope, 

ul = J~arv(0) exp ( -2K)[1 - exp ( -K) ]  2 (5.59) 
= [1 + exp G g ) ]  4 ' 

exp (-K) 1 
u ~ e~. (5.60) Jwv(u) ~ 2 sinh K u 2' 

Thus, u] vanishes as ul ~ K2/16 for K ~ 0, while the prefactor in (5.60) diverges for 
small K. In figure 40, equation (5.59) is plotted as a function of  the variance (5.58). 
Somewhat surprisingly, the asymptotic 1/u 2 behaviour predicted by (5.60) seems to 

0.02 , I ' I ' ' ' I 

0.015 

ff 

0.01 

0.005 

0 i i i I , I , I 

0 : 8 0  40 6 0  

and for the asymptotics for u ~ eo at fixed K, 

i , I i i i 

80 100 

Figure 40. The expression (5.59) for the (negative) derivative of Jwv at zero tilt, as a 
function of the variance of the step height distribution. The arrow indicates the value 
at which (a2) saturates for large system sizes and long times. 
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Figure 41. Inclination-dependent current in the 1D Wolf-Villain model, for a small system 
(L = 10) and large slopes. Each data point corresponds to an average over 108 
monolayers. The broken line indicates the [Vh[ -2 decay predicted by the approximate 
theory. 

be confirmed by simulations of  the WV model (figure 41). Note that this asymptotics 
is distinct from that obtained using simple step-edge barrier arguments, which 
always lead to a decay of the current as 1/u (see section 5.2.1). 

These considerations can be used to discuss the strong size dependence of the 
current in the Wolf  Villain model observed by Krug et al. [92]. Recent numerical 
work [107, 108, 112] has revealed that the 1D limited mobility models are generally 
characterized by a stationary step size distribution P(o-) that broadens with 
increasing system size L; more precisely, the moments appear to satisfy scaling laws 
of  the form [112] 

(o 'q)  l /q  ,-,o L~,  (5.61) 

with non-trivial, q-dependent exponents O~q. We have encountered a simple form of 
this 'anomalous' scaling behaviour in our investigation of  the noisy Mullins equation 
in section 3.2; in that case P(cr) is a Gaussian of  width ~ L a/2 in one dimension. 
From our approximate theory we conclude that such broadening will result in a 
decrease of the current with increasing system size. This is not hard to understand: if 
the step height distribution is very broad, the excess steps introduced by an external 
tilt will have little effect, and thus the current will be small. 

For the Wolf-Villain model, Schroeder et al. [107] found that the broadening of 
P(cr) ceases when the system size exceeds L ~ 250, at which point the variance has 
reached a value of (o 2) ~ 80. From equation (5.58) we see that this corresponds to a 
value of K ~ 0.158 and, using equation (5.59), u~ ~ 0-001 32 (see figure 40). In 
comparison, in the direct numerical measurements reported by Krug et al. [92] the 
current was found to become size independent at L ~ 320, where J(u = 1) 
-0.0008. Thus, the approximate theory appears to provide a reasonable description 
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of the relation between the statistics of step heights and the resulting non-equilibrium 
current. It does not, however, explain why the step height distribution broadens 
according to equation (5.61) in the first place (see also section 5.5.2). We may note in 
this context that the broadening appears to continue indefinitely for the DT1 rule 
[112], which allows no current by symmetry (section 5.2.2), indicating that the satura- 
tion of P(a) observed for the WV rule is indeed due to the fact that Jwv is non-zero. 

5.3. Unstable growth: theory versus experiment 
Perhaps the most remarkable corollary of the ubiquity of growth-induced surface 

currents is the conclusion that ideal MBE growth is generically unstable, in the sense 
that destabilizing 'uphill' currents occur as frequently as stabilizing 'downhill' 
currents. Among the models discussed in the preceding sections we have encountered 
examples of both kinds--the Metropolis model (5.11) with Hamiltonian (5.10) is 
stable when q = 1 but unstable when q = 4, and similarly the limited mobility model 
WV is stable, while DT2 is (asymptotically) unstable. In fact, if we adopt the 
common view that non-equilibrium currents arise on real surfaces mainly due to 
repulsive step edge barriers, unstable growth on singular surfaces should be the rule 
rather than the exception. It is therefore gratifying that several recent MBE 
experiments have obtained surface morphologies that are indicative of a growth 
instability of the kind anticipated by theory. In this section we relate these 
experiments to the theoretical concepts that have been developed so far. We will 
restrict attention to singular surfaces; systematic studies of unstable growth on 
vicinal surfaces have only just been initiated [315, 316]. 

5.3.1. Experimental phenomenology 
The experimentally observed morphologies can be broadly grouped into two 

categories. 
(i) The 'Poisson/wedding cake morphology' is typical of metal homoepitaxy at 

low temperatures, where interlayer transport is strongly inhibited. In this case the 
instability emerges already during the growth of the first few layers. The lateral scale 
is set by the island spacing lD of the submonolayer regime (see equation (5.23)); 
subsequent layers then form islands on top of islands, giving rise to an array of 
(American) wedding cakes. The actual shape of the features also mimics the shapes 
of submonolayer islands and is strongly dependent on the amount of edge diffusion; 
compare for example the STM images for P t ( l l l )  [317] and Ag( l l l )  [318]. 

For a quantitative description of this regime one may assume, as a first 
approximation, that interlayer transport is completely suppressed (figure 42). This 
yields several definite predictions. First, the layer coverages have a Poisson 
distribution [311], as has been verified for Cu(111) [319] and Pt(111) [317]. Second, 
the variance of the surface height is proportional to the total coverage 0 = Ft/a 
(equation (5.42)), in agreement with LEED measurements on Ag(111) [320] and 
Fe(l l0) [321]. Third, since the lateral spacing of features remains fixed at lD (see 
figure 42), while their vertical size (peak-to-valley height difference) increases as av/O, 
one expects the slopes of the wedding cakes to steepen as (a/ID)v/O [123], or, 
equivalently, the terrace width on the hillsides to decrease as 

l(t) ~ ID/v/O. (5.62) 

This agrees with measurements on Ag( l l l )  at 130K [320], though at higher 
temperatures a decay as l ~ 1/0 was reported for the same surface [322]. Equation 
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Figure 42. Wedding cakes in d - I. The figure was generated using the model described in 
section 5.2.1, which incorporates diffusion of singly bonded adatoms, deposition, and 
complete suppression of interlayer transport. The ratio of diffusion to deposition rate 
was Ds/F = 5 x 105. The left panel corresponds to a coverage 0 = 2.4, the right panel 
to 0 = 3992. Note that the lateral extent and positions of the mountains in the high 
coverage regime correspond exactly to the first monolayer islands in the left panel; 
there is no coarsening [123]. 

(5.62) may need to be modified in the low coverage regime, where part  of the 
substrate is still uncovered. 

(ii) On semiconductor surfaces, as well as for some metals at elevated tempera- 
tures, the growth instability takes a different form which we will refer to as the 
'mound morphology'  [323]. The distinguishing feature of this growth mode is that it 
appears only after the deposition of many layers, that the initial size of  features 
(mounds) much exceeds the submonolayer island spacing lD, and that the feature 
size, rather than remaining fixed, increases with time, implying a coarsening of the 
morphology. 

Mound formation has been reported for GaAs(001) [274, 324, 325,326], InP(100) 
[327, 328], Ge(001) [329, 330], Si(100) [316], Fe(001) [331,332] and, possibly, Si(111) 
[333]. The theoretical predictions for this growth mode are much less clear cut than 
in the Poisson case, and will be summarized in the following two sections. At this 
point, we merely remark that the distinction between wedding cakes and mounds is 
probably not exclusive; for example, the experiments of Ernst et al. on Cu(100) [334, 
335] (see also [319]) seem to represent an intermediate case. Moreover, it seems likely 
that in many cases the Poisson growth mode constitutes an early time regime which 
crosses over to mounding [332] once the terrace width (5.62) becomes small enough 
to allow for interlayer transport despite strong barriers, though the transition 
between the two regimes has not been investigated in detail. Nevertheless, the 
distinction between the two limiting cases is a useful first step towards a quantitative 
understanding of unstable growth. 

5.3.2. Strong and weak barriers 
Obviously, the two types of morphologies described above correspond to 

situations with 'strong' (wedding cakes) and 'weak' (mounds) step edge barriers, 
respectively. To make this notion more precise, we resort to the linearization of the 
general conserved growth equation (3.15), which reads 

Oh/Or = UlV2h - t~74h -- F. (5.63) 
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The coefficient u~ was computed in section 5.2.1, and can be written as vl ~ - F [ ~ / a ,  
where 

[o = min [1o, (1~l)1/2] (5.64) 

defines an effective diffusion length. The fourth-order derivative describes relaxation 
through surface diffusion and n = FaO- is the product of  adatom mobility and surface 
tension. We first note that ~ and F can be combined into a 'capillarity' length 

I~ = (arc~F) 1/4, (5.65) 

which gauges the importance of  diffusional smoothening versus deposition [123]. For 
semiconductors a typical value of n appears to be 1 ~tm 4 per hour [336], which yields 
l~ ~ 1300 • at a deposition rate of 1 ML s 1. 

Since Vl < 0, equation (5.63) possesses a band of unstable wavelengths. The 
fastest growing mode corresponds to a wavelength 

A* = 2~( -2~ /u l )  U2 ~ ~/2 2n l~/{D, (5.66) 

and the corresponding time scale r*, expressed in terms of coverage, is 

O* = g r * / a  ~ 4(/~//o) 4. (5.67) 

Equations (5.66) and (5.67) can be combined to give the relation 

A* = g(20*)l/2fD. (5.68) 

Clearly values of 0* < 1 are nonsensical: the instability cannot manifest itself unless 
several layers are deposited. We therefore conclude that for l,~ < fD wedding cakes 
form during the deposition of the first few layers, so that effectively 0* ~ 1 and 
A* ~ lD; this regime cannot be expected to be well described by continuum theory. 
Correspondingly, l~ >> {D is identified as the mounding regime, and equation (5.68) 
connects two of  its characteristic features: the fact that the instability develops only 
after the deposition of many layers (0" >> 1) at a lateral wavelength that much 
exceeds the diffusion length (A* >>/D). 

It should be emphasized that the microscopic barrier strength enters the ratio 
l~/JD in two distinct ways. First, as was shown in section 5.2.1, it determines whether 
fo ~ lD or [D ~ (lt)l-) 1/2. Second, it affects the value of ~ through the adatom 
mobil i ty/ 'a, which is a macroscopic quantity averaged over all possible environments 
of  the adatom [276]. Step edge barriers may constitute the rate limiting process for 
macroscopic mass transport along the surface; in particular F,~ ~ 0 if interlayer 
exchange is strongly suppressed. 

