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Brownian motion of steps on Si(111)
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Step motion on surfaces can now be measured quantitatively. We present a formalism for analyz-
ing equilibrium step IIIuctuations and apply it to real-time reHection electron microscope observations
of step motion on Si(111). The time correlation functions of the step positions and of their Fourier
components are compared with predictions from I angevin equations for tern extreme mechanisms
for step motion: edge diffusion and terrace exchange. At 900 C, the dominant mechanism is terrace
exchange mith a time constant w of 1 ps. The significance of w for atomic mechanisms of surface
mass transport is discussed.

The use of direct imaging capabilities to measure sta-
tistical distributions among the states of a system has
revolutionized our ability to understand the equilibrium
structure of surfaces. Similar advances in understand-
ing kinetic processes are at hand due to the development
of real-time in situ imaging capabilities such as reflection
electron microscopy, low-energy electron microscopy,
and high-temperature scanning tunneling Inicroscopy.
One of the important applications of this emerging ca-
pability will be in understanding the kinetics of step mo-
tion on surfaces, which is important in growth and
in the equilibration of surface structure. The sim-
plest conditions under which step motion can be ob-
served are equilibrium conditions in which the step posi-
tion is fluctuating under thermal excitations. Such ther-
mal fluctuations resulted in the ragged appearance of
the step edges in scanning tunneling microscopy obser-
vations of Ag(ill), ~s ~7 which are due to the thermal
motion of atoms along the step edge on the same time
scale as the scanning process. In principle, it should
be possible to analyze such thermal fluctuations to ob-
tain the fundamental mechanisms and rates of step mo-
tion. We describe in this work the experimental signa-
tures expected for two extreme models for step motion
and demonstrate the experimental feasibility of distin-
guishing these two models. We show how analysis of the
time and wavelength dependence of the step fluctuations
gives the fundamental "step mobility" or step difFusion
coefficient which governs how a step responds to being
out of equilibrium. Our approach is a modification of a
Langevin formalism which we had previously applied to
the problem of the rate of step equilibration.

Specifically, we demonstrate this approach by analyz-
ing time-dependent reflection electron microscope (REM)
of step motion. The data were obtained for Si(ill) sur-
faces at 900 C, and the static images were previously
analyzed by Alfonso et al. to determine the nature of
the step-step interactions. At the temperature of mea-
surement, the surface is above the (7x7) to (1x1) recon-
structive transition, but below the temperature where
sublimation (and thus net step motion) is appreciable.
The REM technique, which allows in situ observations of
the steps, is described elsewhere. ' ' The data are an-

alyzed here in detail for a vicinal surface with an average
step separation of 1400 A. Figure 1 shows a sample im-
age of one of these surfaces. Such images were recorded
at video rates (30 &ames/s). We used a digital frame
averager to average over 2—4 &ames. Next, regions of in-
terest were digitized and stored with a time resolution of
10 &ames/s. To analyze the step motion, an automatic
procedure was developed to measure the positions of the
steps in each frame. Typically 40 points were marked
on each step edge. To correct for the distortion caused
by the glancing incidence of the electron beam, we trans-
formed coordinates as described in Ref. 3. Figure 2 shows
the time dependence of the position of one point on one of
the step edges. Notice that during one second the steps
can fluctuate on the order of 100 A. [The interatomic
spacing on the (ill) surface is 3.84 A.] Approximately
800 such data sets were extracted &om the video images
and averaged to determine the correlation functions dis-
cussed below.

There are two extreme cases of the many microscopic
mechanisms which can cause step motion: (1) the ex-
change of atoms at the step edge with adatoms or va-

FIG. 1. A reQection electron microscope image of a stepped
Si surface at 900 C. The dark lines are single atomic layer
high steps. The average step separation is ~ 1400 A. As
indicated on the superimposed axes, because of the glancing
incidence of the electron beam, the dimension along the step
edges is 35 times the perpendicular dimension.
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FIG. 2. The time dependence of the position of a single

point on one of the step edges in Fig. 1. The data set was

extracted from video-tape REM images. Many such sets of
data allow us to determine the step mobility.

This functional form is independent of the details of
the attachment kinetics and step &ee energy. In prin-
ciple it should be valid on time scales greater than a
few attachment/detachments, but short compared to
the time between step collisions. Equation (2) can be
immediately compared with the data. Figure 3 plots
G(t), determined from the data. The fit to the square

cancies on the terraces; (2) the motion of atoms hopping
from one step site to another on the same step [as sus-
pected to dominate for stepped Ag(111) and Cu(100), i~