The relation (5.68) can be used to estimate [o from observational data. For 
example in the experiment of Orme et al. [325] mounds were observed to form after 
the deposition of  270 bilayers, at a spacing of 0.25 gm. Using equation (5.68) this 
yields lD ~ 34 A, considerably smaller than the diffusion length li~ ~ 165 A estimated 
in a separate experiment under identical conditions [337]. We conclude that this 
system is in the weak carrier regime, in the sense of section 5.2.1, where 
ID = (lD1-) 1/2, and obtain l_ ~ 7 A. This can be converted into an estimate of the 
step edge barrier energy AE_ by invoking the relation (5.20). With a ~ 2-8 ~t, the 
bilayer thickness, and T = 555°C, we obtain AE_ ~ 0.06 eV, a very small number 
compared to the energy barrier Es ~ 1.3 eV for surface diffusion on GaAs(001) 
[338]. Direct experimental information on the magnitude of AE_ is not available. 
Smilauer and Vvedensky [339] obtained AE_ ~ 0.175 eV by fitting the results of an 
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Arrhenius-type computer simulation (see section 5.1.2) to RHEED data monitoring 
the thermal smoothening of MBE grown vicinal surfaces. 

The discrepancy between the two estimates should be no surprise. On the one 
hand, Smilauer and Vvedensky [340] have recently shown in the framework of 
Arrhenius model simulations that the approach based on equation (5.68) tends to 
underestimate the size of the barrier; on the other hand, the approach of [339] seems 
likely to yield a value that is too large [341]. Thus one may hope that the two 
estimates at least provide bounds on the true barrier energy. 

In view of its importance for the growth morphology, it is clearly desirable to 
obtain reliable experimental estimates of step-edge barrier energies. While the 
method outlined above may prove useful in the mounding regime, an approach 
adapted to the case of strong barriers has recently been proposed by Meyer et al. 
[342] and by Smilauer and Harris [343]. The central idea is to estimate the first layer 
coverage at which second layer nucleation sets in on top of islands. For Ag(111) and 
P t ( l l l )  the authors estimate barrier energies of  the order of A E  ~ 0.15 0-2eV, 
while for Fe(001) Smilauer and Harris report a much smaller value, around 0.05 eV. 
Bartelt and Evans [344] obtain a similar estimate AE_ ~ 0.045 ± 0.005 eV by fitting 
their Monte Carlo simulations to STM data for the early time surface morphology 
[345]. This provides some rationalization for the fact that Fe(001) is the only metal 
surface on which mounds rather than wedding cakes have been clearly observed so 
far [331,332]. 

Semiempirical potentials have also been used extensively to compute step edge 
barriers on a metal surface [346]. It is worth pointing out, however, that the 
application of these results to a growth situation is far from straightforward, since 
the relevant effective step crossing barriers in growth constitute an average over 
many different local configurations, involving rough step edges and possible 'exotic' 
collective diffusion mechanisms [347]. 

5.3.3. Coarsening and slope selection 
Experimental studies of  the coarsening stage of the mound morphology [325, 

326, 329-332, 334] pose two key questions to be addressed by theory. First, how is 
the characteristic slope at the sides of the mounds selected, and is it constant or time 
dependent? Second, what determines the dynamic exponent z in the coarsening law 
(see also section 2.3.1) 

~(t) ~ t 1/z, (5.69) 

according to which the typical lateral extent of mounds ~ grows as a function of time 
or film thickness? On both issues, a variety of behaviours are observed experimen- 
tally. For metal surfaces (Fe(001) [331,332] and Cu(100) [334]) a time-independent 
'magic slope' appears to be selected, which is often identified with specific crystallo- 
graphic orientations [331,334]. On semiconductor surfaces the mounds are typically 
very shallowt, with slopes that seem to remain constant in the case of GaAs [325, 
326] but show a strong thickness dependence for Ge(001) [329]. Three experimental 
estimates of the coarsening exponent 1/z are available at this time. For  Fe on 
Fe(001) one observes 1/z ~ 0-16 ± 0.04 at room temperature [332], while for Fe on 

~However, the formation of pyramids with crystallographic faces has been reported for Si(l ll) 
[333]. 
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Mg(001) at 400-450K a value of 1/z,~ 0.25 was reported; the third estimate, 
obtained for Ge(001) at 427 K, is 1/z ~ 0.42 -4- 0.04 [330]. 

Rather than invoking the full nonlinear conserved interface equation (3.15), we 
will use a simplified model wherein both the non-equilibrium chemical potential #NE 
and the geometric nonlinearities are neglected. While the former approximation is 
motivated by convenience only, the latter can be justified by noting that the relevant 
slopes in the mounding problem are of the order of a/lD << 1 (compare to section 
5.2.1). We further leave out the noise terms, since we are dealing with a deterministic 
instability. The equation of interest is therefore 

Oh/Ot = - t ~ ( ~ 7 2 ) 2 h  - ~ -  3NE(Vh) + F. (5.70) 

Assuming moreover an isotropic current function of the form (5.35), equation (5.70) 
can be rewritten as an equation of motion for the height gradient u - Vh: 

0U __ /~(V2)2U + V V " ~ - R  " 

Ot 

Here, the potential ~/f(u) is given by 

i12 /, 

= - ( 1 / 2 ) |  ds ~5(s), (5.72) ~(u) 
J 0 

and the function ~b was defined in equation (5.35). The form (5.71) emphasizes the 
analogy with the equation of motion for a conserved vector order parameter, 'model 
B' of phase ordering dynamics [348], 

0u _ ec(vZ)2u + (V- V) (5.73) 
Ot 

where one typically chooses ~K~(u) = (1 - u2) 2. The only difference between equations 
(5.71) and (5.73) lies in the order of the differential operators in front of the second 
term on the right hand side. This is clearly irrelevant in d = 1 but crucial in the 
physical dimensionality d = 2, since it ensures that u remains a gradient field (with 
V x u = 0) at all times. 

The analogy between unstable growth and phase ordering was first pointed out 
by Golubovid and Karunasiri [349] for the 1D case. It is useful in particular for 
clarifying the issue of slope selection. In the thermodynamic context, the system will 
clearly seek to locally establish values of u which correspond to minima of • ,  i.e. to 
(stable) zeros of the non-equilibrium current JNE [92, 300, 307]. Microscopically, the 
origin of such zeros is not well understood. Krug et al. [92] pointed out that stable 
zeros must appear simply because 3NE is forced to vanish at all high-symmetry 
orientations, but this cannot explain the rather shallow slopes that seem to be 
selected in many experiments. Therefore, kinetic mechanisms such as knock-out 
processes or downward funnelling [99, 273] may have to be invoked [307]. 

Whatever their precise origin, it is a simple matter to include selected 'magic 
slopes' in the continuum equation (5.70) through a suitable choice of LINE. The 
resulting equation was solved numerically by Siegert and Plischke [300], who found a 
coarsening exponent z ~ 4 irrespective of the detailed functional form of JNE; in 
particular, the coarsening behaviour is affected neither by including in-plane 
anisotropy, nor by using a function 3NE which cannot be derived from a potential 
r f(u) [307]. On the other hand, Stroscio et al. [332] reported an exponent 
1 / z -  O. 18-4-0.02, close to 1/6, from simulations in which the first, linear term in 
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equation (5.70) is replaced by a sixth-order derivative (vZ)3h, and a non-equilibrium 
chemical potential term V2(Vh) 2 is added on the right hand side. It is interesting to 
note that the observed values of z, z ~ 4 and z ~ 6, correspond to the result of naive 
dimensional analysis of  equation (5.70) involving only the linear relaxation terms 
(vZ)Zh and (~72)3h, respectively. In the theory of phase ordering kinetics such 
dimensional reasoning is known to fail if a second length scale, other than the 
domain size ~, exists in the problem; for example, the thickness of domain walls or 
the core size of topological defects [348]. It is not clear at present whether this 
complication arises also in the context of equation (5.70). The approximate 
agreement with the predictions of naive dimensional analysis was also noted by 
Liu and Metiu [350] in simulations of closely related equations describing the 
faceting of thermodynamically unstable crystal surfaces. 

Let us next consider the case when J~E does not vanish anywhere except at the 
singular orientation u = 0. Then no slope selection is possible, but rather the mound 
morphology steepens indefinitely; in the thermodynamic analogy, the system can 
gain unlimited free energy by further increasing the value of  the order parameter. 
This constitutes a novel type of phase ordering phenomenon which is not merely of 
academic in teres~coarsening accompanied by steepening has been observed 
experimentally on Ge(001) [329] as well as in growth simulations (see below). 
Moreover, we have seen above in section 5.2 that simple models (such as the 
generalized BCF theory and microscopic SOS models [92]) typically produce current 
functions without magic slopes. 

The relationship between coarsening and steepening is easily evaluated in one 
dimension. We assume that for large ~ the mound shape approaches the stationary 
solution of equation (5.70) with wavelength ~ [49, 351]. In one dimension, the 
stationarity condition takes the form of Newton's equation for a particle moving in 
the potential -°K'(u), t ~ u ' - ; g " ( u ( x ) )  [352]. In the case of interest here -°U is a 
potential well with a single minimum at u -  0. The stationary solutions of 
wavelength ~ correspond to 'trapped' periodic trajectories with period ~. Using 
energy conservation, the relationship between the wavelength and the maximal slope 
Umax (that is, the turning point of the particle trajectory) can be written as 

If) max 
4v/~ du {2[~'(u) - "~(Uma×)]} 1/2. (5.74) 

For example, if the current decays to zero as 

JN~(u) ~ u ~, u --+ oc, (5.75) 

evaluation of equation (5.74) yields 

Umax N ~2/(1+@. (5.76) 

Together with equation (5.69) this predicts how the morphology steepens as a 
function of time. 

A detailed study of  the BCF case ~/= 1 has been performed by Hunt, Orme, 
Williams, Orr and Sander [351], who estimate a coarsening exponent 1/z ~ 0.22. 
Another case of interest is -y = 0, corresponding to a finite limiting current for 
u ~ e~. This behaviour was found numerically for the q = 4 Metropolis model [92]. 
With y = 0, (5.76) predicts that Uma× ~ ~2, which is reasonably close to the result 
Umax ~ ~2.6 obtained in simulations of the model [89, 312]. However, the agreement 
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may well be fortuitous, since the anisotropies in the surface tension and the adatom 
mobility probably have significant effects at the large slopes involved [276]. 

The simultaneous coarsening and steepening of the surface pattern can lead to a 
rather rapid temporal increase of the modulation amplitude. Combining equations 
(5.69) and (5.76), the surface width W ~ U m a x ~  is seen to grow as 

W ~ t (3+-y)/z(l+~). (5.77) 

Depending on the values of z and 7, the exponent in (5.77) may well exceed 1/2, the 
value describing the most rapid stochastic roughening of a surface through purely 
random deposition, with no relaxation whatsoever; for example, Siegert and Plischke 
[312] found W ~ t 061 in simulations of the 1D q = 4 Metropolis model (see section 
5.1.2), where z ~ 6 and Um,x ~ ~2.6 (see above). 

This effect has been made responsible for the rapid roughening behaviour 
observed in the epitaxial growth of Si(001) [353] and other materials (see section 
5.6.3). It is, however, worth pointing out that a rather general bound on the temporal 
increase of  the surface width can be derived directly from the equation of motion 
(5.70) [354]. Multiplying both sides by h, integrating over space and performing a few 
partial integrations, one obtains 

O W2/Ot (O/Ot)L d I ddx(h Ft)2 

=2L-dJ'd~x(Vh)2~(lVhl2)-ZL d[d~x(V2h) 2. (5.78) 

Provided c~(s) decays at least as 1/s for large arguments, i.e. "7 >_ 1 in equation (5.75), 
the first term on the right hand side is bounded and W 2 can increase no faster than 
linearly in t. 

Smilauer and Vvedensky [340] have recently performed a detailed simulation 
study of mounding in the framework of  an Arrhenius-type SOS model supplemented 
with step edge barriers. As a function of  temperature and growth rate they observe a 
rather broad range of behaviours, comparable in diversity to the experimental 
studies. Coarsening exponents vary between 1/z ~ 0.19 and 1/z ~ 0.26, and both 
slope selection and power law steepening can be found. Siegert and Plischke [355] 
studied a somewhat different model in which the existence of selected slopes could be 
demonstrated directly through a measurement of the surface current [92]. They 
concluded that asymptotically l / z  ~ 0.25 in the case of isotropic step-edge barriers, 
but 1/z ~ O. 18 when anisotropy of the kind occuring on the GaAs(001) surface is 
included. 

Interestingly, the simulations [340, 355] indicate that coarsening and steepening 
are competing processes, in the sense that coarsening is slowed down when the 
mounds steepen during growth. A related effect can be derived for 1D surfaces, 
under the assumption that the coarsening is driven purely by fluctuations [249]. 
Introducing a steepening exponent through the relation Umax N ~8, one obtains the 
expression 

z = 3 + 28 (5.79) 

for the coarsening exponent. For 8 = 0 (slope selection) this reduces to the well 
known result z - 3 for the 1D Kawasaki Ising model at low temperatures [356, 357, 
358], while the limit 8 --+ oo represents the Poisson growth of wedding cakes, where 
no coarsening occurs ( l /z  = 0) and the surface width increases as W ~ t (1+6)/z ~ v/t. 
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5.4. The non-equilibrium chemical potential 
The conserved KPZ equation 

Oh _V2[uV2h+Aw(Vh)2] +rl (5.80) 
Ot L ~ J 

was proposed in 1989 by Sun, Guo and Grant [359] in a first exploration of non-KPZ 
universality classes. These authors were concerned with the non-equilibrium 
dynamics of interfaces under conditions of local volume conservation, and therefore 
chose the noise term r/to be of the conserving type, characterized by the covariance 
(3.17). The equation re-emerged, equipped with nonconserving 'shot noise', in the 
first papers on ideal MBE [101, 132]. In both contexts the quadratic nonlinearity in 
equation (5.80) was written down by appealing to symmetry considerations, and to 
the analogy with the KPZ equation (see section 4). 

A physical interpretation was suggested by Villain [20], who pointed out that the 
nonlinearity in equation (5.80) could be thought to arise from an inclination 
dependence of the adatom density under growth conditions; such a dependence is 
easily demonstrated, for example in the framework of the BCF-type theories 
discussed in section 5.2.1 (see section 5.4.4). Villain's picture is very close to the 
point of view adopted in section 3.1, where nonlinear terms of the form V2(Vh) 2n 
were argued to represent the inclination dependence of a non-equilibrium contribu- 
tion to the adatom chemical potential #NE (see equation (3.13)). In the notation of 
section 3.1, the coefficients in equation (5.80) are v = Fact and A - -2faA2. 

The goal of this section is to give a precise microscopic meaning to the notion of 
an inclination dependent, non-equilibrium chemical potential. We will be working 
mostly in the context of the Arrhenius MBE model described in section 5.1.2. Besides 
having the advantage of a simple equilibrium dynamics [276], this model suits our 
purposes because, as shown in section 5.2.2, it does not allow any non-equilibrium 
surface current. According to the power counting arguments of section 3.3, this 
implies that the nonlinearity in equation (5.80) is a relevant term which governs the 
large-scale behaviour of the surface. We noted in section 3.3 that the role of higher- 
order corrections of the form V2(Vh) 2n with n > 2, i.e. the consistency of keeping 
only the leading term in the gradient expansion (3.13), is not well understood, 
especially in low dimensionalities. Here we will follow the common practice and 
disregard this complication; some further discussion is provided in section 5.5.2. 

Once the physics behind the nonequilibrium chemical potential has been 
elucidated for the case of growth, it is straightforward to devise other microscopic 
mechanisms that give rise to the same kind of effects under conditions of volume 
conservation, and thus to construct models that are described by the (fully) 
conserved KPZ equation originally envisioned by Sun et al. [359]. This will be 
addressed briefly in section 5.4.2. in section 5.4.3 we summarize what is known 
analytically about the properties of equation (5.80), with conserved or nonconserved 
noise. An application to the problem of layer-by-layer growth is briefly described in 
section 5.4.4. 

5.4.1. Microscopic origin in the Arrhenius model 
As a starting point, consider the change in the ensemble-averaged local height 

(hx) induced by deposition and diffusion processes. For the purpose of the present 
discussion, we envision an ensemble of microscopic surface configurations that 
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correspond to the same, slowly varying macroscopic surface shape. Owing to 
deposition, (hx) increases at a constant rate F; diffusion processes remove particles 
from site x and add particles coming from the neighbouring sites. The resulting 
dynamics can be written as 

d hx l ~ R x  ~ (  )=~d~_.£ ( y - R x y ) + F ,  (5.81) 
ft./'/. 

with the sum over the averaged rates including the nearest neighbour sites y of ×. For 
the standard Arrhenius model described in section 5.1.2, Rxy = exp ( -  2Klnx/kB T), 
which is independent of the final site y (recall that K1 is the coupling constant of the 
SOS Hamiltonian all in equation (5.10)). Consequently the sum on the right hand 
side of equation (5.81) takes the form of the lattice Laplacian of the quantity 

M.  = (exp ( -2Klnx/kBT)) ,  (5.82) 

and the coarse-grained equation of motion reads 

Oh 1 
Ot - 2d V2M q- F. (5.83) 

It is clear from a comparison with the conserved interface equation (3.15) that M 
should be associated with the chemical potential # (the geometric prefactor 
[1 -}-(Vh)2] 1/2 in equation (3.15) does not appear in the large-scale description of 
SOS models; see [251,276]). In particular, a term V2(Vh) 2 appears in the equation of 
motion if and only if the local value of M depends on the local surface slope. 

In fact a more precise connection can be established. In (global) thermal 
equilibrium ( F -  0) it can be shown that M = exp ( -2dK1/kBT),  independent of 
inclination [266]. Moreover, if the surface is constrained by an inhomogeneous 
chemical potential #x to adopt a modulated, local equilibrium shape, one finds 

Mx exp [-(2dKl - #,,)/kBT]. (5.84) 

We give here a simple proof due to Dobbs [276]. Let the total energy of a surface 
configuration H = {hx} be given by (compare to equation (5.10)) 

= K ,  Ihx - h , I  -  xhx, ( 5 . 8 5 )  
( xy )  x 

and let H ' =  {h'y} denote the configuration obtained frolI1 {hy} by removing a 
particle at site x, 

, { hy 1, y x, (5.86) 
hy = hy, y 7~ x. 

The energy difference between the two configurations is readily shown to be 

• (H ' )  - itS(H) 2Kl(nx - d) + #,,. (5.87) 

Consequently, 
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Figure 43. Inclination-dependent non-equilibrium chemical potential for the 1D Arrhenius 
model, at reduced inverse temperature K1/kB T = 1.15 and deposition rate F = 0.01. 
The symbols represent numerical results from simulations of a system of size L = 40, 
averaged over 107 Monte Carlo steps per site (10 s monolayers) for each data point. 
The full curve is the result of the approximate analytic theory. 

{exp {--[2Kl(nx -- d )+  #x]/kBT}) = 1 H ~  exp { - [ ~ ( H )  + 2Kl(nx -- d )+  I~x]/kuT} 

: {~H exP[-~(H)/kBT]} 1 

x Z exp [-2#~(H')/kBT] = 1, (5.88) 
H ~ 

and equation (5.84) follows. 
Turning the relation (5.84) around, we see that the quantity 

#(x) = kBT in (exp (-2Klnx/kBT)) + 2dK1 (5.89) 

provides a direct measure of the local chemical potential which can be used also in a 
non-equil ibrium situation. In figure 43 we show a measurement of  the chemical 
potential as a function of inclination, for the 1D Arrhenius MBE model with 
parameters K1/kBT= 1.15 and F = 0 - 0 1 .  The chemical potential is seen to be 
increased relative to its equilibrium value # = 0, with a distinct peak at zero slope. In 
a slope expansion as in equation (3.13) this implies a negative value of A2, which is 
estimated from the data to be A2 ~ -0-015. It should be no surprise that this is a 
small number: since #NE is induced by the growth, its scale is set by the deposition 
rate F. This will be made more precise shortly. 

To gain some insight into the behaviour of the chemical potential, we note that 
(5.82) can be expressed as [360] 
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Figure 44. Changes in the local coordination numbers ni owing to the deposition of atoms. 

2d 

M = ~ cn exp ( -2Kln/kBT) ,  (5.90) 
n=0 

where cn is the probabil i ty that a surface atom has n lateral nearest neighbours. The 
cn depend on the surface inclination even in thermal equilibrium. For  example, in 
d = 1 all sites have n = 1 for strongly tilted surfaces, so that cl ---+ 1 and c0,2 ~ 0 for 
Vh --+ -4-ec. It  is only the specific linear combination (5.90) that is slope independent 
in equilibrium, due to the subtle constraint of detailed balance. Conversely, it is 
evident that virtually any non-equil ibrium influence disrupting detailed balance will 
also make M a slope-dependent quantity [249]. 