for example]. As we shall show, the two classes are clearly
distinguishable by analysis of the correlations in the fluc-
tuations shown in Fig. 2. We stress at the outset that
these correlation functions will depend on the step edge
stifFness P, which is a measure of the step's tendency to
remain straight, as well as on the atomic kinetics. To
understand the role of P, imagine the case (1) of atoms
continually attaching and detaching at the step edge. If
this happened completely randomly, the roughness of the
step edge would quickly increase. But because rough step
edges have high energy, the net detachment or attach-
ment rate at any point of the step edge will be influenced
by the local roughness in such a way as to smooth the
step edge. The balance between the thermal "noise" of
atoms attaching and detaching and the tendency of the
step to minimize its curvature energy can be expressed in
terms of a Langevin equation. If one mimics the interac-
tions due to neighboring steps by a constraining potential
of the form cx, the Langevin equation governing the
fluctuations for case (1), random exchange, isis

t9x F PB x 2I' cx
a

=
I,T a, kT '"-("')

where I' is the "step mobility" and g is the random
thermal noise. From straightforward analysis of this
equation, ' ' we 6nd that when the step is in thermal
equilibrium the correlation G(t —t') = (x2) —(x(t)x(t'))
of the fluctuations at any particular point on the step
edge will be given, at early times, by

kTI
(2)

~p )

root time dependence is reasonably good, suggesting that
the step motion is predominately due to adatom attach-
ment/detachment. From the flt shown in Fig. 3, we es-
timate kTI' /P = 3 x 10s A4. The significance of this
number will be discussed below.

For comparison, if the observed step motion were pro-
duced only by atoms hopping along the step edges, then
the temporal correlations would be given by a difFerent
Langevin equation:

t9x I' P 04x 21'qcx t9 x
at

=
I,r a, ' ~T a, '""("')

(Now the noise rli, conserves the average step edge
position. ) The correlations of a single point on the step
edge at early times are now given by

- 1/4

G(t) = (0.46. . .) ( ) t'~'. (4)

This form is also compared with the data in Fig. 3. The
fit is poor, evidently ruling out hopping along the step
edge as the dominant contribution to the step motion.

To analyze the data in more depth, we consider the
analogy of the steps to vibrating strings, recently dis-
cussed, for example, by Nozieres. Again, the basic ques-
tion is whether the steps are "vibrating" because of the
random attachment/detachment of atoms with the step
edge (local random pushes on the "string") or because
of the mass flow along the step edge (local twists of the
string). One very striking feature of the experimental
observations of the steps is that large-wavelength Huctu-
ations decay slowly while short-wavelength fluctuations
decay quickly. It is thus natural to study the time de-
pendence of the Fourier components of the step edge.
Taking y to be the coordinate along a step and x the
coordinate perpendicular to the step edge, we define the
Fourier components of the step edge xq through

x(y, t) = ) xq exp(iqy).

Using either Eq. (1) or Eq. (3) to compute the correlation
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FIG. 3. The circles show the correlation function G(t) de-

duced from averaging over 800 data sets such as shown in
Fig. 2. We have only included the correlation functions for
times shorter than 15 s, because for longer times, the statisti-
cal noise becomes large. The solid line is a fit to Eq. (2); the
dashed line is a fit to Eq. (4).
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function Gq(t —t') = (~xz(t) —xz(t')~ ) yields the pre-
diction that each Fourier component will be correlated
through

2j'cT (
G, (t) = -, I

1 —exp[ —ltl/r(q)] I,)1(pq'+ c) (
where I is the length of the analyzed step. For the case
of adatom attachment/detachment, one finds the time
constant decreases with increasing q according to

kT
( ) p (p 2

)
(7)

For the case of atoms hopping along the step edge, one
find. s

(6)

(8)
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FIG. 4. The time correlations G~(t) for a range of Fourier
components (circles). The solid lines show the fits to Eq. (6).

kT
~(q) =

l h,q'(Pq'+ c)
The wavelength dependencies of Eqs. (7) and (8) are
in agreement with the analysis of Pimpinelli et al for
these two mechanisms of step wandering. In addition,
we have performed Monte Carlo simulations which show
that Eqs. (6)—(8) do indeed describe well the Quctuations
of a step in the terrace-step-kink and solid-on-solid model
over d.istinct ranges of T and q.

Figure 4 shows G~(t) deduced &om the data, along
with the fits to the exponential function of Eq. (6). From
Fig. 4 it is evident that the time constant of the Huctua-
tions does indeed increase with decreasing wavelength, as
expected. Figure 5 quantifies this d.ependence by show-
ing the q dependence of the inverse of the time constant,
along with fits to Eqs. (7) and (8). The Qt is clearly more
consistent with the quadratic dependence of the attach-
ment/detachment mechanism of Eq. (7) than the quartic
dependeiice of Eq. (8), as anticipated by the analysis of
Fig. 2. There is no evidence that difFusion along the step
edge plays any role here, although it could well be im-
portant at larger q than. probed in this experiment.