In the case of  growth, one expects that the deposition beam will create isolated 
adatoms and thereby increase co relative to the cn with n > 0. Since Co enters the sum 
(5.90) with the largest coefficient, this results in an overall increase of M, and also of 
the chemical potential # = kB T i n  M + 2dK1. On the other hand, for large slopes it is 
easy to see that sites with n = d will dominate, thereby resetting M and # to their 
equilibrium values M = exp (-2dK~/kBT), # = 0. Consequently, the behaviour of 
the non-equil ibrium chemical potential depicted in figure 43, that is #NE > 0, with a 
peak at zero inclination and #YE --+ 0 for large slopes, should be generally valid. 

For the 1D case a simple scheme can be devised to approximately calculate the 
non-equil ibrium chemical potential. Let gmn denote the probabil i ty that deposition 
onto a site occupied by an atom with m lateral nearest neighbours will create an 
atom with n lateral nearest neighbours. Non-zero off-diagonal elements of 9 are 910 
(creation of an isolated adatom on a step edge), 92o (creation of an adatom on a fiat 
port ion of the surface) and g21 (deposition below a step edge) (see figure 44). For  a 
1D equilibrium surface governed by the Hamil tonian ~1 in equation (5.10), the gmn 
are easily calculated as a function of  surface inclination. To leading order in the 
deposition flux, the changes 5cn in the coordination number densities can then be 
expressed as 

ken = F Z (gmn - grim), (5.91) 
m 

which, inserted into equation (5.90), yields the changes in M and in #. The result of 
this calculation is shown as the full curve in figure 43. The overall behaviour of  the 
chemical potential is well reproduced, though the magnitude is considerably over- 
estimated. The situation appears to be similar, in this respect, to the calculation of 
the slope-dependent current in section 5.2.3. 

5.4.2. Conserved non-equilibrium dynamics 
In their original work on equation (5.80) with conserving noise, Sun et al. [359] 

proposed a microscopic realization based on the restricted solid-on-solid (RSOS) 
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model of Kim and Kosterlitz [183]. It was subsequently pointed out by Rficz et al. 
[250] that this model in fact possesses detailed balance, and therefore cannot display 
the nonlinear term in equation (5.80). R/tcz et al. [250] showed how to break detailed 
balance in the RSOS rule; however, in the process a non-equilibrium surface current 
was also generated [92]. As a consequence, the large-scale dynamics of their model 
contains a Laplacian term u~ V2h which supersedes the effect of  the nonlinearity (see 
section 3.3), except at a special parameter value where ul is (close to) zero. 

From the discussion in the preceding section it is clear how to construct a model 
of conserved surface dynamics that is described by the conserved KPZ equation 
(5.80) for arbitrary parameter values. We have seen that the essential effect of the 
deposition current in the Arrhenius MBE model is to upset the delicate balance 
between the terms in the sum (5.90) defining the local chemical potential, such that 
the conserved KPZ nonlinearity is generated in the large-scale equation of  motion. 
Thus, the task is to break detailed balance without violating the symmetry of the 
Arrhenius model that disallows a net non-equilibrium surface current (see section 
5.2.2). 

It is easy to imagine non-equilibrium processes that have this effect, and that do 
not change the amount of mass on the surface. For example, consider a surface 
exposed to a beam of energetic ions. The kinetic energy provided by the beam allows 
particles on the surface to move to neighbouring sites without thermal activation 
[361, 362]. Within an Arrhenius-type model, we may suppose that an adatom is 
'kicked' by the beam with probability p, and performs a thermal jump with 
probability 1 p. The total jump rate is then 

Rxy = p + (1 - p) exp (--2Klnx), (5.92) 

which is still independent of the final site y, but no longer satisfies detailed balance; 
the deviation from equilibrium is governed by the parameter p, the analogue of the 
deposition flux in the MBE case. A straightforward simulation verifies that an 
inclination-dependent non-equilibrium chemical potential is indeed generated [249]. 
Since the total volume of the solid is conserved, one therefore expects this model to 
be described asymptotically by the conserved KPZ equation, equation (5.80), with 
conserving noise. 

A simpler (and computationally more efficient) rule with the same properties is 
obtained as follows. A site x is chosen at random. It is checked whether the height at 
any one of the neighbouring sites exceeds hx, by at least one lattice spacing. I f  so, the 
particle at x is regarded as immobile and a new site is chosen; if not, the particle at x 
is moved to a randomly chosen neighbour site. Note that, under this rule, particles 
incorporated into a perfect, flat singular surface are mobile. Simulation results for 
this rule are shown in figures 45 and 46. The exponents are in good agreement with 
the theoretical predictions for equation (5.80), which we describe next. 

5.4.3. Properties of the conserved Karda~Parisi-Zhang equation 
One-loop renormalization group analyses of  equation (5.80) were reported by 

Sun et al. [359] for the case of  conserved noise, and by Lai and Das Sarma [121] for 
the case of non-conserved noise; the latter work was extended by Tang and 
Nattermann [t22] by including the effect of  a lattice pinning potential, which turns 
out to be irrelevant on large length scales. In the conserved case the lattice potential 
gives rise to a Kosterlitz-Thouless-type roughening transition in d =-2 [363]. A 
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Figure 45. Simulation results for the simple symmetric non-equilibrium surface diffusion 
model described in the text. The full curve shows the surface width (squared) as a 
function of time, for a 1D surface of length L = 2 x 105. The dotted line indicates an 
initial Mullins regime, with ~/z = 1/8, while the broken line W 2 ~ 0-68t 2/11 shows 
the asymptotic behaviour predicted by the conserved KPZ equation (5.98). 
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Figure 46. Height-difference correlation function at time t = l05, from the simulation shown 
in figure 45. The broken line indicates the predicted roughness exponent ~ = 1/3 (see 
equation (5.97)), G2 ~ 2 .0 r  2/3. 
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two-loop analysis of the non-conserved case has been reported by Das Sarma and 
Kotlyar [364]. 

These calculations suggest a remarkably simple picture. We noted above in 
section 4.3 that the lack of coupling between the average motion of the surface, and 
the internal fluctuations, which is a common feature of all ideal MBE processes 
described by equations of the type (5.3), enforces the exact exponent identity 
z = d + 2 C (equation (4.27)). Replacing the deposition noise ~/ by the conserving 
noise r/c defined by equation (3.17) merely shifts the dimensionality d -+ d + 2 and 
implies the relation 

z = d ÷ 2 + 2~. (5.93) 

While the scale independence of the noise strength is an exact property of these 
equations, the one-loop calculations indicate that the coefficient ~ of the nonlinearity 
in equation (5.80) is also invariant under rescaling, implying the second identity 

+ z = 4, (5.94) 

the analogue of the Galilean invariance relation (4.7) for the KPZ equation. The 
relation (5.94) was implicitly used by Villain [20] in a Flory-type estimate of the 
scaling exponents. 

The invariance of ~ is commonly believed to hold to all orders [364], though this 
has not been rigorously established; it is not clear what symmetry plays the role of 
Galilean invariance in the conventional KPZ context (see [122, 250, 359] for 
discussions of this point). Here we follow the common view and assume that ~ is 
scale independent. This leaves us in the fortunate situation encountered previously in 
the treatment of the 1D KPZ equation in section 4.1: having two invariant quantities 
at our disposal, both exponents and scaling forms can be determined exactly, up to 
universal scaling functions and amplitudes [177]. Using equations (4.27) and (5.94) 
we obtain the exponents [20, 121] 

- - ( 4 - d ) / 3 ,  z = ( 8 ÷ d ) / 3 ,  d _ < d c = 4 ,  (5.95) 

for equation (5.80) with non-conserved noise, and [359] 

- ( 2 - d ) / 3 ,  z = ( 1 0 ÷ d ) / 3 ,  d _ < d c = 2 ,  (5.96) 

for the conserved noise case. 
Specializing to the case of conserved noise in d = 1 dimensions, we can further 

introduce universal amplitudes through the relations 

G2(r, 0 ~ a2(Dc/),) 2/3r2/3, r << ~(t), (5.97) 

for the stationary height difference correlation function (see section 3.2), and 

W2(L,  t) ~ c2(D4c/.~3)Z/llt 2/11, ~(t) << L. (5.98) 

For the simple model described in section 5.4.2, a measurement of the average jump 
rate as a function of surface inclination (which is the equivalent of the quantity M 
defined in equation (5.82) for the Arrhenius growth model) yields the value A ~ 0-17 
(see figure 47). Together with the prefactors of G2 and W 2 obtained from the data in 
figures 45 and 46, this allows us to estimate the universal amplitude ratio 

11/12/ 
~ C 2 /a2 ~ 0-47. (5.99) 
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Figure 47. Average jump rate M as a function of inclination for the non-equilibrium surface 
diffusion model described in section 5.4.2. The data were obtained from simulations 
of a system of size L -- 200; each point constitutes an average over 107 attempted 
moves per site. The broken curve is a parabolic fit M =  0.358-0.17(Vh) 2. The 
large-scale equation of motion for this model is, in analogy to equation (5.83), 
Oh/Ot = (1/2)V2M; hence comparison with equation (5.80) shows that A ~ 0-17. 

In view of the somewhat uncertain status of the scaling relation (5.94), it is clearly 
desirable to confirm the predictions (5.95) and (5.96) for the scaling exponents 
through a direct numerical integration of  equation (5.80). Chakrabarti  [365] carried 
out such a study for the equation with conserved noise, and found agreement with 
equation (5.96). For the case of non-conserved noise the numerical integration was 
first attempted by Tu [366] and Moser [367]. Both authors encountered severe 
difficulties in integrating the equation for d = 1, which they attributed to the large 
value ~ = 1 of the roughness exponent (see equation (5.95)). Tu found the temporal 
behaviour of the width to be consistent with the prediction, W ~ t 1/3, up to a finite 
transition time at which the interface developed singularities and the algorithm 
broke down. He conjectured that the development of finite time singularities might 
be an intrinsic feature of  the deterministic conserved KPZ equation (5.80) with ~7 = 0. 

This seems unlikely in view of  recent analytic work by Putkaradze, Bohr and 
Krug [368], who show that (i) cusp-like singularities can develop in finite time, but 
only if the stabilizing linear term in equation (5.80) is absent, i.e. if u = 0, and (ii) the 
solutions remain bounded even when singularities do develop. Nevertheless, it is 
worth pointing out that the behaviour of the deterministic, conserved KPZ equation 
is less well understood (and potentially more interesting) than its non-conserved 
counterpart, which can be exactly l inearized using the Cole-Hopf  transformation 
[207] (see also section 4.5). 

A recent numerical integration study by Kim and Das Sarma [369] did not report 
any stability problems, and gave the estimates C = 1.02 + 0-03, ~/z - O. 34 4- 0.01 in 
agreement with equation (5.95). 
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In d = 2 dimensions the equation is numerically better behaved. Tu [366] 
estimates that ¢/z = 0.21 4-0-03 and ff ~ 0.71, in reasonable agreement with the 
predictions 1/5 and 2/3, respectively. The extensive simulations of Moser [367] yield 
the estimate ~/z = 0.183 ± 0-0t0, somewhat smaller than predicted, however, the 
deviation is attributed to a finite-time effect. Thus, at present there appears to be no 
compelling reason to doubt the values (5.95) of the scaling exponents (see, however, 
section 5.5.2). 

5.4.4. Kinetic roughening and layer-by-layer growth 
So far in this article we have been concerned with the asymptotic, large distance/ 

long time behaviour of kinetically roughened surfaces. From a practical point of 
view, it is often more relevant to understand the early and intermediate stage of a 
deposition process, say, the growth of the first dozens or hundreds of monolayers. 
Provided the surface is close to a singular orientation, in the sense that the substrate 
step spacing l greatly exceeds the diffusion length ID, this early time regime is 
typically oscillatory, that is, the surface morphology (characterized, for example, by 
the step density or the width) changes periodically as a function of the number of 
deposited layers. The oscillations can be detected using RHEED [338, 370, 371] and 
other techniques [372, 373], and are taken as evidence for an approximate layer-by- 
layer growth mode. In perfect layer-by-layer growth, the (n + 1)th layer nucleates 
only after the nth layer has been completed. In this limit, the step density and the 
surface width drop to zero at integer values of the coverage 0, and reach maxima at 
half-integer coverages. In reality, the oscillation amplitude is reduced due to the fact 
that more than two layers grow simultaneously and, moreover, the amplitude 
decreases with time as the growth front broadens. 

The connection between the damping of growth oscillations and the kinetic 
roughening of the surface is intuitively obvious, but a satisfactory theory that 
captures the basic mechanism--the 'dephasing' of spatially separated regions due 
to the beam fluctuations [374]--is still lacking. Cohen et al. [311] studied a variety of 
mean-field models (without lateral structure) for the time evolution of the layer 
coverages, and found either persistent or damped oscillations depending on the 
assumptions made regarding interlayer transport. Kang and Evans [253] explored 
the relationship between surface roughening and oscillation damping in simulations 
of models for low-temperature epitaxy, which include only downward funnelling and 
transient mobility [99] but no thermal diffusion. They observed empirically that the 
oscillation amplitude decays as exp ( -  CW2), where W denotes the surface width and 
the constant C ~ 9.9. 

This result was subsequently explained by Barter and Evans [344] under the 
assumption that the height probability distribution Pj = Prob [h = j ]  (note that 
Pj - Oj 0j+l, where Oj is the coverage of the j th  layer) can be written as a shifted 
shape function f ,  

Pj = w - ' f  [(j - O)/w], (5.100) 

with the normalization f dsf(s) = f ds s2f(s) = 1. The width parameter w in equa- 
tion (5.100) equals the conventionally defined surface width [311] 

w = ( j  - o) ej (5 .1Ol )  
i 
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only asymptotically for w ---+ ec, when the discrete layer structure becomes irrelevant. 
The form (5.100) for the height probability distribution certainly holds in the limit of 
perfect layer-by-layer growth, where 

f(s) = 1 - [s l ,  Isl <_ 1, (5.102) 

and w = 1. Barter and Evans used the ansatz (5.100) to compute the kinematic 
Bragg intensity at the out-of-phase condition [253] 

IBragg = (-- 1)JPj (5.103) 

For a Gaussian shape function f one obtains the simple expression 

IBragg = 4 cos 2 (nO) exp (-  rc2w2). (5.104) 

Thus for w, W ~ e c  the oscillation amplitude decays as e x p ( - C W  2) with 
C - r t 2 ~  9.87. It can be demonstrated that the oscillatory contribution to the 
surface width (5.101) decays with the same leading behaviour [375]. 

In the context of simulations of collective diffusion models, the relationship 
between oscillation damping and growth conditions was first studied by Gilmer [376, 
377] and subsequently explored in depth by Vvedensky and co-workers [267, 269, 
272, 339]. In recent simulations, Wolf and co-workers [261,378] discovered a power 
law relationship between the damping time scale 0c (which measures the number of 
layers that can be grown in a layer-by-layer fashion) and the dimensionless ratio 
Ds/F of diffusion-to-deposition rate or, equivalently, the diffusion length 
lD ~ (Ds/F) ~ (see equation (5.23)). As an application of the considerations in earlier 
parts of this section, we show here how such a relationship can be derived from 
continuum theory. Of course, the continuum equations do not contain any growth 
oscillations, which are distinctly a lattice effect. However, it should have become 
clear from the previous discussion that the damping sets in roughly when the long 
wavelength contribution to the surface width becomes of the order of the monolayer 
thickness, since then different regions on the surface fall out of phase. Therefore, our 
strategy will be to compute the surface width W in the asymptotic regime, where 
continuum theory applies, and to extrapolate to early times in order to extract the 
coverage 0o at which W(0c) ~ 1. 

The model considered by Wolf [261] is a collective diffusion model in which only 
isolated adatoms move (dimers are stable); there are no step edge barriers, and 
consequently no growth-induced surface current (compare to section 5.2.2). The 
appropriate large-scale description is therefore provided by the conserved KPZ 
equation (5.80) with non-conserved noise. The non-renormalization results men- 
tioned in section 5.4.3 imply that the surface width can be written, up to a universal 
constant of order unity, as [177] 

W ~ [(D4//~d)l 4-d] 1/(8+d). (5.105) 

The shot noise strength D is equal to the deposition flux F, and hence what remains 
is to express the nonlinear coupling A in terms of 1D and F. This can be done using 
BCF theory. Note first that the non-equilibrium chemical potential #NE may be 
approximately identified with the (excess) density of adatoms generated by the 
deposition flux [20]. On a singular surface the adatom density is given by Fl~/Ds 
(equation (5.29)), while on a vicinal surface with step spacing l < lD it is reduced to 
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Fl2/Ds (equation (5.15)). The inclination dependence of  this quantity can therefore 
be written, close to singular orientations, as 

n(Vh) ~ (FlZ /Ds)[1 - ( lDVh/a) 2 + O(IVhl4)], (5.106) 

where we have used Vh ~ a l l  (cf. section 5.2.1). This induces a current J ~- -DsVn,  
the divergence of which gives rise to the conserved KPZ nonlinearity with coefficient 

A ,~ F l4a -1 . (5.107) 

Measuring height in units of  a, we can therefore rewrite equation (5.105) as 

W ~ (O/Oc) (4-d)/(8+d), (5.108) 

with a characteristic coverage 

14d/(4-d) (5.109) 
0 c  ~ ~ D  

in dimensionalities d _< 4. For  d > 4 the surface does not roughen, and persistent 
oscillations are possible [374]. 

For the case of stable dimers the exponent 7 in equation (5.23) is equal to 
1/(2d + 2) [299], so that equation (5.109) predicts 0c ~ (Ds/F) V3 in d = 1, in good 
agreement with the estimate 0c ~ (Ds/F) °33+°°1 obtained numerically by Brendel 
[378]. It thus appears, somewhat surprisingly, that the extrapolation from the 
asymptotic regime is able to capture the essence of the oscillation damping 
phenomenon. It is clear that the same strategy can be applied to other continuum 
equations of kinetic roughening, provided the coefficients entering the prefactor of 
W can be computed (see section 4.2 for a discussion in the KPZ context). Here we 
merely remark another interesting consequence of  the continuum approach, namely 
the appearance of a new lateral length scale associated with the damping. Using the 
results of section 5.4.3 we can compute the prefactor of the stationary height 
difference correlation function G2(r, t = e~), and ask at what lateral length scale rc 
the relative height fluctuations become of order unity, G2(r = rc, t = ec)=-1;  
equivalently, r~ equals the dynamic correlation length ~(t) at the critical coverage 
0c. One obtains 

rc ~ l~  (4-d) ~ v c O1/d, (5.110) 

which much exceeds lb. Physically, rc is the size of  regions which oscillate in phase; in 
systems of lateral extent less than r~ the growth oscillations persist forever. 

5.5. The universality classes of  ideal molecular beam epitaxy 
In this section we have attempted to provide microscopic derivations of the non- 

equilibrium contributions to the conserved growth equation (3.15), which allow us, 
at least in principle, to estimate their magnitude under conditions of real MBE 
growth. The relevance of these terms for the large-scale surface fluctuations has 
already been discussed in section 3.3. The emerging picture is that of a 'nested' 
sequence of universality classes: 

(i) Under generic circumstances, the behaviour is dominated by the linear part 
of the non-equilibrium surface current JNE(Vh). Depending on the sign of 
the leading coefficient Ul in the gradient expansion (3.14), one obtains 
either Edwards-Wilkinson (EW) scaling, with logarithmic roughness in 



D
ow

nl
oa

de
d 

B
y:

 [T
IB

-L
iz

en
ze

n 
- T

IB
 L

ic
en

ce
 A

ffa
irs

] A
t: 

13
:0

5 
10

 M
ar

ch
 2

00
8 

256 J. Krug 

d = 2 surface dimensions (see section 3.2), or unstable growth of  the kind 
discussed in section 5.3. 

(ii) If, for reasons of  symmetry (or, more realistically, because asymmetric 
configurations such as step edges are dynamically unimportant), JNE = 0, 
the most relevant terms are those generated by the non-equilibrium 
chemical potential, equation (3.13), and one expects the surface to be 
described by the conserved KPZ equation with the exponents (5.95) (at the 
conserved KPZ fixed point the geometric nonlinearities in equation (3.15) 
are believed to be irrelevant [121]). 

(iii) Finally, if the symmetry of the system not only prohibits non-equilibrium 
surface currents, but also imposes an invariance of the dynamics under 
arbitrary tilts, all conceivable nonlinearities are irrelevant and one is left 
with a surface described exactly by the noisy Mullins equation, with ~ = 1 
and z = 4 in d = 2 (see section 3.4). 