Thus, in summary, we find that the fluctuations of
steps on Si(ill) have the characteristics of Brownian mo-
tion: a simple Langevin process in which terrace adatoms
or vacancies are allowed to attach and detach randomly
&om the step edges. What are the implications of the
particular form af Eq. (1)? Given that atoms are attach-
ing and detaching &om the step edges, the principal as-
sumption made in Eq. (1) is that the adatoms/vacancies
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FIG. 5. The inverse of the time constant as a function of

wave vector determined from the Gts of Fig. 4. The solid
and dotted lines show the fits to Eqs. (7) and (8), respec-
tively. By examining terrace length distributions, Alfonso et
al. (Ref. 3) find that the interaction between steps is consis-
tent with an A/t repulsion, with A = 280 meVA. Because
c —6A/l (Ref. 23), the effect of c is negligible on the scale of
this figure. From the fit to Eq. (7), we deduce a step mobility
1 =5x10" A s

can diffuse so quickly that they provide an infinite reser-
voir for step attachments and detachments. (This as-
sumption is analogous to the assumption in traditional
Brownian motion experiments that the mass of the ob-
served particle is much greater than that of the molecules
of the Quid. ) One can easily envision physical situations
where this assumption fails. For example, if the adatom
diffusion rate on the terraces is slow compared to the
adatom emission rate kom the step edge, the density of
adatoms can vary ' along the step edge, leading to a
time constant which varies as ~q~ (Refs. 10, 21, and
25) rather than q

2 as we deduce &om the experimen-
tal d.ata. In such a microscopic description of step mo-
tion containing several different atomic processes with
different activation energies, one can expect crossovers
between the different characteristic step behaviors as a
function of temperature. In addition, Pimpinelli et OL

have shown that the q behavior, expected when terrace
diffusion is rate limiting, can cross over to $q behav-
ior when the step separation l is sufBciently small. The
conditions for such crossovers have not been thoroughly
quantified theoretically, however. Further experiments
studying the temperature and terrace-width dependence
of the fluctuations are clearly warranted.

In addition to yielding information on the mechanism
of step fluctuations, this analysis provides a concrete
measure of the step mobility I . As discussed in Ref.
18, given the validity of Eq. (1), if the average position
of a step is displaced from its neighbors, this step mo-
bility describes how the net position of the step diffuses
towards equilibrium (a manifestation of the Einstein re-
lation). Thus, 1" is important in theories of how surface
morphologies equilibrate through step motion. To es-
timate the step mobility I' &om Fig. 5, we use the value
of P 30 meV/A. , which we deduced &om fits to the
amplitude of Eq. (6). (This number is lower than the
best estimate of 68 meV/A. quoted in Ref. 3; however, it
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is in the range of quoted numbers. ) From the fit shown
in Fig. 5, we then estimate from Eq. (7) th«

r. = 5 x 10' A' s-'.

This yields kTI' /P 2 x 10 A.4, roughly consistent with
the value deduced &om Fig. 3.

Although I' is an important quantity in its own right,
we now discuss its microscopic interpretation. For uncor-
related noise in Eq. (1) (as we have assumed),

(ri (y, t)rl (y', t')) = b(y —y')8(t —t').

Interpreting the noise g as due to random attachments
and detachments of single atoms, one Ands

I' = as/r,
where a is an atomic dimension, and w is the average
time between attachments/detachments. From Eqs. (9)
and (ll) we deduce that r is on the order of 10 s s.
Is this number plausible? As a lower limit on what is
reasonable, suppose the terrace atoms/vacancies which
collide with the step edges are completely mobile, i.e. ,
that they form a two-dimensional gas. Then the num-
ber of collisions per unit length of step edge per second
will be of order nv, , /vr where n is the density of atoms
on the terrace, and v, , is the root-mean-square veloc-
ity. Taking v, , = +2kT/m, the average density would
only have to be on. the order of 10 /a to explain the

observed ~ . Of course, for the physical model under con-
sideration, step attachment should be the rate limiting
step. In other words, only some &action of the step colli-
sions should result in a successful attachment. If we treat
step attachment as a simple activated process, the time
constant can be related to the activation energy through
1/r = nv exp( —E /kT). If n lies between 0.1 and 1, and
v has a typical value of 10 s, the activation energy
would be 1.4—1.6 eV. These magnitudes of n and E are
comparable to values deduced &om other experimental
observations.

An alternative explanation of the observed q depen-
dence of the time constant, as proposed by Pimpinelli et
OL, is that the step motion is determined by adatoms
emitted by neighboring steps. In this case there would
be a linear dependence of the time constant on terrace
width. We cannot of course determine there is such a
linear dependence of the time constant using the single
data set analyzed here (l = 1400 A.). However, if we
reinterpret our value of I' in this model, the time con-
stant for terrace di8'usion is consistent with the values
of Pimpinelli et al. of 10 s . In a simple activation
model for terrace difFusion, this value yields E in the
range of 0.9—1.1 eV for n varying between 0.1 and 1.0.
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