Strictly speaking, this list does not exhaust all possibilities. For example, one 
should also consider the case where both JNE --= 0 and #NE = 0 in equation (3.15), 
and ask what scaling behaviour results from the interplay of the geometric 
nonlinearities with the non-conserved shot noise [90, 91]. As was mentioned in 
section 3.3, this problem is difficult to control, because all geometric nonlinearities 
are relevant below d = 2. However, it is hard to imagine a situation where #NE --= 0, 
except for the case of tilt invariance, which suppresses the geometric nonlinearities at 
the same time. Thus, for the present discussion we restrict our attention to the cases 
(i)-(iii). 

The purpose of this section is to examine to what extent the available numerical 
results on ideal MBE growth are consistent with the picture sketched above. The case 
of unstable growth has already been dealt with in section 5.3, and will not be 
discussed here. A preliminary assessment of  kinetic roughening experiments is given 
in section 5.6. 

5.5.1. Computer simulations 
5.5.1.1. Limited mobility models. A surprising result of the numerical 
measurement of nonequilibrium surface currents in [92] was the prediction of a 
crossover to Edwards-Wilkinson scaling for the Wolf-Villain (WV) model both in 
one and two substrate dimensions; the crossover time was estimated to be 
tc ~ 106 ML in d = 1, and tc ~ 2 x 104 ML in d = 2. Direct numerical evidence for 
such a crossover has been presented in several recent studies [258, 259, 263, 379 
381]. Moreover, the measurement of surface currents for a variety of limited 
mobility rules introduced by Das Sarma and Ghaisas [256] indicates that JNE is 
non-zero generically for these models [382]. This is to be expected, since their 
dynamics, which is governed by a comparison of local coordination numbers (see 
section 5.1.1), does not possess any symmetries that would enforce J N E -  0; the 
only exception is the 1D rule DT1 (section 5.2.2). Both uphill and downhill 
currents have been observed [382]. The most spectacular manifestation of uphill 
currents and unstable growth was displayed by Smilauer and Kotr la [263, 383] in a 
study of the WV model in d = 3 and d = 4 substrate dimensions. 

However, clean and unambiguous EW scaling is observed in these models only 
when the dynamics favours downhill moves in some obvious way, through funnelling 
[252, 253] or an explicit suppression of  upward jumps [256, 384]; inclusion of next- 
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Figure 48. Generalized height difference correlation functions Gq(r), defined in equation 
(5.111), from a simulation of the DT1 limited mobility model. From top to bottom, 
the data sets correspond to q = 4, 3, 2 and 1 [112]. 

nearest-neighbour interactions also seems to speed up the crossover [258, 259]. In all 
other cases the downhill currents are very weak, and the scaling on numerically 
relevant length and time scales is governed by some effective continuum theory that is 
often difficult to identify. In one dimension this effective theory would also be 
expected to govern the asymptotic behaviour of the DT1 model, which has no EW 
term. 

Early results obtained for the surface width W(L, t) in one dimension suggested 
that the effective behaviour might be described simply by the linear noisy Mullins 
equation [101, 132], but recent studies of the full height-difference correlation 
function point at a much more complex scenario [107, 108, 112]. It appears that 
limited mobility models in one dimension generically show anomalous scaling of 
correlation functions, as in equation (3.49), with exponents c~ and ~ that cannot 
easily be associated with continuum theories. Microscopically, the anomalous 
behaviour manifests itself in an extremely broad (stretched exponential) distribution 
of local height differences, with moments scaling according to equation (5.61). This 
can lead to multiscaling of the generalized height-difference correlation functions Gq, 

Gq(r) = ([h(x -+- r) - h(x)[ q) ~ r q~q, (5.111) 

with q-dependent exponents ~q, through the dominance of rare, large slope 
fluctuations for large q [112] (see figure 48). Phenomenologically, the behaviour is 
reminiscent of the intermittent velocity fluctuations in fully developed fluid 
turbulence [112, 385]. 

The anomalous scaling exponents are found to be distinctly non-universal. 
Schroeder [386] has investigated the effect of increasing the incorporation range in 
the WV model (see section 5.1.1). He finds that this dramatically decreases the value 



D
ow

nl
oa

de
d 

B
y:

 [T
IB

-L
iz

en
ze

n 
- T

IB
 L

ic
en

ce
 A

ffa
irs

] A
t: 

13
:0

5 
10

 M
ar

ch
 2

00
8 

258 J. Krug 

of c~ in equation (3.49), while leaving the roughness exponent ~ essentially un- 
changed. Analogous, though somewhat less pronounced behaviour was reported 
recently for the DT model [264]. Increasing the incorporation range from 1 to 20 
lattice sites changes the roughness exponent ~ from 0.67 to 0.76, but the step size 
exponent c~ from 0.71 to 0.13; at the same time the scaling exponents ~q in equation 
(5.111) become essentially independent of q. It appears, therefore, that the long 
wavelength fluctuations described by ~ are not influenced by the divergence of the 
short-range slope fluctuations expressed by the scaling G2(1, t) ~ ~2% This suggests 
[107] a picture of a conventionally rough surface 'decorated' by anomalous local 
fluctuations, which can be eliminated by local smoothening, for example by 
increasing the diffusion range. 

The actual, possibly universal value of the roughness exponent found in these 
models is close to ~ - 3 / 4 ,  a result that has been associated [107, 379] with the 
continuum equation 

Oh _ u3V(Vh)3 _ t~V4 h q- ~l, (5.112) 
Ot 

which is obtained if the next-to-leading, cubic term in the gradient expansion (3.14) 
of JNE dominates over the leading linear term. Balancing the nonlinear term in 
equation (5.112) against the time derivative one obtains the relation 2 ~ + z -  4, 
which, together with the general exponent identity (4.27), yields [121,256] 

ff = ~ =  ( 4 - d ) / 4 ,  z = ( 4 + d ) / 2 ,  (5.113) 

and hence ( = 0.75 in d = 1. However, the validity of this result, and in particular its 
relevance for the description of microscopic growth models, must be questioned. It is 
easy to see [364, 369] that the cubic nonlinearity in conjunction with the noise in 
equation (5.112) gives rise to an effective surface diffusion current which is in fact 
linear in the imposed surface inclination, with a coefficient ~i ~ z.'3n/D. Thus, as it 
stands, equation (5.112) gives rise to either Edwards-Wilkinson scaling (if u3 > 0), or 
to unstable growth (if v3 < 0). Different behaviour (possibly described by equation 
(5.113)) can be expected only if a 'bare' Laplacian term vl V2h is added to the right 
hand side of equation (5.112), and the coefficient vl is tuned such that vl + ~ - 0. It 
seems unlikely that such fine tuning would take place in any 'generic' microscopic 
model. In addition, the association with equation (5.112) certainly cannot hold for 
the DT 1 model, where the cubic nonlinearity is excluded by symmetry (section 5.2.2); 
nevertheless the measured exponent ~ is very similar to that of the WV model [112, 
264, 382]. 

In three cases [121,126, 260] the scaling behaviour of 1D limited mobility models 
has been reported to agree with the predictions (5.95) of the conserved KPZ 
equation; however, in two of these only the behaviour of the surface width was 
analysed, which is not sensitive to anomalous scaling [107, 382]. Indeed, a recent 
reanalysis [264] of the model suggested by Lai and Das Sarma [121] clearly revealed 
anomalous scaling, with a roughness exponent ~ ~ 0.65 rather than 1. For the 'local 
minimization' model of Kim and Das Sarma [126] (see section 3.4) the absence or 
presence of anomalous scaling has not been established. So far only the restricted 
SOS model of Kim, Park and Kim [260] has been convincingly demonstrated to 
conform to equation (5.95); in this model anomalous scaling is suppressed by 
definition, since the local slopes can only take a finite number of values. 
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In 2D limited mobility models the effects of anomalous scaling appear to be 
reduced, but still detectable [382]. Smilauer and Kotrla [263, 379] estimate that 
a /z  ~ 0.05 for the d = 2 WV model, as compared to c~/z ~ 0.19 in one dimension 
with nearest-neighbour incorporation; in fact the increase of G2(t, t) may be only 
logarithmic in t [263, 381]. The roughness exponent is ~ = 0.65-4-0.03, which 
supports the identification [379, 384] of  the conserved KPZ equation as the 
preasymptotic universality class of the model. For some of the variants considered 
by Das Sarma and Ghaisas [256], the measured exponents are closer to the values 
(5.113) associated with the cubic equation (5.112) [387]. As mentioned already, the 
reason for the applicability of this equation needs to be clarified. Unfortunately, 
none of the 2D models studied so far [256] seems to possess a symmetry analogous to 
the 1D DT1 model, which would exclude a crossover to EW behaviour and therefore 
facilitate the study of the preasymptotic universality class. 

5.5.1.2. Collective diffusion models. We have shown in this section that (i) the 
Arrhenius model of MBE has no net surface current, and (ii) a non-equilibrium 
chemical potential #NE > 0, quantified by the expression (5.89), is generated under 
growth conditions. Thus, the large-scale behaviour of this model should be 
governed asymptotically by the conserved KPZ equation (5.80) with non-conserved 
noise. This conclusion is supported by simulations of Wilby, Vvedensky and 
Zangwill [388] in dimensionalities d = 1, 2 and 3, though the scaling range in these 
simulations, especially in d =  1 and 3, was quite small. Moreover, these 
simulations evaluated only the temporal increase of the surface width, which 
contains no information about spatial correlations. 

Recent detailed studies [257, 263, 264, 312] have clearly demonstrated the 
presence of anomalous scaling in the Arrhenius model, with the same nonuniversal 
features that were earlier found in limited mobility models. The exponent 
describing the divergence of the local height gradient is found to decrease with 
increasing temperature and/or decreasing deposition rate [257, 263, 264]. 
The roughness exponent ~ also seems to depend somewhat on t h e  deposition 
conditions. In one dimension, Siegert and Plischke [312] report ( ~  1.05 at 
(F/coo)exp(Es/kBT) = 0.05 and EN/kBT = 2, while Kotrla and Smilauer [263] 
obtain values in the range ~ =  0-73-0.77 for 10 -4 < (F/a~o)exp(Es/kBT)<_ 102 
and E N / k B T -  3-5 5, and Das Sarma et al. [264] estimate ~---0.61-0.64 under 
similar conditions (see section 5.1.2 for the definition of the model parameters). The 
latter two sets of values are close to those cited above for the limited mobility 
models, suggesting that a common universality class might still exist. However, such 
hopes are shattered by the 2D simulation results. Despite the fact that the anomalous 
scaling exponent oz is quite small in d = 2-- in fact Kotrla and Smilauer [263] observe 
that the divergence of the local height gradient is typically logarithmic in time, rather 
than a power law--the measured values of the roughness exponent (~ = 0.4-0.47 
[263] and ~ = 0.31-0.34 [264]) are clearly incompatible with the conserved KPZ 
prediction ~ = 2/3, as well as with the limited mobility results mentioned above. 
Thus, despite the encouraging early results of Wilby et al. [388], the question of the 
universality class of the Arrhenius model must be considered to be open. 

The behaviour of the Metropolis model, defined by the Hamiltonian (5.10) and 
the jump rates (5.11), can be understood completely from the consideration of the 
surface current [92, 312]. For q -- 1 one observes a considerable downhill current and 
clean EW scaling [277]. For q = 4 the current is uphill and the surface is unstable [89, 



D
ow

nl
oa

de
d 

B
y:

 [T
IB

-L
iz

en
ze

n 
- T

IB
 L

ic
en

ce
 A

ffa
irs

] A
t: 

13
:0

5 
10

 M
ar

ch
 2

00
8 

260 J. Krug 

312]. Finally, for q = 2 the symmetry argument given in section 5.2.2 implies that the 
surface should be governed by the linear Mullins equation, in agreement with recent 
simulations [312]. 

Among the collective diffusion simulations with detailed balance violating 
diffusion algorithms mentioned in section 5.1.2, we discuss here only the careful 
work of Pal and Landau [286]. In their model, the suppression of upward jumps 
would be expected to induce a downhill current. Indeed, the logarithmic roughening 
characteristic of the 2D EW equation is observed, though the dynamic exponent is 
estimated to be z = 1-61 :t:0-02, rather than the EW value z = 2; it appears, 
however, that the data are not inconsistent with z = 2. 

5.5.1.3. Models with bulk defects. I f  bulk defects are allowed, the surface 
fluctuations are asymptotically governed by the KPZ equation, as was discussed 
already in section 5.1.3. In the present context it is worthwhile to recall that two 
recent studies [262, 264] have found clear evidence of anomalous scaling in the 
early time behaviour of  such models, including quantitative agreement of the 
anomalous scaling exponents with those measured for certain SOS models [262]. 
This observation is important because it indicates that the anomalous scaling 
scenario is not solely an artifact of the ideal MBE assumptions. 

5.5.2. Anomalous scaling revisited 
The conclusion from the foregoing summary of simulation results is that the 

overall picture of  the universality classes of ideal MBE is well confirmed; however, 
the status of  class (i i)--models without growth-induced current but with tilt- 
dependent dynamics~emains  unclear due to the additional complication of 
anomalous scaling. The issue is not academic, since it concerns also the (possibly 
extended) preasymptotic behaviour of generic systems in which the growth-induced 
currents are small. In this section we therefore briefly review what is presently known 
about the nature and origin of  the phenomenon. 

The working definition of anomalous scaling which has been adopted in this 
article refers to the divergence of local height gradients with time or system size, and 
the related fact that height difference correlation functions do not possess a finite 
limit for t --+ ~ and L ---+ ~ .  This type of  behaviour can be derived for the linear 
growth equations of  section 3.2.3, and is observed numerically in the lattice models 
described in the previous section. It is, however, important to realize [107] that 
different mechanisms lead to similar real-space phenomenologies in the two cases. 
This can be appreciated by considering the structure factor S(q, t) defined by 
equation (3.24). Under ideal MBE conditions, the most general scaling form for S is 

S(q, t) = L dq-Zg(q~(t)), with ~ ~ t l/Z, g(s ---+ O) ~ s z. (5.114) 

The q z scaling of the prefactor and the behaviour of  the scaling function g for small 
arguments are dictated by the nonrenormalization of the noise strength D (the 
decoupling between the centre-of-mass motion and the internal surface dynamics; see 
section 4.3), which implies that S(q, t ) ~  D t / L  d for q~ << 1. In contrast, no such 
constraints exist for the behaviour of g at large arguments. In the linear theories of 
section 3.2, one has g(s --+ cxD) = const, always. Under such conditions it is easy to 
check that a divergence of the height gradient 
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((Vh) 2) ~ dqqd+l-zg(q~ ) (5.115) 
0 

can occur only below the characteristic dimensionality d (2) = z - 2, in which case the 
anomalous scaling exponents are given by ~ = (d~ 2) - d)/2,  ~ = 1, as in the linear 
theory (section 3.2.3). Consequently, anomalous scaling with ~ < 1, as is observed in 
the lattice models, cannot be explained by this scenario. Rather, it requires a power 
law divergence of the scaling function g(s) for large arguments, g(s) ~ s ¢. Provided 

¢ > z - 2 - d ,  (5.116) 

the integral in equation (5.115) will then be infrared convergent, which gives 
((Vh) 2) ~ ~¢ and allows us to identify 

oe=¢ /2 ,  ~ = ( z - d - O ) / Z = f f - c ~  (5.117) 

in terms of the anomalous scaling form (3.49). Here ¢, and therefore c~, is a truly 
independent exponent, and ~ < 1 because of equation (5.116). If one insists'on a 
scaling function 0 which is constant for large arguments, the scaling form (5.114) has 
to be decorated by an additional power of q~, 

S(q, t) = L-d(q~)¢q-ZO(q~), (5.118) 

which is well confirmed by simulations [107, 382] (note that in these papers a 
different definition of the dynamic exponent z is used); as usual, the stationary 
(t ~ cx~) scaling form is obtained from equation (5.118) by replacing ~ with L. 
Incidentally, equation (5.118) is precisely analogous to the way in which inter- 
mittency corrections appear in fluid turbulence [389]. 

As was pointed out already by Schroeder et al. [107], it is not easy to imagine a 
continuum theory that would give rise to the anomalous scaling form (5.118). On the 
other hand, the considerations collected in this section would seem to indicate that, 
provided the phenomenon of anomalous scaling can be explained by continuum 
theory at all, it must be somehow related to the conserved KPZ equation (5.80), 
possibly supplemented with higher-order nonlinearities; as was mentioned in section 
3.3, infinite sequences of relevant higher-order terms exist in low dimensionalities. 
This observation [112] was the starting point for the recent work of Bhattacharjee, 
Das Sarma and Kotlyar [390], who attempted a perturbative calculation of 
anomalous scaling exponents for the generalized, conserved KPZ equation 

Oh -V2 uVZh + ~2n(Vh) 2n + 7, (5.119) - - z  

Ot n=l 

obtained from the gradient expansion (3.13) of the non-equilibrium chemical 
potential. The basic idea of the calculation is that each of the higher-order 
nonlinearities in equation (5.119) gives rise (in d = 1) to a logarithmic correction 
to the scaling exponents (5.95). By summing the series of logarithms one obtains a 
power law correction with an exponent that may depend on the coefficients )k2n in 
equation (5.119), and therefore show the desired non-universal features. Of course, 
an explicit computation of exponents is not possible in this scheme, and it remains to 
be seen if a consistent theory of anomalous scaling can be constructed along these 
lines. At present, the phenomenon must be regarded as one of the major open 
challenges in the field of kinetic roughening theory. 
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5.6. Kinetic roughening experiments 
Over the past few years, an increasing number of deposition experiments have 

been performed with the aim of verifying the dynamic scaling scenario, and 
estimating the universal scaling exponents widely advertised by theoreticians. In 
carrying out such experiments and interpreting their results in the light of theory, one 
is faced with two somewhat unrelated difficulties. 

First, real surfaces are immensely more complex than the theorist's mental 
images. They typically display a wide variety of characteristic length scales, 
associated for example with reconstructions, grain boundaries, defects and im- 
purities, and it is often hard to ensure that the phenomena occurring at the scale 
accessible to a particular experimental technique are indeed governed by the simple 
processes described by theoretical models; other roughening mechanisms compete 
with and may supersede the purely stochastic, noise-induced roughening of interest 
(see for example section 5.6.2). An additional complication is the substrate rough- 
ness, which can be quite comparable to that developed kinetically during growth (see 
section 3.2.5). 

Second, all experimental techniques that can access the microscopic and 
mesoscopic scales of interest are, to a larger or lesser degree, indirect in the sense 
that the interpretation of data requires additional assumptions and theoretical input. 
For example, in order to extract the lateral height correlations from diffuse X-ray 
scattering data, a model for the full height height correlation has to be assumed 
[116, 117] (very recently, Salditt et al. [392] have proposed a method which 
overcomes this restriction). We have seen in section 3.2.4 that the traditional ansatz 
[116, 391] 

Cg(s) = exp (-cs 2(-) (5.120) 

for the scaling function in equation (3.54) in not supported by explicit calculations 
within the linear theory [115]; even worse, for nonlinear growth equations no 
analytic information about the shape of the correlation function is available. While 
it is possible, under favourable circumstances, to extract the value of the roughness 
exponent ff in a model-independent way [393], the estimate for the correlation length 

has been shown to depend sensitively on the choice of the scaling function 
[1181. 

These inherent difficulties place high demands on the versatility and inventiveness 
of the experimental investigation. To unambiguously determine that kinetic rough- 
ening is taking place, it is crucial that the dynamic development of the roughness be 
monitored (through the increase of the surface width W or the correlation length ~, 
and preferably both) in addition to its spatial characterization through the roughness 
exponent ¢. This requires either the use of some in situ technique by which the 
surface morphology can be observed during growth, or the preparation of a sequence 
of samples with different film thicknesses (that is, deposition times) that are then 
investigated ex situ. An interesting third possibility is the growth of multilayer films, 
where the surface configurations at various stages of the deposition process are 
preserved in the bulk of the film in the form of solid solid interfaces [353, 394, 395]. 
In order to overcome the limitations of any particular experimental probe of surface 
roughness, it is essential that the same system be investigated using different, 
complementary techniques [396]. 

Some of the problems described above can be avoided by a judicious choice of 
the experimental system. For example, recent work on equilibrium step dynamics 
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[397, 398] has demonstrated the great advantage of working with 1D objects (steps), 
which are easier to image and manipulate, allowing for a detailed quantitative 
comparison between theory and experiment. It would therefore seem promising to 
continue the study of kinetic step roughening during growth initiated by Lagally and 
co-workers [309]. However, it is clear that substantial progress can be made only 
when the scope of existing theory is broadened to at least qualitatively take into 
account the effects that dominate the physics of real surfaces. 

A large body of experimental work, involving both vapour deposition and ion- 
beam erosion ('negative growth'), has recently been reviewed by Krim and 
Palasantzas [17]. We refer the reader to their article for a detailed discussion of 
the experiments, and highlight here only some of the general conclusions. We then 
briefly evaluate certain ambiguities in interpreting the experiments (section 5.6.2) and 
describe a class of 'rapidly roughening' systems which cannot be understood within 
conventional theories (section 5.6.3); these last two sections are intended primarily to 
suggest possible directions for future theoretical research. 

5.6.1. Conserved and non-conserved growth 
First of all, the theoretical distinction between non-conservative (KPZ) and 

conservative (ideal MBE) growth appears to be mirrored in reality at least to the 
extent that vapour deposition experiments often yield exponents consistent with 
conservative growth equations (see below), while ion-beam erosion (which clearly 
violates volume conservation [202, 399]) does not (see, however, the experiment of 
Yang et al. on ion-sputtered Si(111), which shows anomalous scaling consistent with 
the noisy Mullins equation [114]). In one erosion experiment (Ar + erosion of 
pyrolytic graphite) scaling exponents consistent with the KPZ equation were 
reported [400]. For the second large class of non-conservative growth processes 
the growth of amorphous films--the experimental evidence is less encouraging. 
While the observation of clean Edwards-Wilkinson scaling in amorphous W/Si 
multilayers [395] could be, optimistically, interpreted as preasymptotic KPZ 
behaviour, an experiment with amorphous Si designed explicitly to search for 
KPZ scaling [401] failed to detect any temporal increase in roughness at all. 

Krim and Palasantzas [17] point out that the large majority of vapour deposition 
experiments yield roughness exponents in the range 0.7-1.0, squarely between the 
values ~ = 2/3 predicted by the conserved KPZ equation (equation (5.95)), and 

= 1 associated with the noisy Mullins equation; in the latter case the actually 
observed, effective exponent might well be smaller than unity due to the logarithmic 
correction appearing at the border to the anomalous scaling regime (see section 3.2.3 
and [402]). KPZ behaviour, ~ ~ 0.387 [137], is clearly ruled out. Moreover, among 
the experiments which monitored the temporal increase of the roughness, about half 
found values for the relevant exponent ratio ~/z in the range 0.2-0.33, reasonably 
close to the numbers 1/5 and 1/4 predicted by the conserved KPZ and noisy Mullins 
equations, respectively. In the cases where ~ and ~/z were measured independently, 
the estimates are consistent with the scaling relation (4.27) characteristic of 
conserved growth. Summarizing the experimental situation, Krim and Palasantzas 
conclude that "There is considerable overlap between experimental observation for 
the vapour deposition systems and the predictions of the conservative growth models" 
[17]. 
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5.6.2. Mounding versus roughening 
As has been remarked in several recent papers [332, 334, 355, 403], many of the 

experiments associated with conserved growth equat ions could be equally well 
interpreted within the context of the mounding instability described in section 5.3. 
The height difference correlation function of a mounded surface will show an 
apparent roughness exponent close to unity, G2(r)~,, r 2, simply because most of 
the surface has a fixed, non-zero misorientation relative to the average; the surface 
width will increase as a power law in time, W ( t ) ~  ~(t)~,, tVz (or faster in the 
presence of  steepening), with an exponent 1/z ~ 1/4, and the mound spacing ~(t) 
may, for many purposes, look like the dynamic correlation length of the roughening 
process. Even the exponent identity (4.27) would be fulfilled for the mounded 
surface, provided 1/z = 1/4 exactly. 

In the experiments mentioned in section 5.3, the mound morphology was usually 
identified by direct visual inspection. It is less clear how to distinguish between a 
stochastically rough, and a disorderly mounded surface on the basis of statistical 
averages, such as height correlation functions and structure factors. We have seen in 
section 3.2.4 that the presence of oscillations in the spatial height correlation 
function is not sufficient to deduce the existence of a characteristic length scale, 
since oscillations can be produced also by a purely stochastic equation. This problem 
has been discussed in detail by Siegert and Plischke [355], who conclude that (i) the 
oscillations are much more pronounced in the case of mounding, but (ii) the 
apparent roughness exponent deduced from Gz(r, t) can be considerably less than 
unity at finite times. A cleaner distinction may be possible by using the structure 
factor S(q, t) (see equation (3.25)), since it is a monotonically decreasing function of 
q for all (known) stochastic roughening processes, but would be expected to develop 
a maximum in the presence of a characteristic scale [16]. 

In some cases the distinction between roughening and mounding appears to be 
merely a question of observation scale. Prior to the discovery of  mounds on the 
GaAs(001) surface, Orr and co-workers presented a detailed STM study [404, 405] of 
roughening during MBE on the very same surface, and concluded that the rough- 
ening proceeds very slowly, as W(t) ~ t TM [405] (see also [120]). In the light of the 
subsequent work, it is clear that what was in fact observed in these experiments were 
the sides of the mounds, the mounds themselves being too large to be detected in the 
STM images. According to the theory outlined in section 5.3.3, the sides of  the 
mounds take on an orientation where the non-equilibrium surface current JNE has a 
stable zero; in the linearization around such an orientation the current therefore 
gives rise to an Edwards-Wilkinson term ul~Zh with ul > 0, which implies 
logarithmic roughening, consistent with the observations [405, 120]. 

Nevertheless, it is puzzling that in several instances different experiments carried 
out on the same system under virtually identical conditions found mounding or 
roughening morphologies, respectively. For example, the growth of Fe on Fe(001) 
was first studied by He et al. using high resolution low energy electron diffraction 
(HRLEED) [406]. They extracted scaling exponents, ~ = 0 . 7 9 + 0 . 0 5  and 
~/z = 0-22±0-02,  which are in excellent agreement with the scaling relation 
(4.27), and concluded that their system is well described by conserved equations of 
kinetic roughening. Recently the same system was reinvestigated by Stroscio et al. 
using STM and RHEED,  and a clear case of mounding was identified [332]. Stroscio 
et al. attribute the discrepancy to the larger amount of substrate roughness present in 
the earlier experiment, which might somehow suppress the formation of mounds 
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[407]. An effect of substrate disorder was also implicated in the case of  Si(111); 
however, there it seems to work in the opposite direction--pyramids (mounds) form 
on imperfect substrates, but kinetic roughness evolves if the substrate is sufficiently 
flat [408]. Understanding the influence of  substrate roughness on unstable growth 
thus appears to be an important open problem. 

Another set of  experiments that has to be mentioned in this context is the work of 
Krim and co-workers involving the growth of silver on silicon and quartz substrates, 
perhaps the most thoroughly investigated kinetic roughening system [396, 409] and 
the only case where the scaling exponents ~ and z as well as the ratio ~/z were 
determined independently [410]. As was mentioned in section 5.3, silver has a sizable 
step edge barrier (much larger than that of  iron) and shows beautiful wedding cakes 
at room temperature [318]. Nevertheless, the surfaces investigated by Krim et al., 
which were also grown at room temperature, show no sign of mounding or unstable 
growth [410]. Again, the different behaviour must be attributed to the substrate and 
the early stages of growth. Since the substrates used by Krim et al. are not wetted by 
the silver, the initial growth proceeds through the formation of 3D islands, which 
lead to a polycrystalline film structure; apparently the polycrystallinity is not 
compatible with the formation of mounds. Palasantzas and Krim [410] remarked 
that the dynamic correlation length ~(t) determined from their STM data was nearly 
equal to the grain size in the films. This indicates that the increase of ~ may be related 
to some bulk coarsening process, rather than to the roughening of the surface. In any 
case the grain size introduces an additional length scale which has to be taken into 
account in a proper theoretical interpretation of  these experiments [411]. 

5.6.3. Rapid roughening 
Above we have been concerned with situations in which the observed behaviour 

is consistent with kinetic roughening theories, but the assignment of the underlying 
mechanism is ambiguous. Here we address cases of growth-induced roughening 
where an explanation in terms of conventional kinetic roughening theories can be 
excluded from the outset, because the roughness W(t) is found to increase faster than 
t 1/2, the natural ' random deposition' limit of stochastic roughening. (At least for 
conservative growth equations the relation (4.27) bounds the temporal increase of 
W, because ~/z = (1/2)(1 - d/z)  < 1/2.) 

This type of rapid roughening behaviour has been reported for a variety of 
semiconductor surfaces at low temperatures [120, 353, 412] and was recently 
reviewed by Eaglesham [401] in the context of  understanding the crystalline 
amorphous transition in limited thickness epitaxy [413]. In many cases the roughness 
increases approximately linearly with film thickness, W(t) ~ t, though more rapid 
growth laws (W(t) ~ t 2 or W(t)  ~ exp (t) [401]) have also been observed: in the case 
of Si(111) [412] an initial regime of 'conventional' roughness, W(t) ~ t 1/4, is found 
[113]. Eaglesham and co-workers initially attributed the behaviour to the presence of 
step edge barriers [353]; however, as was discussed in section 5.3.3, it seems 
questionable whether this effect suffices. Recent investigations strongly indicate that 
gas phase contamination, in particular H impurities, plays a decisive role [401]; 
a direct relationship between the rate of roughening and the hydrogen pressure in 
the MBE chamber has been established [414]. Surface instability due to 
adsorbed impurities is a classic topic in crystal growth theory [415~417], but its 
consequences for the asymptotic roughening of the surface do not seem to be 
understood. 
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Rapid roughening also occurs on some metal surfaces. Fang et al. [418] observed 
W(I),'.~ t 0"77+0"05 for deposition of Pb on Pb( l l0) ,  and K6nig [119] obtained 
W(t) N t 0"s1+0'02 in a study of  Au films on Ti buffers. In the latter case visual 
inspection of  transmission electron micrographs revealed a distinct polycrystallinity, 
which moreover seemed to evolve with thickness. It seems plausible that the presence 
of these grain boundaries influences the roughening of the surface. We showed in 
section 4.6.3, in the context of the inhomogeneous KPZ equation, that the presence 
of quenched randomness in the lateral direction can significantly speed up the 
roughening process, leading typically to the 'subballistic' behaviour (4.65), which is 
hard to distinguish from power law scaling with exponents close to unity [212]. It 
remains to be seen if such considerations lead to a theory for this kind of rapid 
roughening. 

We note, finally, that the nonlocal shadowing effects described in section 2 
provide another, very natural, mechanism for rapid roughening with W ( t ) ~  t. 
Indeed, a linear scaling of  the roughness is expected whenever the growth process 
generates a broad height distribution, such as the power law (2.1), in which the film 
thickness constitutes the only characteristic scale. Shadowing is probably the 
dominant mechanism in a recent AFM study of obliquely sputtered chromium films 
[419], where W ~ t was observed. In the simulation work on oblique incidence 
ballistic deposition [29, 31, 32] the 'width of the active zone' is measured rather than 
the surface width; this quantity increases more slowly than linearly with time. 
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